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ABSTRACT 

This paper presents a technique for the automatic 
classification of vocal and non-vocal regions in an 
acoustic musical signal. The proposed technique uses 
acoustic features which are suitable to distinguish vocal 
and non-vocal signals. We employ the Hidden Markov 
Model (HMM) classifier for vocal and non-vocal 
classification. In contrast to conventional HMM 
training methods which employ one model for each 
class, we create an HMM model space (multi-model 
HMMs) for segmentation with improved accuracy. In 
addition, we employ an automatic bootstrapping 
process which adapts the test song’s own models for 
better classification accuracy. Experimental evaluations 
conducted on a database of 20 popular music songs 
show the validity of the proposed approach. 
 

1. INTRODUCTION 

Rapid progress in computer and Internet technology 
has enabled the circulation of large amounts of music 
data on the Internet. With the immense and growing 
body of music data, automatic analysis of song content 
is important for music retrieval and many other 
applications. The singing voice (vocal) is one of the 
most important characteristics of music [1]. It is still a 
challenge to detect the vocal segments within a song 
automatically. 
 
The problem of vocal detection can be stated as 
follows: given a song, classify each segment of the 
song in terms of whether it is pure instrumental 
(referred to as a non-vocal segment in this paper) or a 
mixture of vocals with/without background 
instrumental (referred to as the vocal segment). 
 
The basic procedure for any vocals /non-vocals 
segmentation system includes the extraction of feature 
parameters from audio signals with a time resolution 
constrained by the analysis window length.  Then, 
segments of the song are classified as vocal or non-
vocal using a statistical classifier or a relatively simple 
threshold method.  
 

A large number of features have been proposed to 
represent audio signals. Some of the methods originate 
from the area of speech recognition. These include 
Mel Frequency Cepstral Coefficients (MFCC) [1, 2], 
Linear Prediction Coefficients (LPC) [1, 2, 3], 
perceptual linear prediction coefficients [4, 5], energy 
function [6] and the average zero-crossing rate [6]. In 
addition, features that have been used in the area of 
music analysis are spectral flux [6], relative subband 
energy [1] and features that can differentiate the 
harmonic structure of music signals [3, 6, 7, 8]. Zhang 
[6] mentioned that voice signal tends to have a higher 
rate of change than instrumental music, and the start of 
vocals can be indicated by the appearance of high 
peaks in the spectral flux value. Kim [8] stated that the 
straightforward method to detect vocals is to note the 
energy within the frequencies bounded by the range of 
vocal energy. Collectively, the studies [3, 6, 7, 8] 
stated that features that can measure the harmonic 
content of the music signal are important for detecting 
vocals in a song. To measure harmonicity, the 
frequency range of 200Hz ~2 KHz is considered in [8]. 
The highest frequency usually considered for the 
analysis of normal speech is 3 kHz [9]. Due to the fact 
that the harmonic content of vocals is higher than 
normal speech [6], the frequencies which are higher 
than 3 kHz are important to take into consideration for 
vocals analysis. Based on these studies, features that 
can capture the harmonic content and spectral structure 
of the audio seem to be suitable features for vocal 
detection. 
 
Early audio segmentation algorithms such as [16] are 
specifically designed for speech signals. These 
algorithms detect the several acoustic events such as 
speaker changing points in the audio. More recent 
works often use pattern classifiers such as HMM, 
Neural Network (NN), Support Vector Machine 
(SVM) for song segmentation [1, 2, 4, 5]. In those 
studies use pattern classifiers such as HMM, Neural 
Network (NN), Support Vector Machine (SVM) for 
song segmentation [1, 2, 4, 5]. In those studies, a 
statistical model for each of the vocal or non-vocal 
class was created using entire songs in the training 
data. However, popular songs usually have a structure 
comprising of intro, verse, chorus, bridge and outro, 



  
 
and different sections are of different signal strengths 
[10]. The signal strength of the chorus section is 
usually much higher than the intro or verse section. 
Therefore, statistical models of vocal and non-vocal 
classes should be built based on the structure of the 
song.  The method in [5] uses the classifier of a speech 
recognizer trained on normal speech to detect speech-
like sounds of music. However, there are significant 
differences between singing and speech signals. Since 
singing voice is a relatively poor match to normal 
speech, it could be more effective if we use singing 
voice instead of speech for statistical modelling. 
Tzanetakis [1] used a bootstrapping process for the 
identification of vocal segments. A small random 
sampling of the song was annotated by the user and 
these samples were used to train the song-specific 
vocal and non-vocal models. This approach requires 
manual annotation for every song it processes and is 
therefore not fully automatic. Furthermore, since only 
a small number of samples can be annotated by user, it 
affects the quality of the training data. 
 
