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In this article, we propose a framework to analyze a
musical audio signal (sampled from a popular music
CD) and determine its key, provide usable chord
transcriptions, and obtain the hierarchical rhythm
structure representation comprising the quarter-
note, half-note, and whole-note (or measure) levels.
This framework is just one specific aspect of the
broader field of content-based analysis of music.
There would be many useful applications of content-
based analysis of musical audio, most of which are
not yet fully realized. One of these is automatic
music transcription, which involves the transfor-
mation of musical audio into a symbolic represen-
tation such as MIDI or a musical score, which in
principle, could then be used to recreate the musical
piece (e.g., Plumbley et al. 2002). Another applica-
tion lies in the field of music informational re-
trieval, that is, simplifying interaction with large
databases of musical multimedia by annotating au-
dio data with information that is useful for search
and retrieval (e.g., Martin et al. 1998).

Two other applications are structured audio and
emotion detection in music. In the case of struc-
tured audio, we are interested in transmitting sound
by describing rather than compressing it (Martin et
al. 1998). Here, content analysis could be used to
automate partly the creation of this description by
the automatic extraction of various musical con-
structs from the audio. Regarding emotion detec-
tion, Hevner (1936) has carried out experiments that
substantiated a hypothesis that music inherently
carries emotional meaning. Huron (2000) has
pointed out that, because the preeminent functions
of music are social and psychological, emotion could
serve as a very useful measure for the characteriza-
tion of music in information retrieval systems. The
influence of musical chords on listeners’s emotion
has been demonstrated by Sollberger et al. (2003).

Whereas we would expect human listeners to be
reasonably successful at general auditory scene

analysis, it is still a challenge for computers to per-
form such tasks. Even simple human acts of cogni-
tion such as tapping the foot to the beat or swaying
in time with the music are not easily reproduced by
a computer program. A brief review of audio anal-
ysis as it relates to music, followed by case studies
of a recently developed system that analyze specific
aspects of music, has been presented by Dixon
(2004). The landscape of music-content processing
technologies is discussed in Aigrain (1999). The cur-
rent article does not present new audio signal-
processing techniques for content analysis, instead
building a framework from existing techniques.
However, it does represent a unique attempt at inte-
grating harmonic and metric information within a
unified system in a mutually informing manner.

Although the detection of individual notes consti-
tutes low-level music analysis, it is often difficult
for the average listener to identify them in music.
Rather, it is the overall quality conveyed by the com-
bination of notes to form chords. Chords are the har-
monic description of music, and like melody and
rhythm, could serve to capture the essence of the mu-
sical piece. Non-expert listeners tend to hear groups
of simultaneous notes as chords. It can be quite diffi-
cult to identify whether or not a particular pitch has
been heard in a chord. Furthermore, although a com-
plete and accurate polyphonic transcription of all
notes would undoubtedly yield the best results, it is
often possible to classify music by genre, identify mu-
sical instruments by timbre, or segment music into
sectional divisions without this low-level analysis.

Tonality is an important structural property of
music, and it has been described by music theorists
and psychologists as a hierarchical ordering of the
pitches of the chromatic scale such that these notes
are perceived in relation to one central and stable
pitch, the tonic (Smith and Schmuckler 2000). This
hierarchical structure is manifest in listeners’s per-
ceptions of the stability of pitches in tonal contexts.
The key of a piece of music is specified by its tonic
and one of two modes: major or minor. A system to
determine the key of acoustic musical signals has
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been demonstrated in Shenoy et al. (2004) and will
be summarized later in this article.

