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ABSTRACT 
 

We present a framework to detect the regions of singing voice in musical audio signals. This work is oriented towards 
the development of a robust transcriber of lyrics for karaoke applications. The technique leverages on a combination of 
low-level audio features and higher level musical knowledge of rhythm and tonality. Musical knowledge of the key is 
used to create a song-specific filterbank to attenuate the presence of the pitched musical instruments. This is followed by 
subband processing of the audio to detect the musical octaves in which the vocals are present. Text processing is 
employed to approximate the duration of the sung passages using freely available lyrics. This is used to obtain a dynamic 
threshold for vocal/ non-vocal segmentation. This pairing of audio and text processing helps create a more accurate 
system. Experimental evaluation on a small database of popular songs shows the validity of the proposed approach. 
Holistic and per-component evaluation of the system is conducted and various improvements are discussed.  
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1. INTRODUCTION 
 

Karaoke is a Japanese abbreviated compound word, "kara" comes from "karappo" meaning empty, and "oke" is the 
abbreviation of "okesutura," or orchestra. Usually, a recorded popular song consists of vocals and accompaniment. 
Musical works in which only the accompaniment is recorded were named "karaoke." Karaoke singing involves singing 
to such recorded accompaniments of popular songs in front of a live audience. After the singer chooses a song from a 
catalogue, lyrics are usually displayed on a monitor, recorded music plays, and it's showtime for the novice pop star. 
Invented in the late 1970's, the wild popularity of karaoke over the years has swept this form of singing into the 
mainstream throughout the world.  Karaoke creates its own culture, while reflecting much about the wider culture and 
the place of popular music as a media form6.  
 
It would be commercially very useful to develop a computational karaoke model that could analyze a musical recording 
and transcribe the lyrics, but this is currently impractical. Transcription of lyrics using speech recognition is an extremely 
challenging task as singing differs from speech in many ways. The phonetic and timing modification, presence of 
meaningless syllables often employed by singers and interference of the instrumental background would make an 
acoustic classifier trained on normal speech a poor match to the acoustics of the sung vocal line.  
 
This difficulty has led us to re-examine the transcription problem31. We recognize that transcription is often not 
necessary, as many lyrics are already freely available on the Internet. However, text based lyrics do not provide any 
timing information. Thus, the main task involved in the process of karaoke is embedding lyrical time stamps inside the 
musical audio file. This kind of an alignment is currently a manual process. Towards this end, we have developed a 
prototype31 to automate this process of forced alignment between the music and the lyrics, saving manual labor. One of 
the key components of this framework is singing voice detection, a precursor, for this sort of forced alignment. The 
approach to this problem31, employs the use of stochastic classifier that modeled musically relevant song structure 
information in addition to traditional audio features.  In the current work, we propose a simpler rule-based approach to 
this problem that leverages on the combination of low-level audio features and higher level music knowledge of rhythm 
and tonality. 
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2. RELATED WORK 
 

The singing voice, in addition to being the oldest musical instrument, is also one of the most complex from an acoustic 
standpoint11. Research on the perception of singing is not as developed as in the closely related field of speech research26. 
Some of the existing work is surveyed in this section. 
 
Chou and Gu5 have utilized a gaussian mixture model (GMM) to detect the vocal regions. The feature vectors used for 
the GMM include 4Hz modulation energy, harmonic coefficients, 4 Hz harmonic coefficients, delta mel frequency 
cepstral coefficients (MFCC) and delta log energy.   
 
Berenzweig and Ellis3 have used a speech recognizer’s classifier to distinguish vocal segments from accompaniment. It 
has been mentioned that though singing is quite different from normal speech, it shares some attributes of regular speech 
such as formant structure and phone transitions. Thus a speech-trained acoustic model might respond in a detectably 
different manner to singing than to other instruments. Three broad feature sets have been explored, basic posterior 
probability features (PPFs), derived statistics such as classifier entropy and average of these values. Within music, the 
resemblance between the singing voice and natural speech will tend to shift the behavior of the PPFs closer towards the 
characteristics of natural speech when compared to non-vocal instrumentation. 
 
