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ABSTRACT

DFT, DCT, DST and MDCT are compared in terms of
their resolution power for signal Fourier spectrum analysis
and energy compaction properties. For test sinusoidal
signals with random frequency it was shown by computer
simulation that the resolution power of the transforms is
not uniform within the frequency band and that on average
over the frequency range, DFT, DCT and DST have
almost the same resolution power. while MDCT slightly
remises them in this respect.

1. INTRODUCTION

Signal Fourier spectrum analysis is one of the major tools
of signal processing. For real life continuous signals such
as audio signals and images, it is associated with signal
integral Fourier transformation. In digital signal
processing, integral Fourier transformation is
approximated by Discrete Fourier Transforms
implemented via Fast Fourier Transform algorithms. From
the other side, it has been found that in image and audio
coding, restoration and similar applications other
transforms such as Discrete Cosine Transform (DCT),
Discrete Sine Transform (DST), Modified DCT
(Modulated Lapped Transform, MDCT) may perform
better then DFT ([1,4]). However, for the appropriate use
of these transforms one needs very frequently to establish
a correspondence between DFT signal spectra and those of
DCT, MDCT, DST and like and evaluate their
applicability for signal Fourier analysis. A typical example
is MDCT based perceptual audio coding ([2,3]). The paper
addresses this issue.

2. INTERRELATION BETWEEN INTEGRAL
FOURIER TRANSFORM, DFT, DCT, MDCT, DST

Discrete representation of signal integral transforms
parallels that of signals.  For signal (((( ))))xa  and its Fourier

spectrum (((( ))))fαααα  represented in a discrete form by means of
sequences of their samples {{{{ }}}}ka  and {{{{ }}}}rαααα taken at sets of
equidistant points (((( )))){{{{ }}}}xuk ∆∆∆∆++++  and (((( )))){{{{ }}}}fvr ∆∆∆∆++++ ,
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where x∆∆∆∆ and f∆∆∆∆ are discretization intervals and u  and
v  are  shifts (in fraction of the corresponding
discretization interval) of sample positions from the origin
of the corresponding coordinates,  discrete representation
of the Fourier integral
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takes form of “Shifted Discrete Fourier Transforms”
(SDFT) ([4]):
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the most wide known special case of which (for zero shifts
u  and v ) is DFT:
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Popular in digital signal processing DCT, MDCT and DST
are yet other special cases of SDFT.

One can show that signal spectra obtained by
DCT, MDCT, DST are identical to Shifted Discrete
Fourier Transform spectra of signals that are certain
permutation modifications of the original signal:
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These relationship mnemonically illustrated in Fig. 1
lucidly explain relationship between the above
trigonometric bases and their similarity and dissimilarity.

2. COMPARISON OF TRANSFORM SPECTRAL
RESOLUTION POWER AND ENERGY
COMPACTION CAPABILITY

In this section, we compare above trigonometric bases in
terms of their energy compaction capability and of their
resolution power in Fourier spectrum analysis. Transform
energy compaction capability means the capability of the
transform to redistribute signal energy into small number
of transform coefficients.  It can be characterized by the
fraction of total number of signal transform coefficients
that carry certain (substantial) percentage of the signal
energy. The lower is this fraction for a given energy
percentage, the better is the transform energy compaction
capability. This property is the decisive one in most of
applications.

The transform resolution power in signal spectral
estimation characterizes sharpness of spectral peaks of

Fig. 1 Signal and its corresponding representations for
DFT, DCT, MDCT and DST

sinusoidal signals measured in these bases. It can be
evaluated numerically as the width, in fractions of the
discretization interval, of the spectral peak within which a
given (substantial) percentage of the energy of a sinusoidal
signal is contained. From the sampling theory it follows
that the width of the spectral peaks in signal discrete
spectrum is, in general, proportional to the discretization
interval in frequency domain. However, the
proportionality coefficient is different for different discrete
representations of the Fourier integral which the above
trigonometric transforms are.

Evaluation of transform spectral resolution power
requires testing spectral peak width for sinusoidal signals
of different and arbitrary frequencies within the frequency
range defined by the signal discretization rate. Although
the evaluation can, in principle, be carried out analytically,
obtaining numerical data will anyway require numerical
analysis. The same results can be obtained by numerical
simulation of the transforms. To this goal, sinusoidal test
signals with random frequency uniformly distributed
within the corresponding frequency discretization interval
should be selected and the results of spectrum estimation
should, for each central frequency, be averaged over the
realizations of such signals. We demonstrate the results of
the simulation in which 100 realizations were used for
each frequency sampling interval and the resolution power
of spectrum analysis was evaluated in terms of the width
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Fig. 2 4 Comparison of spectral resolution (width of signal spectrum) of DFT, DCT, MDCT and DST for sinusoidal signals of
512 samples as a function of signal frequency for different energy levels:  a)  0.5; b) 0.75; c) 0.9.
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of the signal spectral peaks on three levels of the
precentage of signal energy: 50%. 75% and 90%. In order
to measure the peak width with a subpixel accuracy, power
spectra of test signals were sinc-interpolated with a zoom
factor of 5. Results obtained are shown in Figs. 2 and 3.
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Fig. 3 Examples of spectra of sinusoidal signals with
random frequency in the range [54.5-55.5] in the window
of 512 samples (no window function). For the display
purpose, spectral magnitudes are risen to the power 0.3.
wDFT, wDCT, wMDCT and wDST show peak width on
the energy level 0.9.

Pure analytical evaluation of the transform energy
compaction capability is also problematic since it is
feasible only for very limited mathematical models of
signals. Another option is to evaluate it experimentally for
a number of ''typical'' test signals. We demonstrate the
results of such an evaluation for a set of MPEG audio test
signals and some classic and pop music signals. For these
signals, energy compaction capability of transforms was
compared for different window size (256, 512 and 1024
samples) with and without window functions and on
average over large signal sequences of several hundreds of
thousands of samples. The results are illustrated in Fig. 4
in frequency coordinates normalized by the signal
frequency bandwidth.

3. CONCLUSION

•  All above mentioned transforms can be used for
signal Fourier analysis.

•  The transforms exhibit different Fourier spectrum
analysis resolution power; the resolution power is not
uniform over the frequency band and it varies from
approximately 1.5 to 3.5 frequency samples on the
energy level 0.9. Resolution power of DFT is almost
uniform in the bandwidth. Resolution power of DCT
encreases with frequency and reaches its highest

value (the lowest peak width) at high frequencies.
Resolution power of DST is lower in the middle of
the frequency range. On average over the frequency
range, DFT, DCT and DST have almost the same
resolution power. MDCT slightly remises them in
this respect.

•  Within their resolution power, the transforms provide
practically identical results of spectrum analysis.

•  For audio signals, DCT, MDCT and DST exhibit, on
average over large signal sequences, practically
similar energy compaction capability. More then 95%
energy is concentrated within 10% of the normalized
frequency scale for most of the test signals for all
transforms concerned. DFT, on average, performs in
this respect worse then DCT, DST and MDCT. The
energy compaction property of different transforms
gets more unified with increasing the window size.
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Fig. 4. An example of comparison of convergence of
spectra in different bases of a piece of 5292000 samples of
Bach music for window size of 256 samples. For each
frequency, the data show fraction of total signal energy
that is contained in the bandwidth bounded by this
frequency
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