Rhythm is another component that is fundamen-
tal to the perception of music. Measures of music
divide a piece into time-counted segments, and
time patterns in music are referred to in terms of
meter. The beat forms the basic unit of musical
time, and in a meter of 4/4—also called common or
quadruple time—there are four beats to a measure.
Rhythm can be perceived as a combination of strong
and weak beats. In a 4/4 measure consisting of four
successive quarter notes, there is usually a strong
beat on the first and third quarter notes, and a weak
beat on the second and fourth (Goto and Muraoka
1994). If the strong beat constantly alternates with
the weak beat, the inter-beat-interval (the temporal
difference between two successive beats) would
usually correspond to the temporal length of a quar-
ter note. For our purpose, the strong and weak beats
as defined above correspond to the alternating se-
quence of equally spaced phenomenal impulses that
define the tempo of the music (Scheirer 1998). A
hierarchical structure like the measure (bar-line)
level can provide information more useful for mod-
eling music at a higher level of understanding (Goto
and Muraoka 1999). Key, chords, and rhythm are
important expressive dimensions in musical perfor-
mances. Although expression is necessarily con-
tained in the physical features of the audio signal
such as amplitudes, frequencies, and onset times, it
is better understood when viewed from a higher
level of abstraction, that is, in terms of musical con-
structs (Dixon 2003) like the ones discussed here.

Related Work

Existing work in key determination has been re-
stricted to either the symbolic domain (MIDI and
score), or, in the audio domain, single-instrument
and simple polyphonic sounds (see for example, Ng
et al. 1996; Chew 2001, 2002; Povel 2002; Pickens
2003; Raphael and Stoddard 2003; Zhu and Kankan-
halli 2003; Zhu et al. 2004). A system to extract the
musical key from classical piano sonatas sampled
from compact discs has been demonstrated by Pauws

(2004). Here, the spectrum is first restructured into
a chromagram representation in which the frequen-
cies are mapped onto a limited set of twelve chroma
values. This chromagram is used in a correlative
comparison with the key profiles of all the 24 West-
ern musical keys that represent the perceived stabil-
ity of each chroma within the context of a particular
musical key. The key profile that has the maximum
correlation with the computed chromagram is
taken as the most likely key. It has been mentioned
that the performance of the system on recordings
from other instrumentation or from other musical
idioms is unknown. Additionally, factors in music
perception and cognition such as rhythm and har-
mony are not modeled. These issues have been ad-
dressed in Shenoy et al. (2004) in extracting the key
of popular music sampled from compact-disc audio.

Most existing work in the detection and recogni-
tion of chords has similarly been restricted to the
symbolic domain or single-instrument and simple
polyphonic sounds (see, for example, Carreras et al.
1999; Fujishima 1999; Pardo and Birmingham 1999;
Bello et al. 2000; Pardo and Birmingham 2001;
Ortiz-Berenguer and Casajus-Quiros 2002; Pickens
and Crawford 2002; Pickens et al. 2002; Klapuri
2003; Raphael and Stoddard 2003). A statistical ap-
proach to perform chord segmentation and recogni-
tion on real-world musical recordings that uses
Hidden Markov Models (HMMs) trained using the
Expectation-Maximization (EM) algorithm has been
demonstrated in Sheh and Ellis (2003). This work
draws on the prior idea of Fujishima (1999) who pro-
posed a representation of audio termed “pitch-class
profiles” (PCPs), in which the Fourier transform in-
tensities are mapped to the twelve semitone classes
(chroma). This system assumes that the chord se-
quence of an entire piece is known beforehand,
which limits the technique to the detection of
known chord progressions. Furthermore, because
the training and testing data is restricted to the mu-
sic of the Beatles, it is unclear how this system
would perform for other kinds of music. A learning
method similar to this has been used to for chord de-
tection in Maddage et al. (2004). Errors in chord de-
tection have been corrected using knowledge from
the key-detection system in Shenoy et al. (2004).
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Much research in the past has also focused on
rhythm analysis and the development of beat-
tracking systems. However, most of this research
does not consider higher-level beat structures
above the quarter-note level, or it was restricted to
the symbolic domain rather than working in real-
world acoustic environments (see for example,
Allen and Dannenberg 1990; Goto and Muraoka
1994; Vercoe 1997; Scheirer 1998; Cemgil et al.
2001; Dixon 2001; Raphael 2001; Cemgil and Kap-
pen 2003; Dixon 2003). Goto and Muraoka (1999)
perform real-time higher level rhythm determina-
tion up to the measure level in musical audio with-
out drum sounds using onset times and chord
change detection for musical decisions. The provi-
sional beat times are a hypothesis of the quarter-
note level and are inferred by an analysis of onset
times. The chord-change analysis is then performed
at the quarter-note level and at the interpolated
eighth-note level, followed by an analysis of how
much the dominant frequency components in-
cluded in chord tones and their harmonic overtones
change in the frequency spectrum. Musical knowl-
edge of chord change is then applied to detect the
higher-level rhythm structure at the half-note and
measure (whole-note) levels. Goto has extended this
work to apply to music with and without drum
sounds using drum patterns in addition to onset
times and chord changes discussed previously
(Goto 2001). The drum pattern analysis can be per-
formed only if the musical audio signal contains
drums, and hence a technique that measures the au-
tocorrelation of the snare drum’s onset times is ap-
plied. Based on the premise that drum-sounds are
noisy, the signal is determined to contain drum
sounds only if this autocorrelation value is high
enough. Based on the presence or absence of drum
sounds, the knowledge of chord changes and/or
drum patterns is selectively applied. The highest
level of rhythm analysis at the measure level
(whole-note/bar) is then performed using only musi-
cal knowledge of chord change patterns. In both
these works, chords are not recognized by name,
and thus rhythm detection has been performed us-
ing chord-change probabilities rather than actual
chord information.