Berenzweig et al.4 have proposed a technique to improve artist classification of music using voice segments. The basic 
paradigm of the system was to classify musical tracks as being the work of one of several predefined artists. This is a two 
stage process comprising of vocal segmentation using a two-class multi-layer perceptron (MLP) neural net trained with 
hand-labeled data followed by artist classification also performed by an MLP neural network. For the purpose of the 
current work, we shall focus only on the singing voice detection schemes discussed in the literature. The features used 
for the vocal segmentation task comprised of 13 PLP coefficients along with deltas and double deltas. To segment the 
data, the PLP features are calculated and fed to the segmentation network. The output is a stream of posterior 
probabilities of the two classes (vocal and instrumental music) which is compared against a threshold. It has been 
highlighted that this approach is far simpler as compared to the earlier one3. This is however sufficient for the purpose of 
artist classification as all the vocal segments need not be identified, just a sufficient percentage with a low error rate. 
 
Kim and Whitman11 have developed a system for singer identification in popular music recordings using voice coding 
features. As a first step, an untrained algorithm is used to automatically extract vocal segments. Once these segments are 
identified, they are presented to a trained singer identification system. To detect the singing voice, the audio signal is first 
filtered with a band-pass filter which allows the vocal range (200-2000 Hz) to pass through while attenuating other 
frequency regions. This is achieved via a simple chebychev infinite-impulse response (IIR) digital filter. To further filter 
out other instruments producing energy in this region (like the drums), an inverse comb filterbank is then applied to 
obtain the fundamental frequency at which the signal is most attenuated. The harmonicity has been defined as the ratio of 
the total signal energy to the maximally harmonically attenuated signal. By thresholding the harmonicity against a fixed 
value, a detector for harmonic sounds is obtained. The hypothesis is that most of these correspond to regions of singing 
voice based on its highly harmonic nature when compared to other high energy sounds in the vocal band. 
 
Another system for automatic singer identification has been proposed by Zhang32. This is a two step process comprising 
of a training phase, during which a statistical model is created for a singer’s voice, and a working phase, during which 
the starting point of the singing voice is detected and a fixed length of testing data is taken from that point. Audio 
features extracted from this data are then compared against the existing singers’ models to perform singer identification. 
Singing voice detection is achieved by extracting features of energy, average zero-crossing rate (ZCR), harmonic 
coefficients and spectral flux computed at regular intervals which are then compared against a set of predetermined 
thresholds. 
 
A system for the blind clustering of popular music recordings based on singer voice characteristics has been proposed by 
Tsai et al.28. Methods are presented to separate vocal and non-vocal regions, model singers’ vocal characteristics and 
clustering of recordings based on singer characteristic similarity. The singing voice detection is done in two stages. In the 
first stage, the training phase, a statistical classifier with parametric models is trained using the manual vocal/non-vocal 
transcriptions of the singer’s voice. Two separate GMMs are used for this task, a vocal GMM and a non-vocal GMM. In 
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the testing phase, the recognizer takes as input the feature vector extracted from an unknown recording and produces as 
output, the likelihood for the vocal and non-vocal GMM. The feature vector used in the system was the MFCC. 
 
A system for automatic detection and tracking of target singer in multi-singer recordings has been presented by Tsai and 
Wang29.  Methods are presented to separate vocal and non-vocal regions, model singers’ vocal characteristics and to 
distinguish a target singer from other simultaneous or non-simultaneous singers. The vocal and non-vocal classification 
has been achieved using a stochastic classifier that consists of a front-end signal processor to extract cepstrum-based 
feature vectors, followed by a backend statistical processor that performs modeling and matching. It operates in 2 phases, 
training and testing. In the training phase, a music database with manually annotated vocal and non-vocal regions is used 
to create a set of three GMMs to characterize vocal and non-vocal classes. The first GMM is formed using the labeled 
vocals regions of a target singer. The second and third one are trained using the manually annotated vocal and non-vocal 
regions of all the music data available. During testing, the classifier takes as input a feature vector extracted from an 
unknown recording and calculates the likelihood to the trained GMMs. 
 