Taking the existing research a step further, our focus 
here is to construct a statistical classifier with 
parametric models that learn the specific vocal 
characteristics of a song without the need for manual 
annotation. In addition, we employ the multi-model 
HMM (MM-HMM) training approach to tackle the 
intra-song and inter-song variations for improved 
classification performance. Our approach consists of 
two steps. First, MM-HMM is trained using the vocal 
and non-vocal segments of songs from a training 
database. Then, the test song is segmented and 
classified using MM-HMM. Following that, the first 
classification result of the test song is used to train its 
own vocal and non-vocal bootstrapped HMM models. 
Finally, the song is segmented again using its own 
models.  
 
The rest of the paper is organized as follows. The 
process of feature extraction from an audio signal is 
presented in Section 2. Details of the MM-HMM 
classifier and the bootstrapping process are given in 
Section 3. The song database used in the experiments 
is described in Section 4. The experiment set-up and 
results are given in Section 5. Section 6 concludes the 
paper. 

2. ACOUSTIC FEATURES 

Our technique of feature extraction is based on sub-
band processing that uses the Log Frequency Power 
Coefficients (LFPC) to provide an indication of the 
energy distribution among subbands. 
 
A digital waveform is converted into an acoustic 
feature vector for classification. For high accuracy in 
vocals detection, the features suitable for the task 
should be selected. We assume that the spectral 
characteristics of different segments (pure vocals, 

vocals with instrumental and pure instrumental) are 
different. If vocals begin while instrumental is going 
on, a sudden increase in the energy level of the audio 
signal is observed [6]. Therefore, we extract feature 
parameters based on the distribution of energy in 
different frequency bands in the range from 130Hz to 
16 kHz. We use these parameters to facilitate the 
classification of vocal and non-vocal segments. 
 
A music signal is divided into frames of 20 ms in 
length with a 13ms overlap. Each frame is multiplied 
with a hamming window to minimize signal 
discontinuities at the end of each frame, and then, fast 
Fourier Transform (FFT) is computed. Each audio 
frame is passed through a bank of 12 bandpass filters 
spaced logarithmically from 130Hz to 16 kHz. Figure 1 
is a diagrammatic representation of  12 subband filters. 
 
 

130Hz 1.3kHz 4 kHz 16 kHz 8 kHz 

 
               Figure 1. Subband frequency divisions
 
Subband-based Log Frequency Power Coefficients 
(LFPC) [11] are then computed using Equations (1) 
and (2).  
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The LFPC parameters which provide an indication of 
energy distribution among subbands are calculated as 
follows: 
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Figure 2 shows the energy distribution of non-vocal 
and vocals segments over above-defined 12 subband 
filters. The segments are extracted from six different 
songs. The total length of each vocal/non-vocal 
segment is 90 seconds. The figure shows that the vocal 
segments have relatively higher energy values in the 
higher frequency bands in comparison with the non-
vocal segments. Therefore, as can be seen in Figure 2, 



  
 
LFPC is a quite effective feature for the discrimination 
of vocal and non-vocal segments.  

 

 
Figure 2. Energy distribution of pure instrumental 
segments and vocals with instrumental segments 
over 12 subband filters 

 

3. CLASSIFIER FORMULATION 

3.1. Multi-model HMM classifier 
 
Most studies on vocals detection use statistical pattern 
classifiers [1, 4, 5]. However, to our knowledge, none 
of the studies takes into account song structure 
information in song modelling. An important 
observation is that vocal and non-vocal segments 
display intra-song signal characteristics variation. For 
example, signal strengths in different sections (verse, 
chorus, bridge and outro) are usually different. In our 
observation, for most songs, the signal strength of the 
verse is relatively low compared to that of the chorus. 
Chorus sections are usually of stronger signal strength 
in comparison with verse sections since they may have 
busier drums, some additional percussion, a fuller 
string arrangement and an additional melody line [10]. 
The verse section usually has lighter arrangement than 
the chorus section. Sample waveforms extracted from 
different verse and chorus sections of a popular song 
are depicted in Figure 3. 
 