System Description

A well-known algorithm used to identify the key of
music is the Krumhansl-Schmuckler key-finding al-
gorithm (Krumhansl 1990). The basic principle of
the algorithm is to compare the input music with a
prototypical major (or minor) scale-degree profile. In
other words, the distribution of pitch-classes in a
piece is compared with an ideal distribution for
each key. This algorithm and its variations (Huron
and Parncutt 1993; Temperley 1999a, 1999b, 2002),
however, could not be directly applied in our sys-
tem, as these require a list of notes with note-on
and note-off times, which cannot be directly ex-
tracted from polyphonic audio. Thus, the problem
has been approached in Shenoy et al. (2004) at a
higher level by clustering individual notes to obtain
the harmonic description of the music in the form
of the 24 major/minor triads. Then, based on a rule-
based analysis of these chords against the chords
present in the major and minor keys, the key of the
song is extracted. The audio has been framed into
beat-length segments to extract metadata in the
form of quarter-note detection of the music. The ba-
sis for this technique is to assist in the detection of
chord structure based on the musical knowledge
that chords are more likely to change at beat times
than at other positions (Goto and Muraoka 1999).

The beat-detection process first detects the onsets
present in the music using sub-band processing
(Wang et al. 2003). This technique of onset detec-
tion is based on the sub-band intensity to detect the
perceptually salient percussive events in the signal.
We draw on the prior ideas of beat tracking dis-
cussed in Scheirer (1998) and Dixon (2003) to deter-
mine the beat structure of the music. As a first step,
all possible values of inter-onset intervals (IOIs) are
computed. An IOI is defined as the time interval be-
tween any pair of onsets, not necessarily successive.
Then, clusters of IOIs are identified, and a ranked
set of hypothetical inter-beat-intervals (IBIs) is cre-
ated based on the size of the corresponding clusters
and by identifying integer relationships with other
clusters. The latter process is to recognize harmonic
relationships between the beat (at the quarter-note
level) and simple integer multiples of the beat (at
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the half-note and whole-note levels). An error mar-
gin of 25 msec has been set in the IBI to account for
slight variations in the tempo. The highest ranked
value is returned as the IBI from which we obtain
the tempo, expressed as an inverse value of the IBI.
Patterns of onsets in clusters at the IBI are tracked,
and beat information is interpolated into sections in
which onsets corresponding to the beat might not
be detected.

The audio feature for harmonic analysis is a re-
duced spectral representation of each beat-spaced
segment of the audio based on a chroma transforma-
tion of the spectrum. This feature class represents
the spectrum in terms of pitch class and forms the
basis for the chromagram (Wakefield 1999). The sys-
tem takes into account the chord distribution
across the diatonic major scale and the three types
of minor scales (natural, harmonic, and melodic).
Furthermore, the system has been biased by assign-
ing relatively higher weights to the primary chords

in each key (tonic, dominant, and subdominant).
This concept has also been demonstrated in the Spi-
ral Array, a mathematical model for tonality (Chew
2001, 2002).