Bartsch2 has proposed a system for automatic singer identification in popular music. A separation system known as 
PESCE has been designed to achieve two separate goals, singing voice detection and singing voice extraction. This 
system is effectively a fundamental frequency estimation algorithm for polyphonic music. It takes a short audio signal as 
input, and it produces fundamental frequency estimates of voice-like sources that are present in the signal. PESCE 
assumes that the partials of the singing voice have significant frequency modulation while other instruments have 
constant-frequency partials. Thus, voice-like sources are those that exhibit significant frequency modulation. If no voice-
like sources are present, PESCE will produce no output. The fundamental frequency estimate will allow one to extract 
time-varying amplitudes for the partials of the voice signal from a time-frequency distribution such as the spectrogram. 
This extraction has been referred to as separating the voice signal, since the singing voice partials are being separated 
from partials that arise from other instruments. 
 
Nwe and Wang19 have proposed a statistical model to classify segments of musical audio into vocal or non-vocal using a 
Hidden Markov Model (HMM) classifier. The feature extraction is based on sub-band processing that uses the log 
frequency power coefficients (LFPC) to provide an indication of the energy distribution among subbands. The training 
model also takes into account tempo and song structure information in song modeling based on the observed variations 
in intra-song signal characteristics. Thus, in contrast to conventional HMM training methods that employ one model for 
each class, the method here uses a multi-model HMM technique to allow for more accurate modeling as compared to the 
single-model baseline. A bootstrapped HMM has been used to further increase the classification accuracy.  
 
Nwe et al.20 have enhanced the previously discussed model to incorporate musically relevant quarter-note spaced 
segmentation followed by harmonic attenuation of the input signal using the frequencies in the key of the song. 
 
Maddage(a) et al.13 have adopted a twice-iterated composite fourier transform (TICFT) technique to detect the singing 
voice boundaries. The TICFT is computed over each frame where the magnitude spectrum of the first FT is input to a 
second FFT. Singing voice frames are separated from instrumental frames based on a linear threshold set on the energy 
of the second FFT spectrum. A statistical autocorrelation of the bass and snare drum onset times is used to frame the 
audio into quarter-note spaced segments. Heuristic rules based on musical chord change patterns have been extended to 
apply to the singing voice to further increase the accuracy of vocal detection.  
 
Maddage(b) et al.14 have proposed a technique to detect semantic regions in musical audio using support vector machines 
(SVM) and  GMMs as classifiers. A statistical autocorrelation of the bass and snare drum onset times is used to frame the 
audio into quarter-note spaced segments. The audio feature used is the Cepstral coefficients extracted from the musically 
based octave-scaled subbands as well as from the perceptually based mel-scaled subbands. Singular value decomposition 
has been applied in both cases to find the uncorrelated Cepstral coefficients. Experimental results have shown that the 
SVM performs better than GMM and that the octave-scaling performs better that the mel-scaling of the audio for feature 
extraction. 
Maddage(c) et al.15 have proposed a framework for music structure analysis with the help of repeated chord pattern 
analysis and vocal content analysis. The vocal boundary detection in this work is similar to the one proposed earlier14. 
Only SVM has been used as the classifier and heuristic rules based on the rhythm structure of the song have been applied 
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to further increase the accuracy of vocal detection. The same technique has been used by Maddage(d) et al.16 in a singer 
identification framework based on vocal and instrument models. 
 
