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ABSTRACT 
We present a framework to synchronize pop music to 
corresponding text lyric. We refine line level alignment 
achievable by existing work to syllabic level by using a dynamic 
programming process. Our main contribution is using music 
knowledge to constrain the dynamic programming search. This is 
done by modeling (1) non-uniform note length distribution and 
(2) a note length distribution for each section type (for example 
intro, chorus, and bridge). These reduce alignment error by 6.4% 
and improve time efficiency by a factor of 2.2. 

Categories and Subject Descriptors 
H.5.5 [Information Interfaces and Presentation]: Sound and 
Music Computing – Methodologies and Techniques; H.3.1 
[Information Storage and Retrieval]: Content Analysis and 
Indexing 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Music structure, voice alignment, dynamic programming, hidden 
Markov model. 

1. INTRODUCTION 
A current key focus of multimedia research is the integration of 
information from different modalities.  One such application is in 
vocal music processing in which the acoustic music signal and 
textual lyrics constitute two correlated views of the same source. 
In karaoke, we may want to synchronize the lyrics to the music, 
so that a user can sing along.  However, previous works only 
considered synchronization to individual lyric lines; they have not 
considered the fine-grained syllable level alignment needed to 
make automatic karaoke systems feasible.  We address this final 
step here by extending previous work.  Our formal problem 
statement is thus: 

Given input: A line of lyric text and its corresponding music  
Output: Start times for each syllable in the lyric line 

Our key contribution is to use training data to impose both local 
line-level as well as global song-level constraints in such a 
dynamic programming (DP) search.  We demonstrate a proof-of-
concept on a small dataset of three pop songs and show that the 

techniques employed reduce alignment error by 6.4% on average 
at run time by a factor of 2.2. 

Related Work: To our knowledge, no work has previously 
addressed this specific problem; however other works on vocal 
and music have informed our technique.  Closest in spirit to our 
work are [2] and [4].  However, [2] considers only pure singing 
voice signals and assumes no background music, and largely 
focuses on real-time performance. In contrast, we consider the 
more difficult problem of alignment in pop songs, which have 
strong distortion in the vocal signal from the background music 
and drum beats.  This scenario is identical to the scenario in the 
latter work, LyricAlly [4].  However, this alignment methodology 
relies on the song structure at the section-level and line-level 
alignment.  In this work, we extend line level alignment to the 
syllable level.  

A few other works are similar to ours in terms of music analysis 
with respect to karaoke but are not comparable as the source 
signal differs.  In [1], synchronization of the audio file and text is 
done with the help of alignment metadata that have been pre-
stored in the audio file.  [6] also considers the processing of 
karaoke media in which video and audio streams are already 
synchronized. Both works focus on utilizing embedded alignment 
metadata, rather than automatically computing it as in our case.  
Finally it should be noted that our problem is not one of lyric 
transcription [3] but one of alignment, as we assume the lyrics are 
known.  This is reasonable because textual lyrics for pop songs 
are often freely available on the Internet. 

2. SYNCHRONIZATION METHOD 
Given a correct line level alignment with the corresponding music 
signal and text lyrics, a straightforward method is to perform 
forced alignment using a speech recognition system. We have 
implemented this as the baseline system, using the standard 
approach of dynamic programming search within a hidden 
Markov model (HMM) framework. 
As per standard speech recognition, a model needs to be trained 
based on feature vectors extracted from discrete time frames in 
the acoustic signal. We describe a triphone, a contextual phone 
unit, by a three-state left-to-right HMM. Each frame is 
represented as a feature set of 39-element MFCC vectors, similar 
to other standard speech recognition systems.  As the identity of 
the lyrics is known, a standard left-to-right HMM chain is built, 
slightly modified to insert optional short pauses at word 
boundaries. These short pauses are added to handle potential short 
pauses in singing voice, which most likely contains background 
music accompaniment. Although this approach is suboptimal as 
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there is a wide variety in the instrumental accompaniment, we 
adopt it for simplicity. Given the constructed HMM and the 
feature frames, the best forced alignment is calculated using 
standard dynamic programming.  This is a decoding process 
where the search space is limited to a known sequence 
representing the lyric words with optional pauses inserted 
between words. During the search, we find optimal transition 
times from one HMM state to the next. The search result is an 
alignment of states to timestamps, representing the start and end 
times of each syllable in the lyrics. 