It is observed that the chord-recognition accuracy
of the key system, though sufficient to determine
the key, is not sufficient to provide usable chord
transcriptions or determine the hierarchical rhythm
structure across the entire duration of the music.
Thus, in this article, we enhance the four-step key-
determination system with three post-processing
stages that allow us to perform these two tasks with
greater accuracy. The block diagram of the proposed
framework is shown in Figure 1.

System Components

We now discuss the three post-key processing com-
ponents of the system. These consist of a first phase
of chord accuracy enhancement, rhythm structure
determination, and a second phase of chord accu-
racy enhancement.

Chord Accuracy Enhancement (Phase 1)

In this step we aim to increase the accuracy of chord
detection. For each audio frame, we perform two
checks.

Check 1: Eliminate Chords Not in the Key of the
Song

Here, we perform a rule-based analysis of the de-
tected chord to see if it exists in the key of the song.
If not, we check for the presence of the major chord
of the same pitch class (if the detected chord is mi-
nor), and vice versa. If present in the key, we replace
the erroneous chord with this chord. This is because
the major and minor chord of a pitch class differ
only in the position of their mediants. The chord-
detection approach often suffers from recognition
errors that result from overlaps of harmonic compo-
nents of individual notes in the spectrum; these are
quite difficult to avoid. Hence, there is a possibly
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of error in the distinction between the major and
minor chords for a given pitch class. It must be
highlighted that chords outside the key are not nec-
essarily erroneous, and this usage is a simplification
used by this system. If this check fails, we eliminate
the chord.

Check 2: Perform Temporal Corrections of
Detected or Missing Chords

If the chords detected in the adjacent frames are the
same as each other but different from the current
frame, then the chord in the current frame is likely
to be incorrect. In these cases, we coerce the cur-
rent frame’s chord to match the one in the adjacent
frames.

We present an illustrative example of the above
checks over three consecutive quarter-note-spaced
frames of audio in Figure 2.

Rhythm Structure Determination

Next, our system checks for the start of measures
based on the premise that chords are more likely to
change at the beginning of a measure than at other
beat positions (Goto 2001). Because there are four
quarter notes to a measure in 4/4 time (which is by
far the most common meter in popular music), we

check for patterns of four consecutive frames with
the same chord to demarcate all possible measure
boundaries. However, not all of these boundaries
may be correct. We will illustrate this with an ex-
ample in which a chord sustains over two measures
of the music. From Figure 3c, it can be seen that
there are four possible measure boundaries being de-
tected across the twelve quarter-note-spaced frames
of audio. Our aim is to eliminate the two erroneous
ones, shown with a dotted line in Figure 3c, and in-
terpolate an additional measure line at the start of
the fifth frame to give us the required result as seen
in Figure 3b.

The correct measure boundaries along the entire
length of the song are thus determined as follows.
First, obtain all possible patterns of boundary loca-
tions that are have integer relationships in multiples
of four. The, select the pattern with the highest
count as the one corresponding to the pattern of ac-
tual measure boundaries. Track the boundary loca-
tions in the detected pattern, and interpolate missing
boundary positions across the rest of the song.

Chord Accuracy Enhancement (Phase 2)

Now that the measure boundaries have been ex-
tracted, we can increase the chord accuracy in each
measure of audio with a third check.
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Check 3: Intra-Measure Chord Check

From Goto and Muraoka (1999), we know that
chords are more likely to change at the beginning of
the measures than at other positions of half-note
times. Hence if three of the chords are the same,
then the four chord is likely to be the same as the
others (Check 3a). Also, if a chord is common to
both halves of the measure, then all the chords in

the measure are likely to be the same as this chord
(Check 3b).

It is observed that all possible cases of chords un-
der Check 3a are already handled by Checks 1 and 2
above. Hence, we only implement Check 3b, as il-
lustrated in Figure 4 with an example. This check is
required because, in the case of a minor key, we can
have both the major and minor chord of the same
pitch class present in the song. A classic example of
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this can be seen in “Hotel California” by the Eagles.
This song is in the key of B Minor, and the chords in
the verse include an E major and an E minor chord,
which shows a possible musical shift from the as-
cending melodic minor to the natural minor. Here,
if an E major chord is detected in a measure contain-
ing the E minor chord, Check 1 would not detect
any error, because both the major and minor chords
are potentially present in the key of B minor. The
melodic minor, however, rarely occurs as such in
popular music melodies, but it has been included in
this work along with the natural and harmonic mi-
nor for completeness.

