
Syllabic Level Automatic Synchronization of
Music Signals and Text Lyrics

Denny Iskandar
Institute for Infocomm Research

21 Heng Mui Keng Terrace
Singapore 119613

idenny@i2r.a-star.edu.sg

Ye Wang Min-Yen Kan
School of Computing

National University of Singapore
Singapore 177543

{wangye, kanmy}@comp.nus.edu.sg

Haizhou Li
Institute for Infocomm Research

21 Heng Mui Keng Terrace
Singapore 119613

hli@i2r.a-star.edu.sg

ABSTRACT
We present a framework to synchronize pop music to
corresponding text lyric. We refine line level alignment
achievable by existing work to syllabic level by using a dynamic
programming process. Our main contribution is using music
knowledge to constrain the dynamic programming search. This is
done by modeling (1) non-uniform note length distribution and
(2) a note length distribution for each section type (for example
intro, chorus, and bridge). These reduce alignment error by 6.4%
and improve time efficiency by a factor of 2.2.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound and
Music Computing – Methodologies and Techniques; H.3.1
[Information Storage and Retrieval]: Content Analysis and
Indexing

General Terms
Algorithms, Design, Experimentation.

Keywords
Music structure, voice alignment, dynamic programming, hidden
Markov model.

1. INTRODUCTION
A current key focus of multimedia research is the integration of
information from different modalities. One such application is in
vocal music processing in which the acoustic music signal and
textual lyrics constitute two correlated views of the same source.
In karaoke, we may want to synchronize the lyrics to the music,
so that a user can sing along. However, previous works only
considered synchronization to individual lyric lines; they have not
considered the fine-grained syllable level alignment needed to
make automatic karaoke systems feasible. We address this final
step here by extending previous work. Our formal problem
statement is thus:

Given input: A line of lyric text and its corresponding music
Output: Start times for each syllable in the lyric line

Our key contribution is to use training data to impose both local
line-level as well as global song-level constraints in such a
dynamic programming (DP) search. We demonstrate a proof-of-
concept on a small dataset of three pop songs and show that the

techniques employed reduce alignment error by 6.4% on average
at run time by a factor of 2.2.

Related Work: To our knowledge, no work has previously
addressed this specific problem; however other works on vocal
and music have informed our technique. Closest in spirit to our
work are [2] and [4]. However, [2] considers only pure singing
voice signals and assumes no background music, and largely
focuses on real-time performance. In contrast, we consider the
more difficult problem of alignment in pop songs, which have
strong distortion in the vocal signal from the background music
and drum beats. This scenario is identical to the scenario in the
latter work, LyricAlly [4]. However, this alignment methodology
relies on the song structure at the section-level and line-level
alignment. In this work, we extend line level alignment to the
syllable level.

A few other works are similar to ours in terms of music analysis
with respect to karaoke but are not comparable as the source
signal differs. In [1], synchronization of the audio file and text is
done with the help of alignment metadata that have been pre-
stored in the audio file. [6] also considers the processing of
karaoke media in which video and audio streams are already
synchronized. Both works focus on utilizing embedded alignment
metadata, rather than automatically computing it as in our case.
Finally it should be noted that our problem is not one of lyric
transcription [3] but one of alignment, as we assume the lyrics are
known. This is reasonable because textual lyrics for pop songs
are often freely available on the Internet.

2. SYNCHRONIZATION METHOD
Given a correct line level alignment with the corresponding music
signal and text lyrics, a straightforward method is to perform
forced alignment using a speech recognition system. We have
implemented this as the baseline system, using the standard
approach of dynamic programming search within a hidden
Markov model (HMM) framework.
As per standard speech recognition, a model needs to be trained
based on feature vectors extracted from discrete time frames in
the acoustic signal. We describe a triphone, a contextual phone
unit, by a three-state left-to-right HMM. Each frame is
represented as a feature set of 39-element MFCC vectors, similar
to other standard speech recognition systems. As the identity of
the lyrics is known, a standard left-to-right HMM chain is built,
slightly modified to insert optional short pauses at word
boundaries. These short pauses are added to handle potential short
pauses in singing voice, which most likely contains background
music accompaniment. Although this approach is suboptimal as

Copyright is held by the author/owner(s).
MM’06, October 23–27, 2006, Santa Barbara, California, USA.
ACM 1-59593-447-2/06/0010.

there is a wide variety in the instrumental accompaniment, we
adopt it for simplicity. Given the constructed HMM and the
feature frames, the best forced alignment is calculated using
standard dynamic programming. This is a decoding process
where the search space is limited to a known sequence
representing the lyric words with optional pauses inserted
between words. During the search, we find optimal transition
times from one HMM state to the next. The search result is an
alignment of states to timestamps, representing the start and end
times of each syllable in the lyrics.