 

 
 

Figure 3. Waveforms of 10-second segments 
extracted from (a) the verse, (b) the chorus sections 
of the song ‘25 Minutes’. The horizontal axis 
represents time in seconds. 

 
Tempo and loudness are important attributes 
accounting for inter-song variation. Therefore, we 
integrate the song structure, inter-song and intra-song 
variation into our models.  

The training data (vocal or non-vocal segments) are 
manually classified based on the section type (intro, 
verse, chorus, bridge and outro), tempo and loudness. 
We assume the tempo of the input song to be 
constrained between 40~185 beats per minutes (BPM). 
We divide music into high and low tempo classes 
according to a fixed threshold, which is 70BPM in our 
current implementation. Similarly, we divide music 
into loud and soft classes according to a threshold, 
which is determined by each individual song in the 
training dataset. Finally, a model is created for each 
class as shown in Figure 4.  In our current 
implementation, we use 20 models for modelling vocal 
and non-vocal segments respectively. 
 

Intro Verse Chorus Bridge Outro 

Vocal or Non-vocal Class 

Model C 
(low tempo, 
loudness) 

Model D 
(low tempo, 
softness) 

Model B 
(high tempo, 
softness) 

Model A 
(high tempo, 
loudness) 

Figure 4. Creating several variants of the vocal or non-
vocal HMM model 

 
This process results in multiple HMM models for each 
vocal and non-vocal class. Several models for each 
class form an HMM model space, to allow more 
accurate modelling in comparison to the single-model 
baseline. 

3.2. Bootstrapping process 
 
In the above section, we have created a classifier that 
learns the characteristics of the vocal and instrumental 
components in the training data. We may use this 
classifier to segment songs. However, the variations in 
tempo, timbre properties and loudness of different 
songs may affect the classification accuracy. By 
employing a classifier that can learn the specific 
characteristics of the test song, we can anticipate a 
better classification performance. With similar 
motivations, a method of bootstrapping was proposed 
in which song-specific vocal characteristics were 
learned by the classifier to segment the song [1]. This 
process requires human annotated vocal and non-vocal 
segments (bootstrapped samples) of every test song to 
train their model. In addition, this method depends on 
the number of bootstrapped samples available to learn 
the vocal characteristics of the song. In our approach, 
we first segment the song into vocal and non-vocal 
segments using the MM-HMM classifier. We then use 
the initial segmentation as bootstrapped samples to 



  
 
build song-specific vocal and non-vocal models of the 
test song with a bootstrapping process. This process 
allows us to use a song’s own model for classification 
as shown in Figure 5. This bootstrapping process 
makes the algorithm adaptive and capable of achieving 
higher vocals detection accuracy.  
 

Test 
Song 

Vocal / Non-
Vocal 
Segments 

Bootstrapped 
Samples 

Bootstrapped 
Training 

Bootstrapped 
HMM 

Multi-Model 
HMM Classifier 

 

Figure 5: Bootstrapped training and segmentation 
process 

4. SONG DATABASE 

In order to conduct the experiments, we compile a 
small song database which includes 20 popular songs. 
The songs are selected to obtain a variety in time 
period and artists. On average, the vocal segments 
occupy 67% of the total duration of a song, and the 
rest 33% are non-vocal segments. Each song is 
annotated manually to obtain the vocal and non-vocal 
segments to provide ground truth data. This ground 
truth data is used to evaluate system performance. 
Typical segment durations range from 0.8 seconds to 
12 seconds. The sampling frequency of the songs is 
44.1 kHz, stereo channel and 16 bit per sample. In our 
experiments, the songs with original sampling 
frequency are used without re-sampling. Six songs of 
different artists are allocated to the training dataset and 
the remaining 14 songs to the test set. There is no 
overlap between the two datasets. 