Experiments

Setup

The results of our experiments, performed on 30
popular songs in English spanning five decades of
music, are tabulated in Table 1. The songs have
been carefully selected to represent a variety of
artists and time periods. We assume the meter to be
4/4, which is the most frequent meter of popular
songs, and the tempo of the input song is assumed
to be constrained between 40 and 185 quarter notes
per minute.
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Table 1. Experimental Results

Chord Chord Accuracy Successful Chord Accuracy
Detection Original Detected Enhancement-I Measure Enhancement-II

No. Song Title (% accuracy) Key Key (% accuracy) Detection (% accuracy)

1 (1965) Righteous Brothers—Unchained melody 57.68 C major C major 70.92 28/30 songs 85.11
1 (1965) Righteous Brothers—Unchained melody 57.68 C major C major 70.92 Yes 85.11
2 (1977) Bee Gees—Stayin’ alive 39.67 F minor F minor 54.91 Yes 71.40
3 (1977) Eric Clapton—Wonderful tonight 27.70 G major G major 40.82 Yes 60.64
4 (1977) Fleetwood Mac—You make lovin’ fun 44.37 A# major A# major 60.69 Yes 79.31
5 (1979) Eagles—I can’t tell you why 52.41 D major D major 68.74 Yes 88.97
6 (1984) Foreigner—I want to know what love is 55.03 D# minor D# minor 73.42 No 58.12
7 (1986) Bruce Hornsby—The way it is 59.74 G major G major 70.32 Yes 88.50
8 (1989) Chris Rea—Road to hell 61.51 A minor A minor 76.64 Yes 89.24
9 (1991) R.E.M.—Losing my religion 56.31 A minor A minor 70.75 Yes 85.74
10 (1991) U2—One 56.63 C major C major 64.82 Yes 76.63
11 (1992) Michael Jackson—Heal the world 30.44 A major A major 51.76 Yes 68.62
12 (1993) MLTR—Someday 56.68 D major D major 69.71 Yes 87.30
13 (1995) Coolio—Gangsta’s paradise 31.75 C minor C minor 47.94 Yes 70.79
14 (1996) Backstreet Boys—As long as you love me 48.45 C major C major 61.97 Yes 82.82
15 (1996) Joan Osborne—One of us 46.90 A major A major 59.30 Yes 80.05
16 (1997) Bryan Adams—Back to you 68.92 C major C major 75.69 Yes 95.80
17 (1997) Green Day—Time of your life 54.55 G major G major 64.58 Yes 87.77
18 (1997) Hanson—Mmmbop 39.56 A major A major 63.39 Yes 81.08
19 (1997) Savage Garden—Truly, madly, deeply 49.06 C major C major 63.88 Yes 80.86
20 (1997) Spice Girls—Viva forever 64.50 D# minor F# major 74.25 Yes 91.42
21 (1997) Tina Arena—Burn 35.42 G major G major 56.13 Yes 77.38
22 (1998) Jennifer Paige—Crush 40.37 C# min C# min 55.41 Yes 76.78
23 (1998) Natalie Imbruglia—Torn 53.00 F major F major 67.89 Yes 87.73
24 (1999) Santana—Smooth 54.53 A minor A minor 69.63 No 49.91
25 (2000) Corrs—Breathless 36.77 B major B major 63.47 Yes 77.28
26 (2000) Craig David—Walking away 68.99 A minor C major 75.26 Yes 93.03
27 (2000) Nelly Furtado—Turn off the light 36.36 D major D major 48.48 Yes 70.52
28 (2000) Westlife—Seasons in the sun 34.19 F# major F# major 58.69 Yes 76.35
29 (2001) Shakira—Whenever, wherever 49.86 C# minor C# minor 62.82 Yes 78.39
30 (2001) Train—Drops of Jupiter 32.54 C major C major 53.73 Yes 69.85