An alignment between two such sources can be pictorially
represented on a grid, in which the X and Y axes each represent a
source. Then an alignment is represented as a function that maps
an X value to a corresponding Y value. In our case, the alignment
between syllables (Xs) and timestamps (Ys) must be
monotonically increasing order. We can further normalize both
axes to a [0…1] range, resulting in an alignment diagram as
represented in Figure 1. Thus, a simple, monotonous alignment in
which each syllable is mapped uniformly to 1/n time units would
result in a 45o diagonal alignment. The optimal alignment can be
found using standard Viterbi decoding, which finds the best
alignment iteratively, based on partial results leading up to last
iteration.

This baseline algorithm is a straightforward interpretation of the
alignment problem but ignores the fact that the signal is a musical
one. As music has recognizable structure and thus constraints, we
can model this knowledge to refine the HMM search. These
refinements have the dual benefit of 1) constraining the search
space, increasing time efficiency and 2) rejecting optimal HMM
alignments that conflict with music knowledge, increasing
accuracy.

Figure 1. An example of ongoing dynamic programming

search. The grayed portion of the alignment path has not been
computed; the gray triangle represents all cases currently

under consideration.
Our contribution in this work is injecting music-related
information and knowledge to find such forced-alignment. We
first observe that note length in music is not arbitrary; it is
restricted to specific, discrete fractions of the bar (tempo) in each
song. Second, notes of different lengths do not have a uniform
probability distribution: 1/8 and ¼ notes are more common than
9/16 and 13/16 notes. Finally, different music sections exhibit
different note length distributions. Long sustained notes often
belong to choruses rather than verses. In both cases, the DP search
needs to be modified to model these observations. We review
three modifications of the DP search in the following sections.

2.1 Employing Musical Bar Information
One key aspect in which our scenario is more constrained than in
speech recognition is due to rhythm. In singing, rhythm is dictated
by the music score. We reflect this in our implementation by
using time units that are proportional to the tempo of each song
(measured in bars) rather than a fixed absolute time interval. As
such, we use a duration of 1/16 bar (normally ranging from 110 ms
to 160 ms) as our time unit, as musical notes of smaller bar
fractions rarely occur and differences in alignment smaller than
this are unlikely to be perceived by users. This essentially
confines the search space in the time dimension to larger discrete
chunks (compare the average 10ms speech frame to our 110-160
ms time units).

Next, we define a note segment as a sequence of zero or more
time units. We approximate rhythmic mapping from music to
lyric text as a one-to-one mapping between a note segment (from
music) and a syllable (from lyric text). Note that because an
optional silence can occur between words, note segments of zero
length are allowed. Also, note lengths typically do not exceed 1
bar. We set this as the upper bound of the length of note
segments, meaning that the DP search allocates between 0 to 16
time units for each note segment.

2.2 Local Constraint
Notes of different length have differing probability of
observation. The standard DP search assigns a uniform
probability distribution to all 17 possible note segment lengths.
In actual songs, singers tend to use more short notes than long
ones to satisfy the tempo constraints of each line.

Figure 2. DP search with (left) uniform and (right) non-

uniform weights.

We seek to weight the transition probabilities in the HMM by the
actual frequency of the note lengths in the data. Figure 2
illustrates how non-uniform weights affect the DP search. The
weighting is done as follows.

' (1) Ci i iscore w score= − × + ,

where i is note segment length (1≤i≤16); wi is the weight assigned
to note segments of length i time units; C is a scaling constant;
scorei is the log probability of partial alignment between the
current syllable with a note segment of length i time units; and
scorei’ is weighted log-probability score used in DP search.

We need to estimate only 16 weights–for note segment lengths 1
to 16 because we do not weight a zero length note segment–and
the scaling constant C. To make the estimation search space
manageable, we assume that the scaling constant C is independent
from the weight values.

…

…
 …

p1 = 1/4

p2 = 1/3

p3 = 1/20

p4 = 1/4

P16 = 1/10

…

…
 …

p1 = 1/16

p2 = 1/16

p3 = 1/16

p4 = 1/16

P16 = 1/16

 0 1
Syllables

0

1

 Su per Troup er beams are gon na blind me

Ti
m

es
ta

m
ps

We first estimate the optimum value for scaling constant C by
setting the 16 weights according to note length histogram
computed from manual annotation. First we search for an
appropriate order of magnitude: 1, 10, 100 and 1000. After we
find the order of magnitude, we proceed with estimating an
appropriate value at a smaller increment.