5. EXPERIMENTS 

5.1. Experimental configuration 
 
Several experiments are conducted to evaluate the 
effectiveness of the proposed approach. We use the 
continuous density HMM with four states and two 
Gaussian mixtures per state for all HMM models in all 
our experiments. The standard procedures for HMM 
training and classification are well documented in [9]. 
In our experiments, 30% of the database which 
includes six songs, selected randomly, is used as 
training data, and the system is tested on the remaining 
14 songs.  Using this training database, the MM-HMM 
classifier is trained to obtain several variants of the 
vocal and non-vocal HMM models which are shown in 
Figure 4. 
 
First, the test song is blocked into 200ms analysis 
frames, and then, LFPC features are calculated from 
20ms with 13ms overlapping subframes. Then, the 
song is segmented into vocal and non-vocal frames of 
200ms in duration using the MM-HMM classifier. In 

the MM-HMM classifier, every analysis frame of the 
song is matched with models of the classifier, and the 
frame is assigned to the model having the best match. 
As shown in Figure 4, each model of the MM-HMM 
classifier is associated with a vocal/non-vocal class, 
section type (verse, chorus, etc.), tempo and loudness 
level. Therefore, in the classification process, the MM-
HMM classifier assigns a vocal/non-vocal label as well 
as section type, tempo and loudness level labels to a 
classified analysis frame. As a result, the frames of the 
song classified by the MM-HMM classifier are 
associated with song structure information. 
 
This initial segmentation produces a bootstrapped 
database which includes vocal and non-vocal segments 
(bootstrapped samples) of the test song. Then, the 
bootstrapped samples are used to train the HMM. This 
process provides song-specific vocal and non-vocal 
models of the test song. Since bootstrapped samples are 
associated with song structure information, the 
bootstrapping training process takes care of song 
structure information in song modelling. Finally, the 
test song is segmented into vocal and non-vocal regions 
using the song-specific vocal and non-vocal models. 
The same analysis frame length used in the MM-HMM 
classifier is also used here. 
 
To find the best matched model for each analysis 
frame, frame log-likelihoods are calculated for all 
models and the likelihoods are compared in the HMM 
classifiers. Accumulating the frame log-likelihoods 
over a longer period is more statistically reliable for 
decision making [12]. In addition, the feature 
parameters of a relatively short frame length do not 
capture information about melody, rhythm or long-term 
song structure [13]. To observe the classification 
accuracy of using longer analysis frame lengths, 
additional experiments are carried out using analysis 
frames of 400 ms, 600 ms, 800 ms, 1000 ms, 1200 ms 
and 1400 ms. The experimental results are presented in 
Table 1. 

5.2. Results and discussion 
 
Table 1 shows the average detection accuracy of the 
vocal and non-vocal segments of 14 pop songs by the 
MM-HMM classifier and the bootstrapping method 
using different analysis frame lengths. 
 
The results show that long-term acoustic features are 
more capable of differentiating vocal and non-vocal 
segments. The optimal frame length seems to be around 
1 second. The reason of the decreased performance for 
longer frame length is that the assumption of 
stationarity in a frame is not longer valid. With long 
frame length it is more likely that the vocal and non-
vocal segments are present in a frame. 
 
 



  
 
 
 

Table 1: Vocal/ non-vocal segment detection average 
accuracies of different analysis frames over 14 songs 
N= Non-vocal segments, V=Vocal segments, 
Avg=Average 

 
Relatively high accuracy is obtained using the MM-
HMM classifier. After employing the bootstrapping 
process, the accuracy of the system is improved. 
Repeating the bootstrapping process several times 
improves performance but with the penalty of increased 
computational cost. As our preliminary experiments 
show that the performance improvement is marginal. 
Therefore, we apply bootstrapping only once in the 
experiment.  
 