Overall Accuracy at each stage 48.13 28/30 songs 63.20 28/30 songs 78.91



It can be observed that the average chord-detection
accuracy across the length of the entire music per-
formed by the chord-detection step (module 3 in
Figure 2) is relatively low at 48.13%. The rest of the
chords are either not detected or are detected in er-
ror. This accuracy is sufficient, however, to deter-
mine the key accurately for 28 out of 30 songs in
the key-detection step (module 4 in Figure 2), which
reflects an accuracy of over 93% for key detection.
This was verified against the information in com-
mercially available sheet music for the songs (www
.musicnotes.com, www.sheetmusicplus.com). The
average chord detection accuracy of the system im-
proves on an average by 15.07% on applying Chord
Accuracy Enhancement (Phase 1). (See module 5 in
Figure 2.) Errors in key determination do not have
any effect on this step, as will be discussed next.

The new accuracy of 63.20% has been found to be
sufficient to determine the hierarchical rhythm
structure (module 6 in Figure 2) across the music for
28 out of the 30 songs, thus again reflecting an accu-
racy of over 93% for rhythm tracking. Finally, the
application of Chord Accuracy Enhancement (Phase
2; see module 7 in Figure 2) makes a substantial per-
formance improvement of 15.71%, leading to a final
chord-detection accuracy of 78.91%. This could
have been higher were it not for the performance
drop for the two songs (song numbers 6 and 24 in
Table 1) owing to error in measure-boundary detec-
tion. This exemplifies the importance of accurate
measure detection to performing intra-measure
chord checks based on the previously discussed
musical knowledge of chords.

Analysis of Key

It can be observed that for two of the songs (song
numbers 20 and 26 in Table 1), the key has been de-
termined incorrectly, because the major key and its
relative minor are very close. Our technique as-
sumes that the key of the song is constant through-
out the length of the song. However, many songs
often use both major and minor keys, perhaps
choosing a minor key for the verse and a major key
for the chorus, or vice versa. Sometimes, the chords
used in the song are present in both the major and

its relative minor. For example, the four main
chords used in the song “Viva Forever” by the Spice
Girls are D-sharp minor, A-sharp minor, B major,
and F-sharp major. These chords are present in the
key of F-sharp major and D-sharp minor; hence, it is
difficult for the system to determine if the song is in
the major key or the relative minor. A similar obser-
vation can be made for the song “Walking Away” by
Craig David, in which the main chords used are A
minor, D minor, F major, G major, and C major.
These chords are present in both the key of C major
as well as in its relative minor, A minor.

The use of a weighted-cosine-similarity technique
causes the shorter major-key patterns to be preferred
over the longer minor-key patterns, owing to nor-
malization that is performed while applying the co-
sine similarity. For the minor keys, normalization is
applied taking into account the count of chords that
can be constructed across all the three types of minor
scales. However, from an informal evaluation of pop-
ular music, we observe that popular music in minor
keys usually shifts across only two out of the three
scales, primarily the natural and harmonic minor.
In such cases, the normalization technique applied
would cause the system to become slightly biased
toward the relative major key, where this problem is
not present as there is only one major scale.

Errors in key recognition do not affect the Chord
Accuracy Enhancement (Phase 1) module, because
we also consider chords present in the relative ma-
jor/minor key in addition to the chords in the de-
tected key. A theoretical explanation of how to
perform key identification in such cases of ambigu-
ity (as seen above) based on an analysis of sheet mu-
sic can be found in Ewer (2002).

Analysis of Chord

The variation in the chord-detection accuracy of the
system can be explained in terms of other chords
and key change.

Use of Other Chords

In this approach, we have considered only the major
and minor triads. However, in addition to these,
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there are other chord possibilities in popular music,
which likely contribute to the variation in chord de-
tection. These chords include the augmented and
diminished triads, seventh chords (e.g., the dominant
seventh, major seventh, and minor seventh), etc.

Polyphony, with its multidimensional sequences
of overlapping tones and overlapping harmonic
components of individual notes in the spectrum,
might cause the elements in the chroma vector to
be weighted wrongly. As a result, a Cmajor 7 chord
(C, E, G, B) in the music might incorrectly get de-
tected as an E minor chord (E, G, B) if the latter
three notes are assigned a relatively higher weight
in the chroma vector.