Tzanetakis30 has proposed a semi-automatic approach to the problem of locating singing voice segments. In this 
approach, a small random sampling of the song is manually annotated and the information learned is used to 
automatically infer the singing voice structure of the entire song. Thus a different classifier is trained for each song using 
the bootstrapping annotation information for training. The feature set used consists of the following: mean and standard 
deviation of the centroid, rolloff and flux and the mean relative energy of the subbands that spans the lowest ¼ and the 
second ¼ of the total bandwidth. In addition the mean and standard deviation of the pitch were also used. A wide range 
of classifiers were used to compare performance in the bootstrapping and classification task. The best generalization 
performance was obtained using the logical regression classifier and the neural network. 
 

3. SYSTEM DESCRIPTION 
 

Our framework comprises of five stages as shown in Figure 1. Each stage will utilize the information derived from the 
previous stage.  
 

 
 

Figure 1: System description 
 
 
3.1 Key determination 
Rhythm is a component that is fundamental to the perception of music. It can be perceived as a combination of strong and 
weak beats. A strong beat usually corresponds to the first and third quarter note in a measure and the weak beat 
corresponds to the second and fourth quarter note in a measure7. If the strong beat constantly alternates with the weak 
beat, the inter-beat-interval (the temporal difference between two successive beats), would correspond to the temporal 
length of a quarter note. The audio has been framed into beat-length segments to extract metadata in the form of quarter 
note detection of the music. The basis for this technique is to assist in the detection of chord structure and subsequently 
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the key 25, based on the musical knowledge that chords are more likely to change at beat times than on other positions8.  
The knowledge of the musical key will serve as an input to the next stage. 
 
3.2 Inverse Comb Filtering 
Tonic is sometimes used interchangeably with key. The word tonic simply refers to the most important note in a piece or 
section of a piece. Music that follows this principle is called tonal music. In the tonal system, all the notes are perceived 
in relation to one central or stable pitch, the tonic. All tonal music is based upon scales. The tonic/key defines the 
diatonic scale which a piece of music uses (most familiar as the Major/Minor scale in music).  
 
We run the beat spaced audio frames through a series of inverse comb filters which attenuate the signal at the frequencies 
(and the corresponding harmonics) in the key of the song. This would serve to remove the presence of the pitched 
instruments.  This is shown in Figure 2 below. 
 

 
 

Figure 2: Key Filtering 
 
An interesting observation is that though the singing voice falls under the category of pitched musical instruments, it is 
attenuated only partially as compared to the other pitched musical instruments. At the onset, this would appear rather 
strange, because the singing voice is more than 90% voiced11. Singing primarily consists of sounds generated by 
phonation, the rapid vibration of the vocal folds resulting in utterances referred to as voiced. This is as opposed to 
unvoiced sounds which are generated by the turbulence of air against the lips or tongue such as the consonants ‘f’ or ‘s’. 
Because of the harmonic nature of voiced speech, the majority of the energy would resides in its harmonics18 and hence, 
theoretically speaking, be removed by the inverse comb filter. But the fact that it is not, can be attributed to two 
important aspects of singers' F0 control: vibrato and intonation.  
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3.2.1 Vibrato 
From an acoustic perspective, the vibrato is defined as a regular fluctuation in the pitch of the signal. It is frequently 
assumed that the vibrato is useful in musical practice because it reduces the demands on accuracy of fundamental 
frequency26. It is described by two parameters: 
 
• Rate of vibrato: the number of undulations occurring during one second 
• Extent of vibrato: depth of the modulation expressed in a percentage of the average frequency. More often, this is 

expressed in cents, the interval between two tones having the frequency ratio of 1:21/1200. An equally tempered 
semitone is equal to 100 cents. 

 
Seashore24 has reported that the mean vibrato rate for 29 singers is 6.6 undulations per second and average extent is ± 48 
cents. This information could have been used to select a more optimized quality factor (Q factor) q for the filter. 
However, this is not practical because of two other problems: 
 
• The vibrato rate, though constant for any given singer, varies slightly between singers24.  
• There is a significant vibrato extent in professional western lyric singing for individual tones21. The mean vibrato 

extent for individual tones ranges between ±34 and ±123 cent. 
 