An alignment between two such sources can be pictorially 
represented on a grid, in which the X and Y axes each represent a 
source.  Then an alignment is represented as a function that maps 
an X value to a corresponding Y value.  In our case, the alignment 
between syllables (Xs) and timestamps (Ys) must be 
monotonically increasing order.  We can further normalize both 
axes to a [0…1] range, resulting in an alignment diagram as 
represented in Figure 1.  Thus, a simple, monotonous alignment in 
which each syllable is mapped uniformly to 1/n time units would 
result in a 45o diagonal alignment.  The optimal alignment can be 
found using standard Viterbi decoding, which finds the best 
alignment iteratively, based on partial results leading up to last 
iteration. 

This baseline algorithm is a straightforward interpretation of the 
alignment problem but ignores the fact that the signal is a musical 
one.  As music has recognizable structure and thus constraints, we 
can model this knowledge to refine the HMM search.  These 
refinements have the dual benefit of 1) constraining the search 
space, increasing time efficiency and 2) rejecting optimal HMM 
alignments that conflict with music knowledge, increasing 
accuracy. 

 
Figure 1. An example of ongoing dynamic programming 

search. The grayed portion of the alignment path has not been 
computed; the gray triangle represents all cases currently 

under consideration. 
Our contribution in this work is injecting music-related 
information and knowledge to find such forced-alignment. We 
first observe that note length in music is not arbitrary; it is 
restricted to specific, discrete fractions of the bar (tempo) in each 
song. Second, notes of different lengths do not have a uniform 
probability distribution: 1/8 and ¼ notes are more common than 
9/16 and 13/16 notes.  Finally, different music sections exhibit 
different note length distributions. Long sustained notes often 
belong to choruses rather than verses. In both cases, the DP search 
needs to be modified to model these observations.  We review 
three modifications of the DP search in the following sections. 

2.1 Employing Musical Bar Information 
One key aspect in which our scenario is more constrained than in 
speech recognition is due to rhythm. In singing, rhythm is dictated 
by the music score. We reflect this in our implementation by 
using time units that are proportional to the tempo of each song 
(measured in bars) rather than a fixed absolute time interval.  As 
such, we use a duration of 1/16 bar (normally ranging from 110 ms 
to 160 ms) as our time unit, as musical notes of smaller bar 
fractions rarely occur and differences in alignment smaller than 
this are unlikely to be perceived by users. This essentially 
confines the search space in the time dimension to larger discrete 
chunks (compare the average 10ms speech frame to our 110-160 
ms time units). 

Next, we define a note segment as a sequence of zero or more 
time units. We approximate rhythmic mapping from music to 
lyric text as a one-to-one mapping between a note segment (from 
music) and a syllable (from lyric text). Note that because an 
optional silence can occur between words, note segments of zero 
length are allowed.  Also, note lengths typically do not exceed 1 
bar.  We set this as the upper bound of the length of note 
segments, meaning that the DP search allocates between 0 to 16 
time units for each note segment. 

2.2 Local Constraint 
Notes of different length have differing probability of 
observation. The standard DP search assigns a uniform 
probability distribution to all 17 possible note segment lengths.   
In actual songs, singers tend to use more short notes than long 
ones to satisfy the tempo constraints of each line.  

  
Figure 2. DP search with (left) uniform and (right) non-

uniform weights. 

We seek to weight the transition probabilities in the HMM by the 
actual frequency of the note lengths in the data. Figure 2 
illustrates how non-uniform weights affect the DP search. The 
weighting is done as follows. 