Table 2: Indices and titles of 20 songs in the database 

Training Data 

Song  
Index Title 

1 [1978] - Village People - YMCA 
2 [2002] - Blue - One Love 
3 [1986] - Chris DeBurgh - Lady in Red 
4 [1986] - Roxette -  It must have been love 

5 
[1984] - Stevie Wonder - I just called to 
say I love you 

6 
[2000] - Ronan Keating - When you say 
nothing at all 

Testing Data 

Song  
Index Title 

1 [1993] - MLTR - 25 Minutes 
2 [1993] - MLTR - Wild Women 

3 
[1983] - The Police - Every breath you 
take 

4 [1993] - MLTR - The Actor 
5 [2000] N'Sync - This I promise you 
6 [1993]  - MLTR - Sleeping Child 
7 [1980] - ABBA - Super Trouper 

8 
[1999] - Backstreet Boys - As Long As 
You Love Me 

9 [2001] - Westlife - World Of Our Own 

10 
[1999] - Backstreet Boys - Back To Your 
Heart 

11 
[1989] - Phil Collins - Another day in 
Paradise 

12 [1995] Take That - Back for good 
13 [1998] Eagle Eye Cherry - Save Tonight 
14 [2003] - Dido - White Flag 

Frame 
size 
(ms) 

MM-HMM Bootstrapped HMM 

 N V Avg N V Avg 
200 78.8 73.5 76.2 79.2 75.9 77.6 
400 80.9 78.9 79.9 80.4 82.1 81.3 
600 80.4 82 81.2 80.8 84.2 82.5 
800 80.6 84.3 82.5 79.2 87 83.1 

1000 81.9 84.3 83.1 82 86.6 84.3 
1200 80.1 85.2 82.7 79.3 87.4 83.4 
1400 78.1 86.4 82.3 78.3 88.2 83.3 

 
Figure 6 shows the results of the vocal/non-vocal 
segment classification for all the test songs in our 
database. Indices of the test songs as well as training 
songs and their titles are listed in Table 2. The 
classification performance is not consistent among the 
songs.  This is because the songs in the database are of 
different characteristics. For example, some songs are 
associated with high tempo and loudness while some 
are associated with low tempo and softness. In 
addition, vocals in some songs are dominant in most 
part of the song while others having strong 
instrumental accompaniment throughout the song. 
Based on the characteristics of the song, the system 
achieves accuracies ranging from the highest of 91.1% 
(25 Minutes) to the lowest of 77.2% (White Flag). In 
general, songs with light background instrumental 
obtain higher accuracy than songs with strong 
background instrumental. 
 
The bootstrapping process depends on the bootstrapped 
samples. For the last two songs (Indices 13 and 14) of 
Figure 6, the bootstrapped HMM is lower in accuracy 
than the MM-HMM classifier. The reason is that the 
accuracies of MM-HMM are relatively low for these 
songs and larger numbers of bootstrapped samples are 
incorrectly labelled compared to the other songs. 
 
We give an example of vocal segments detected by the 
bootstrapped HMM together with manually annotated 
vocal segments of the chorus section of a song are 
shown in Figure 7. 
 

 
 

Figure 7: (a) The segment (Chorus, 20 sec) of the song 
’25 Minutes’ (b) Manually annotated vocal segments (c) 
Automatically detected vocal segments 

 
To compare the performance of LFPC feature with 
traditional MFCC feature, experiments are conducted 
using MFCC feature for the frame size of 1000ms. The 
results are summarized in Table 3. LFPC feature 
outperform the MFCC feature. MFCC feature is mainly 
used for speech recognition and its capability to capture 



  
 
the spectral characteristics of the audio signal seems to 
be lower than LFPC feature. 

 
Table 3: Performance comparison between LFPC 
feature and traditional MFCC feature (Frame 
size=1000ms) 

MM-HMM Bootstrapped HMM Featur
e 

N V Avg N V Avg 
LFPC 81.9 84.3 LFPC 81.9 84.3 LFPC 
MFCC 59.6 83.3 MFCC 59.6 83.3 MFCC 
FEA=Feature, N= Non-vocal segments, V=Vocal 
segments, Avg=Average 
 
Next, we investigate the effectiveness of employing 
song structure information in song modelling. The 
experiments are conducted using the baseline HMM 
training method in which only one model is created for 
each vocal and non-vocal class. This approach 
disregards the structure of the song in song modelling. 
First, the experiments are conducted using the same 
number of mixtures per state (2 mixtures/state) for both 
MM-HMM and base line HMM. The results presented 
in Table 4 show that the MM-HMM training method 
outperforms the baseline HMM training approach for 
the same number of mixtures per state. The base line 
HMM has 20 times less free parameters in comparison 
with MM-HMM as MM-HMM has 40 models in total. 
To give the base line HMM a fair chance for 
comparison, we perform further experiment using base 
line HMM with 10 mixtures per state. The results 
presented in Table 4 show that using more free 
parameters for base line HMM can not improve 
performance. The reason is that automatic data 
clustering is not accurate in comparison with manual 
clustering. 
 