The scope of this work does not include singer identification nor any form of note level transcription. Hence the vibrato 
cannot be modeled. It should be noted that musical instruments also exhibit a considerable bit of vibrato. However, it has 
been observed that vibrato extent is lower in musical instruments (0.2-0.35 semitones) as compared to singers (0.6 to 2.0 
semitones)27. Thus, on key filtering, the attenuation of the musical instruments will be greater than that of the singing 
voice. 
 
3.2.2 Intonation 
Intonation refers to the manner of producing or uttering tones, especially with regard to accuracy of pitch and the 
exactitude of the pitch relations. The singing voice follows the key of the music and singers modify vocal cord tension to 
change the pitch to produce the desired musical note.  
 
Two observations have been highlighted by Sundberg26: 
 
• The long notes begin slightly flat (about 90 cents on the average), and are gradually corrected during the initial 200 

ms of the tone. Moreover, many of these notes change their average frequency in various ways during the course of 
the tone. 

• For short tones, it has been observed that the average fundamental frequency in a coloratura (a soprano who sings 
elaborate ornamentation) passage does not change stepwise between the target frequencies corresponding to the 
pitches we perceive. Rather, the average rises and falls monotonically at an approximately constant rate. Moreover, 
difficulties seem to occur when the pitch is very high. In this case, the pitch changes between the scale tones are 
wide in terms of absolute frequency.  

 
Further, as with vibrato, Prame21 has noted that intonation substantially departs from equally tempered tuning for 
individual tones. Deviations from theoretically correct frequencies are used as a means of musical expression. Thus, 
though the passage is perceived as rapid sequences of discrete pitches, the fundamental frequency events do not form a 
pattern of discrete fundamental frequencies. This would compromise the accuracy of our computational frequency 
analysis model.  Three other characteristics observed by Saitou et al.23 should also be considered: 
 
• Overshoot: Deflection exceeding the target note after note changes. 
• Preparation: Deflection of the opposite direction of note change observed just before note changes 
• Fine-fluctuation: Irregularly fine fluctuation higher than 10 Hz. 
 
We infer that the first two of these can probably be closely correlated with the observations of long and short notes 
discussed above. As with the vibrato, all the aspects discussed in this section are too complex to incorporate into the 
current model and hence are not handled by the key filtering technique.  

Proc. of SPIE Vol. 5960     757



The residual signal, after applying the key filters, would contains a significant presence of the sung vocals in addition to 
drums (and other unpitched percussive instruments). Most of the pitched instrument presence would be removed. 
 
Harmonic attenuation of the input signal using the frequencies in the key of the song has been incorporated in an earlier 
work20. However the implementation was done with a filterbank of triangular filters spaced on a linear-logarithm scale. 
This spacing of filters follows the mel frequency scale, which is inspired by critical band measurements of the human 
auditory system. It has also been used in other work14-16 that utilize cepstral features derived from the power spectrum. In 
the current work, the key filtering is implemented using an inverse comb filterbank that attenuates the frequencies in the 
key of the song and all partials while allowing the rest to pass through. The advantages of this approach are discussed 
later in this paper. The inverse comb filterbank has been used earlier to find the fundamental frequency at which the 
signal is most attenuated11. This was achieved by using a bank of inverse comb filters with various delays. In contrast, 
our implementation is more musically motivated, where the frequencies are known apriori. 
 
3.3 Feature Extraction 
The acoustic signal can now be perceived to contain the singing voice which has most of its frequency components 
located around the key frequencies and the percussive sounds which have their frequency components spread more 
uniformly over the entire frequency region with no prominent frequency spectrum peaks. We now perform sub-band 
processing of the audio, where each subband spans one Octave in the tempered scale1. The majority of the singing voice 
falls between 200 Hz and 2000 Hz11. Hence we consider only the four Octaves that fall in this range, C3 (~130 Hz) to B6 
(~1975 Hz).  Each quarter-note spaced segment of audio is further segmented into 10 ms frame segments for finer 
resolution. The signal is assumed to be quasi-stationary during this period. The energy function for each subband is 
obtained which represents the amplitude variation over time of the musical audio signal22.  
 