Key Change

In some songs, there is a key change toward the end
of a song to make the final repeated part(s) (e.g., the
chorus/refrain) slightly different from the previous
parts. This is affected by transposing the song to
higher semitones, usually up a half step. This has
also been highlighted by Goto (2003). Because our
system does not currently handle key changes, the
chords detected in this section will not be recog-
nized. This is illustrated with an example in Figure 5.

Another point to be noted here is of chord substi-
tution/simplification of extended chords in the
evaluation of our system. For simplicity, extended
chords can be substituted by their respective ma-
jor/minor triads. As long as the notes in the ex-
tended chord are present in the scale, and the basic
triad is present, the simplification can be done. For

example, the C-major 7 can be simplified to the C
major triad. This substitution has been performed
on the extended chords annotated in the sheet mu-
sic in the evaluation of our system.

Rhythm Tracking Observations

We conjecture the error in rhythm tracking to be
caused by errors in the chord-detection as discussed
above. Chords present in the music and not handled
by our system could be incorrectly classified into one
of the 24 major/minor triads owing to complexities
in polyphonic audio analysis. This can result in in-
correct clusters of four chords being captured by the
rhythm-detection process, resulting in an incorrect
pattern of measure boundaries having the highest
count. Furthermore, beat detection is a non-trivial
task; the difficulties of tracking the beats in acous-
tic signals are discussed in Goto and Muraoka
(1994). Any error in beat detection can cause a shift
in the rhythm structure determined by the system.

Discussion

We have presented a framework to determine the
key, chords, and hierarchical rhythm structure from
acoustic musical signals. To our knowledge, this is
the first attempt to use a rule-based approach that
combines low-level features with high-level music
knowledge of rhythm and harmonic structure to de-
termine all three of these dimensions of music. The
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methods should (and do) work reasonably well for
key and chord labeling of popular music in 4/4 time.
However, they would not extend very far beyond
this idiom or to more rhythmically and tonally
complex music. This framework has been applied
successfully in various other aspects of content
analysis, such as singing-voice detection (Nwe et al.
2004) and the automatic alignment of textual lyrics
and musical audio (Wang et al. 2004). The human
auditory system is capable of extracting rich and
meaningful data from complex audio signals (Sheh
and Ellis 2003), and existing computational audi-
tory analysis systems fall clearly behind humans in
performance. Towards this end, we believe that the
model proposed here provides a promising platform
for the future development of more sophisticated
auditory models based on a better understanding of
music. Our current and future research that builds
on this work is highlighted below.

Key Detection

Our technique assumes that the key of the song is
constant throughout the duration of the song. How-
ever, owing to the properties of the relative major/
minor key combinations, we have made the chord-
and rhythm-detection processes (which use the key
of the song as input) quite robust against changes
across this key combination. However, the same can-
not be said about other kinds of key changes in the
music. This is because such key changes are quite
difficult to track, as there are no fixed rules and
they tend to depend more on the songwriter’s cre-
ativity. For example, the song “Let It Grow” by Eric
Clapton switches from a B-minor key in the verse to
an E major key in the chorus. We believe that an
analysis of the song structure (verse, chorus, bridge,
etc.) could likely serve as an input to help track this
kind of key change. This problem is currently being
analyzed and will be tackled in the future.

Chord Detection

In this approach, we have considered only the major
and minor triads. However, in addition to these,

there are other chord possibilities in popular music,
and future work will be targeted toward the detec-
tion of dominant-seventh chords and extended
chords as discussed earlier. Chord-detection re-
search can be further extended to include knowl-
edge of chord progressions based on the function of
chords in their diatonic scale, which relates to the
expected resolution of each chord within a key.
That is, the analysis of chord progressions based on
the “need” for a sounded chord to move from an
“unstable” sound (a “dissonance”) to a more final or
“stable” sounding one (a “consonance”).

Rhythm Tracking

Unlike that of Goto and Muraoka (1999), the
rhythm-extraction technique employed in our cur-
rent system does not perform well for “drumless”
music signals, because the onset detector has been
optimized to detect the onset of percussive events
(Wang et al. 2003). Future effort will be aimed at ex-
tending the current work for music signals that do
not contain drum sounds.
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