' ( 1) Ci i iscore w score= − × + , 

where i is note segment length (1≤i≤16); wi is the weight assigned 
to note segments of length i time units; C is a scaling constant; 
scorei is the log probability of partial alignment between the 
current syllable with a note segment of length i time units; and 
scorei’ is weighted log-probability score used in DP search. 

We need to estimate only 16 weights–for note segment lengths 1 
to 16 because we do not weight a zero length note segment–and 
the scaling constant C. To make the estimation search space 
manageable, we assume that the scaling constant C is independent 
from the weight values. 
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We first estimate the optimum value for scaling constant C by 
setting the 16 weights according to note length histogram 
computed from manual annotation. First we search for an 
appropriate order of magnitude: 1, 10, 100 and 1000. After we 
find the order of magnitude, we proceed with estimating an 
appropriate value at a smaller increment. 

Then, we estimate the optimum set of values for the 16 weights. 
This is done through an iterative randomized search, in which the 
weight for parameters are optimized one at a time, with each 
iteration optimizing a particular transition probability weight to 
minimize alignment error. The weight is picked randomly from 
all possible 16 weights as we do not know which weights are 
more important than others. Further, each weight is picked exactly 
once. At each step, we consider weight values from 0.1 to 1.0 
with increments of 0.1. While this procedure finds a local 
optimum and not necessarily a global one, we have chosen this 
approach due to time efficiency. 
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Figure 3. Note length histograms for the first 70% and 

remaining 30% of each lyric line (top and bottom, 
respectively). A portion of the histograms above ½ bar are 

truncated for clarity. 
Further, long notes are more likely to occur at the ends of a lyric 
line than at the beginning (especially when the last syllable of a 
lyric is drawn out to match the tempo). We model this by 
maintaining two separate distributions of note length: one for the 
beginning portion of the line and another for the remainder.  A 
parameter n controls the cutoff point between the two histograms. 
We tried different values of n (from 0.1 to 0.9, again in 
increments of 0.1), and computed two note length histograms: the 
first from the n% of a line; the second for remaining (1-n)%.  The 
optimal value of 0.7 was calculated for n, as this maximized the 
difference in the distributions between the two histograms in our 
training data, as shown in Figure 3.  In the figure, one sees that 
the histogram at the bottom contains a markedly larger proportion 
of long sustained notes.  This difference is effectively captured by 
our modeling. 

We estimate the optimum weight values for beginning portion  
and the remainder separately. The weights for each set are 
optimized as described above. We optimize the weights for the 

beginning portion first, followed by the remainder portion. We 
use the same value of scaling constant C. 

2.3 Global Constraint 
The different distributional properties of note lengths in the 
previous section are local, specific to individual lines.  However, 
distribution differences can also be observed at the song level.  
Each vocal section in a pop song can be categorized as one of 
three types: verse, chorus, or others (e.g., intro, outro or bridge). 
We observed that chorus sections usually contain more sustained 
notes than verses. Thus, we should also bias the DP search 
depending on section type. In our implementation, we achieve this 
by using global constraint boundaries and allowing only 
synchronization paths within the boundaries. With respect to 
Figure 1, the constraints define an ovular envelope when mapped 
to the grid, as all alignments must touch the lower left and upper 
right corners. HMM alignments that cross outside this envelope 
are discarded. 
We compute these global constraint upper and lower boundaries 
from the statistics of alignment paths from manual annotation as 
follows. Figure 4a shows such a path for the line “Super Trouper 
beams are gonna blind me”. The monotonous alignment, 
illustrated by diagonal line D, is shown as a guide. 
We divide the normalized line duration into three uniformly-sized 
windows, for which the global constraints are obtained 
independently. Window boundaries are shown in Figure 4a as 
dashed lines perpendicular to D.  
For each known syllable-to-timestamp alignment in the training 
data, we ascertain its section type (e.g., chorus) and which of the 
three windows the timestamp belongs to. We then calculate its 
displacement (both magnitude and direction) from D.  
Aggregating over all timestamps for a section type and window, 
we calculate the mean and standard deviation of all the 
displacements. This yields the mean path (bold dashed line in 
Figure 4b), from which we derive the upper (lower) boundary 
constraints by adding (subtracting) a multiple of the standard 
deviation to the mean path (the bold lines in Figure 4b). From 
experiments, this multiplication factor ranges from 3 to 7. 
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Figure 4. (a) A path and diagonal alignment D. (b) A set of 
paths with computed mean path and upper and lower 