Then, we estimate the optimum set of values for the 16 weights.
This is done through an iterative randomized search, in which the
weight for parameters are optimized one at a time, with each
iteration optimizing a particular transition probability weight to
minimize alignment error. The weight is picked randomly from
all possible 16 weights as we do not know which weights are
more important than others. Further, each weight is picked exactly
once. At each step, we consider weight values from 0.1 to 1.0
with increments of 0.1. While this procedure finds a local
optimum and not necessarily a global one, we have chosen this
approach due to time efficiency.

1/16 1/8 3/16 1/4 5/16 6/16 7/16 1/2 9/16
0

50

100

150

200

250
Histogram of note duration (beginning 70%)

Note duration (in bars)

N
um

be
r

of
 o

cc
ur

en
ce

s

1/16 1/8 3/16 1/4 5/16 6/16 7/16 1/2 9/16
0

10

20

30

40

Histogram of note duration (remaining 30%)

Note duration (in bars)

N
um

be
r

of
 o

cc
ur

en
ce

s

Figure 3. Note length histograms for the first 70% and

remaining 30% of each lyric line (top and bottom,
respectively). A portion of the histograms above ½ bar are

truncated for clarity.
Further, long notes are more likely to occur at the ends of a lyric
line than at the beginning (especially when the last syllable of a
lyric is drawn out to match the tempo). We model this by
maintaining two separate distributions of note length: one for the
beginning portion of the line and another for the remainder. A
parameter n controls the cutoff point between the two histograms.
We tried different values of n (from 0.1 to 0.9, again in
increments of 0.1), and computed two note length histograms: the
first from the n% of a line; the second for remaining (1-n)%. The
optimal value of 0.7 was calculated for n, as this maximized the
difference in the distributions between the two histograms in our
training data, as shown in Figure 3. In the figure, one sees that
the histogram at the bottom contains a markedly larger proportion
of long sustained notes. This difference is effectively captured by
our modeling.

We estimate the optimum weight values for beginning portion
and the remainder separately. The weights for each set are
optimized as described above. We optimize the weights for the

beginning portion first, followed by the remainder portion. We
use the same value of scaling constant C.

2.3 Global Constraint
The different distributional properties of note lengths in the
previous section are local, specific to individual lines. However,
distribution differences can also be observed at the song level.
Each vocal section in a pop song can be categorized as one of
three types: verse, chorus, or others (e.g., intro, outro or bridge).
We observed that chorus sections usually contain more sustained
notes than verses. Thus, we should also bias the DP search
depending on section type. In our implementation, we achieve this
by using global constraint boundaries and allowing only
synchronization paths within the boundaries. With respect to
Figure 1, the constraints define an ovular envelope when mapped
to the grid, as all alignments must touch the lower left and upper
right corners. HMM alignments that cross outside this envelope
are discarded.
We compute these global constraint upper and lower boundaries
from the statistics of alignment paths from manual annotation as
follows. Figure 4a shows such a path for the line “Super Trouper
beams are gonna blind me”. The monotonous alignment,
illustrated by diagonal line D, is shown as a guide.
We divide the normalized line duration into three uniformly-sized
windows, for which the global constraints are obtained
independently. Window boundaries are shown in Figure 4a as
dashed lines perpendicular to D.
For each known syllable-to-timestamp alignment in the training
data, we ascertain its section type (e.g., chorus) and which of the
three windows the timestamp belongs to. We then calculate its
displacement (both magnitude and direction) from D.
Aggregating over all timestamps for a section type and window,
we calculate the mean and standard deviation of all the
displacements. This yields the mean path (bold dashed line in
Figure 4b), from which we derive the upper (lower) boundary
constraints by adding (subtracting) a multiple of the standard
deviation to the mean path (the bold lines in Figure 4b). From
experiments, this multiplication factor ranges from 3 to 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized path from manual annotation

Normalized word index

N
o
rm

a
liz

e
d
 t
im

e

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized word index

N
o
rm

a
liz

e
d
 t
im

e

Normalized alignment paths and global constraint boundaries

 (a) (b)

Figure 4. (a) A path and diagonal alignment D. (b) A set of
paths with computed mean path and upper and lower

boundaries.