3.4 Vocal Duration Processor 
To identify the frames containing vocals, a static threshold cannot be applied as the proportion of the song containing 
sung vocals varies across songs. Thus, a multi-modal audio-text approach is employed to determine an adaptive 
threshold based on the duration of the vocals in the song. We have presented a technique to determine the duration of the 
vocals in the song using only its corresponding textual lyrics31. To accomplish this, each word in the lyrics has been first 
decomposed into its phonemes based on the word’s transcription in an inventory of 39 phonemes from the CMU 
Pronouncing Dictionary. As phoneme durations in sung vocals and speech differ, information from speech recognizers or 
synthesizers is not used. Rather, a separate database containing around 500 lines of lyrics with manually annotated 
timing information is used to learn the duration of phonemes. Each line in this sung training database is decomposed into 
its phonemes and the manually annotated line duration is distributed uniformly among its phonemes. In this way, a 
phoneme can be modeled by the distribution of its instances. For simplicity, phoneme duration distribution has been 
modeled as gaussian, characterized by mean and variance. To calculate the vocal duration of the test song, the gaussian 
distributions representing all phonemes present has been used.  
 
3.5 Vocal/ Non-vocal Segmentation 
Vocal frames are normally reflected by a rise in the energy level of the audio. Thus the frames with the highest energy 
are classified as vocal frames. The number of these frames is selected by a threshold, set adaptively such that the 
proportion of the frames chosen is equivalent to the proportion of the vocal duration in the entire song as determined by 
the vocal duration processor. 
 

4. SYSTEM EVALUATION 
 

Our experiments are performed on a database of 10 popular English songs carefully selected for their variety in artist and 
time spans. We assume the meter to be 4/4, this being the most frequent meter of popular songs and the tempo of the 
input song is assumed to be constrained between 40-185 M.M. (Mälzels Metronome: the number of quarter notes per 
minute) and almost constant. The relatively small size of this database is because of the tedious and somewhat ill-defined 
nature of the task of obtaining ground truth data11. Establishing exactly where a vocal segment begins and ends is 
problematic. Low-level background vocals that tend to fade in out in some songs add further complication. Every effort 
has been made to keep the segmentation on this set as accurate as possible. 
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4.1 Results 
The holistic and per-component evaluation of the system is presented in Tables 1 and 2 using the traditional measures of 
retrieval performance, Recall (completeness of retrieval) and Precision (purity of retrieval). Recall is the ratio of the 
number of correct vocal frames detected to the total number of hand labeled vocal frames, expressed as a percentage. 
Precision on the other hand, is used to determine, of the automatically detected frames, how many are correct. This again 
is expressed as a percentage. By comparison with hand labeled data, we conclude from Table 1 that the overall Recall 
and Precision rates for the system are 89.44 % and 77.37 % respectively. For a given song, the 2 adjacent subbands that 
give the highest averaged combination of Precision and Recall have been used to obtain the final result. This is based on 
the premise that singers possess a dynamic pitch range of 2-Octaves10 and hence this would reflect the true regions of 
singing voice.  
 

Table 1: System evaluation 
 

 
 
 

The per-component evaluation is presented in Table 2. Errors in key determination do not affect the filtering process. 
This is explained in more detail in the following section. When compared to the results in Table 1, it is observed that the 
overall recall and precision drops by 0.72 % and 1.39 % respectively when the filterbank is removed from the 
framework. Errors in the text duration estimation account for a drop in performance of 2.23 % and 3.39 % for the recall 
and precision respectively. This is obtained by replacing the vocal duration processor by a manually encoded duration 
value. The + / - for text duration error in Table 2 represent offsets (expressed as a percentage) from the actual manually 
calculated duration. 
 