Table 4: Performance comparison between MM-
HMM training and base line HMM training 
method  (Frame size =1000ms) 

 N V Avg 
MM-HMM 
(2 mixtures/state) 81.9 84.3 83.1 

Baseline HMM  
(2 mixtures/state) 79.2 83.4 81.3 

Baseline HMM 
(10mixtures/state) 57.4 91.8 74.6 

V=Vocal segments, N= Non-vocal segments 
 

Figure 8 shows how well the test signal matches our 
MM-HMM. It displays the probability distribution of 
correctly matched models as well as of wrongly 
matched models for the test segments in five different 
section types. The darkness of the rectangles indicates 
the matching probability. As expected, segments from 
the verse section are more likely to match the verse 
models than others. In the same way, segments from 
the other sections tend to match their respective models 
rather than other models. However, chorus segments 

tend to match both the chorus and outro models. This is 
due to the fact that the chorus is repeated in the outro 
section before the song fades out [14]. 
 
 

 
 
Figure 8: Probability distributions of the number of matched 
models for the test segments in five different sections 
 
Based on our experimental results, we could consider 
the following options to improve system performance. 
 
It is well-known from the literature that singing vocals 
are highly harmonic (energy exists at integer multiples 
of the fundamental frequency), and other high energy 
sounds – drums in particular – are not as harmonic and 
distribute their energy more widely in frequency [8]. 
Over 90% of the vocal signal is harmonic (much more 
than the case of a speech signal) [6]. It is believed that 
a vocal signal in general has higher values of the 
harmonic component, compared to the instrumental 
component [3]. Unfortunately, the relatively simple 
features used in our current system cannot capitalize 
the harmonic feature of singing vocal. Nevertheless, 
the promising results from our current system lead us to 
believe that we can further improve our system 
performance by incorporating the harmonic features. 
 
The other possibility is to enable a semi-automatic 
system similar to that in [1]. However, instead of 
choosing bootstrapping samples randomly, we could 
allow the user to check and to select the bootstrapped 
samples (vocal and non-vocal segments) manually from 
the initial segmentation performed by the MM-HMM. 
The accuracy of the initial MM-HMM classifier is 
around 80%, with 20% of the bootstrapped samples 
wrongly labelled. The manual selection of 
automatically detected results is a less demanding job 
for the user in comparison with the manual annotation 
of singing vocals from the original song. By 
incorporating human intervention in the loop, it would 
improve the quality of the bootstrapped samples 
significantly as shown in Figure 5. As a consequence, 
we could expect a better system performance. 
 



  
 
If we stick to an automatic system, we can use the 
neighbourhood information in HMM model space [15] 
and Bayes factors as tools to calculate the confidence 
measure on the output of the initial MM-HMM 
classifier. With these additional techniques, segments 
that have a high probability of being labelled wrongly 
by the classifier are rejected, and we can train the 
bootstrapped vocal detector using generally correctly 
labelled samples. 

6. CONCLUSION 

We have presented an automatic approach for 
detecting vocal segments in a song. The proposed 
approach combines the multi-model HMM classifier 
and the bootstrapping method. The key points are 
integration of song structure information and song-
specific vocal characteristics in song modelling. The 
bootstrapping process is used to improve vocals 
detection accuracy. 

 In a test dataset comprising 14 popular songs, our 
approach has achieved an accuracy of 84.3% in 
identifying vocal segments from non-vocal ones.  

One drawback of the proposed approach is that it is 
computationally expensive since it entails two training 
steps: training the MM-HMM classifier and training 
the bootstrapped classifier. To reduce computational 
complexity, the number of bootstrapped samples can 
be reduced. Instead of using all the segments of a song 
(of an average duration of 3 minutes) for bootstrapped 
training, only a certain number of samples with a very 
high confidence measure of correct classification could 
be used. This would reduce computation time and 
further improve system performance. 
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Figure 6: Vocal/ non-vocal segment detection accuracies 
for individual songs with analysis frame length of 1000ms 
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