3. EXPERIMENTS
We use three pop songs to illustrate our concept: “YMCA” by
Village People, “Super Trouper” by ABBA and “When You Say
Nothing at All” by Ronan Keating. All songs were sampled at 11
KHz. This dataset consists of a total of 1843 syllables, 845

window1 window2

window3

D

words, 104 lines. Four part-time polytechnic students manually
annotated the ground truth word-level alignment for all three
songs. Both the local and global constraints were estimated from
the dataset.
As noted in Section 2, our technique requires a standard acoustic
model for the HMM. To build the acoustic model, we train the
HMM on regular speech data and then perform adaptation on
music data. A window size of 25 ms and step size of 10 ms are
used in MFCC calculation. The resulting HMM system has 1465
states shared among 10227 triphones. Each state has a triphone
using 32 Gaussian mixtures. We use Wall Street Journal CSR
datasets (WSJ 1 and 2) to build the acoustic model of speech. For
music adaptation, we use a set of 20 pop songs which does not
include any of the three songs above.
It should also be noted that for this proof-of-concept, we have
used the three songs for both model parameter optimization and
testing, in a closed test setup; current work is being done to assess
performance on separate training and testing data.

Table 1. Word-level synchronization error with respect to
tolerance T (in bars)

Sychronization error rate (%) Experiment description T=1/4 1/8 1/16

0. Baseline 20.7 34.2 49.9

1. Discretize to 1/16 bar frames 19.7 31.1 46.0
2. Local constraints (L) 19.4 29.0 43.2
3. Global constraints (G) 18.7 30.6 45.6
4. L+G 18.7 28.8 43.5

Table 1 shows the results of our prototype synchronization
system. Although our method achieves syllable level
synchronization, we evaluate at the word level because ground
truth at the syllable level was difficult for annotators to reliably
annotate. We evaluate our system using different levels of
alignment error tolerance, as indicated by the T values (measured
in bars) in the table. We call attention to the following aspects of
our alignment performance.

Music structure constraints. Overall, we see that using 1/16 bar
long frames does not affect alignment performance significantly.
We also see that local and global constraints help to improve
accuracy by 5.2% and 3.6% at 1/8 bar tolerance individually; but
that their gains in performance largely overlap when employed
together. This may be partially due to the fact that portions of
models of the local constraints (two unequal portions of the line)
and the global constraints (three equal portions of the line)
partially overlap.

Time efficiency. Aside from improving accuracy, the music
structure has a positive side effect on time efficiency. This is
because the optimum global constraints cut down the search space
by more than a half (approximately 55% on average) for each
line. Note that time discretization does not affect the search space.
This is because alignment between a note segment and a syllable
is ultimately computed as alignment between a sequence of
frames and a sequence of triphones.

4. CONCLUSION
We have presented a framework to synchronize pop music to the
corresponding lyric text at syllabic-level. Our main contribution
is using music knowledge to constrain dynamic programming
search.
We are currently validating our approach on a clean training and
testing set separation. For future work, we would like to
investigate how we can reduce distortion from background music
accompaniment as well as how we can exploit information from
repeated lines in lyric text (e.g., in chorus sections).

5. REFERENCES
[1] Furini, M. and Alboresi, L. Audio-text synchronization

inside MP3 files: a new approach and its implementation. In
Proceedings of the IEEE Consumer Communications &
Networking 2004 (CCNC2004), Las Vegas, USA, 2004.

[2] Loscos, A., Cano, P., and Bonada, J. Low-Delay Singing
Voice Alignment to Text. In Proceedings of International
Computer Music Conference, Beijing, China, 1999.

[3] Wang, C.-K., Lyu, R.-Y., Chiang, Y.-C. An automatic
singing transcription system with multilingual singing lyric
recognizer and robust melody tracker. In Proceedings of the
8th European Conference on Speech Communication and
Technology (EUROSPEECH-2003), 1197-1200.

[4] Wang, Y., Kan, M.-Y., Nwe, T.L., Shenoy, A., and Yin, J.
LyricAlly: automatic synchronization of acoustic musical
signals and textual lyrics. In Proceedings of the 12th ACM
International Conference on Multimedia, pp. 212-219, 2004.

[5] Yoshii, K., Goto, M., and Okuno, H. G. Automatic drum
sound description for real-world music using template
adaptation and matching methods. In Proceedings of the 5th
International Conference on Music Information Retrieval
(ISMIR2004), Barcelona, Spain, 2004.

[6] Zhu, Y., Chen, K., and Sun, Q. Multimodal content-based
structure analysis of karaoke music. In Proceedings of ACM
International Conference on Multimedia, pp. 638-647, 2005.

[7] HTK Speech Recognition Toolkit. http://htk.eng.cam.ac.uk/