Table 2: Per-component evaluation 
 

 
 
 

4.2 Analysis 
The per-component analysis of the system that accounts for the errors observed in Tables 1 and 2 is now discussed.  
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4.2.1 Key Detection 
It can be observed that for 2 of the songs (song numbers, 3 and 6 in Table 2), the key has been determined incorrectly. 
The explanation for this can be based on the theory of the Relative Major/Minor combination of keys25. The technique 
for key determination assumes that the key of the song is constant throughout the length of the song. However, many 
songs often use both Major and Minor keys, perhaps choosing a Minor key for the verse and a Major key for the chorus, 
or vice versa. This has a nice effect, as it helps break up the monotony that sometimes results when a song lingers in one 
key. Often, when switching to a Major key from a Minor key, the songwriters will choose to go to the Relative Major 
from the Minor key the song is in and vice-versa. This has been taken as a probable explanation for both the songs with 
erroneous key results where the relative Major has been detected instead of the actual Minor key. Such errors in key 
recognition do not affect the key filtering as the pitch notes in the Relative Major/ Minor key combination are the same. 
 
4.2.2 Inverse comb filterbank 
The inverse comb filters have been used in this implementation for the advantages they seem to offer17. Once the filter 
coefficients are computed, the frequency response of the filter can be easily displayed and checked. The signal filtration 
can also be done in one pass. Furthermore, the tighter the 'teeth' of the comb are, the more precise the removal can be. 
However these filters also have some important disadvantages. There is not full control over the design process. The 
filters exhibit ripples both in passbands and stopbands. Especially the passband ripples (more then 6 dB in some cases) 
cause distortion during filtration of real musical signals. These signals often exhibit frequency modulation which is 
converted to amplitude modulation on ripples. In some cases the resulting filter response may be far away from the 
desired one. Despite having a high order, the filters do not have sufficient stopband attenuation to suppress the 
harmonics, and the filtration should ideally be done in two or more passes. Finally the design of high order filters with 
complicated frequency response can also become a very time-consuming process.  
 
4.2.3 Audio Feature  
The current implementation uses a simple energy function which calculates the amplitude variation over time in each 
subband. This is because the vocal frames are normally reflected by a rise in the energy level of the audio. But an 
analysis solely based on this is often prone to error. For example, a perceptual effect that is predominant in the vocal 
bands is masking where the high energy of the drums can often partially mask the voice in certain passages. A perceptual 
evaluation of the residual signal after key filtering highlights a significant attenuation of all the pitched musical 
instruments except the voice and the drums in the residual signal. We hypothesize that the separation of the voice from 
other instruments should improve detection accuracy. However from the test results it is observed that the performance 
improvement obtained by using the filterbank is only marginal. This leads us to infer that the simple energy feature is not 
optimal to discriminate the voice from other sources of energy. 
  
4.2.4 Text module 
The accuracy of the timing information from the text module is dependent on the well-formed nature of the lyrics. That 
is, being able to decompose every word into its phonemes based on the word’s transcription using the CMU Pronouncing 
Dictionary. The presence of singing without well-formed lyrics, for example, singing with meaningless syllables like 
‘da’, ‘uh’ will result in the timing error that is observed.  
 

5. DISCUSSION 
 
Based on the per-component analysis discussed above, we are currently investigating various improvements. Comb 
filters have several disadvantages which have been discussed earlier in this paper. The application of cascaded or parallel 
connected simple bandstop/bandpass filters has been proven to be a more efficient solution17. For the vocal /non-vocal 
discrimination, more sophisticated features like the spectral contrast proposed in9 which also consider the spectral peaks, 
valleys, their difference in each subband and also the relative distribution of the harmonic and non-harmonic components 
in the spectrum, might serve as a better measure. Text based genre identification12 and song-specific tempo information 
could provide valuable information to the text modality. Multiple vocal duration models based on these parameters could 
be created to enhance the accuracy of duration estimation.  Overall, there is considerable room for improvement in the 
various modules that make up this framework, but the techniques presented in this paper have proven to be capable of 
musically useful results. 
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