boundaries. 

3. EXPERIMENTS 
We use three pop songs to illustrate our concept: “YMCA” by 
Village People, “Super Trouper” by ABBA and “When You Say 
Nothing at All” by Ronan Keating.  All songs were sampled at 11 
KHz.  This dataset consists of a total of 1843 syllables, 845 
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words, 104 lines.  Four part-time polytechnic students manually 
annotated the ground truth word-level alignment for all three 
songs.  Both the local and global constraints were estimated from 
the dataset.  
As noted in Section 2, our technique requires a standard acoustic 
model for the HMM.  To build the acoustic model, we train the 
HMM on regular speech data and then perform adaptation on 
music data. A window size of 25 ms and step size of 10 ms are 
used in MFCC calculation. The resulting HMM system has 1465 
states shared among 10227 triphones. Each state has a triphone 
using 32 Gaussian mixtures. We use Wall Street Journal CSR 
datasets (WSJ 1 and 2) to build the acoustic model of speech. For 
music adaptation, we use a set of 20 pop songs which does not 
include any of the three songs above. 
It should also be noted that for this proof-of-concept, we have 
used the three songs for both model parameter optimization and 
testing, in a closed test setup; current work is being done to assess 
performance on separate training and testing data. 

Table 1. Word-level synchronization error with respect to 
tolerance T (in bars) 

Sychronization error rate (%) Experiment description T=1/4 1/8 1/16 
    

0. Baseline  20.7 34.2 49.9 
    

1. Discretize to 1/16 bar frames 19.7 31.1 46.0 
2. Local constraints (L) 19.4 29.0 43.2 
3. Global constraints (G) 18.7 30.6 45.6 
4. L+G 18.7 28.8 43.5 
 
Table 1 shows the results of our prototype synchronization 
system.  Although our method achieves syllable level 
synchronization, we evaluate at the word level because ground 
truth at the syllable level was difficult for annotators to reliably 
annotate. We evaluate our system using different levels of 
alignment error tolerance, as indicated by the T values (measured 
in bars) in the table.  We call attention to the following aspects of 
our alignment performance. 

Music structure constraints.  Overall, we see that using 1/16 bar 
long frames does not affect alignment performance significantly. 
We also see that local and global constraints help to improve 
accuracy by 5.2% and 3.6% at 1/8 bar tolerance individually; but 
that their gains in performance largely overlap when employed 
together.  This may be partially due to the fact that portions of 
models of the local constraints (two unequal portions of the line) 
and the global constraints (three equal portions of the line) 
partially overlap. 

Time efficiency. Aside from improving accuracy, the music 
structure has a positive side effect on time efficiency. This is 
because the optimum global constraints cut down the search space 
by more than a half (approximately 55% on average) for each 
line. Note that time discretization does not affect the search space. 
This is because alignment between a note segment and a syllable 
is ultimately computed as alignment between a sequence of 
frames and a sequence of triphones. 

4. CONCLUSION 
We have presented a framework to synchronize pop music to the 
corresponding lyric text at syllabic-level.  Our main contribution 
is using music knowledge to constrain dynamic programming 
search. 
We are currently validating our approach on a clean training and 
testing set separation. For future work, we would like to 
investigate how we can reduce distortion from background music 
accompaniment as well as how we can exploit information from 
repeated lines in lyric text (e.g., in chorus sections). 
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