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ABSTRACT 

This paper presents a novel beat detector that operates in the 
Huffman coded domain of a MP3 audio bitstream. We seek to 
answer two main questions. First, whether it is possible to ex-
tract beats without even partial decoding of a MP3 audio. Sec-
ond, how to construct a low complexity algorithm to detect 
beats for multimedia applications in small devices such as 
mobile phones, if the answer to the first question is positive. 
Our investigation shows that beat detection in the Huffman 
coded domain can achieve fairly good results with a signifi-
cantly reduced demand for computation. We also propose a 
graph-based algorithm to tackle the beat detection problem 
from an algorithmic perspective.  
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time 

1. INTRODUCTION 

The beat of a piece of pop music is the sequence of almost 
equally spaced phenomenal impulses which define the tempo 
of the music [7]. Automatic beat detection has a history of 
almost two decades. A fairly comprehensive review is given in 
[3]. Early beat tracking systems operate on MIDI; recent ones 
such as [2][4][6][7] operate on PCM samples. Since more and 
more music is now stored in compressed formats, such as MP3, 
it is natural to argue for the possibility and applicability of beat 
detection in the compressed domain. In [1], a beat detector is 
proposed using the MDCT coefficients, partially decoded from 
the MP3 bitstream. According to the definition of compressed 
domain in [9], the system proposed in [1] belongs to a trans-
form domain beat detector rather than a real compressed do-
main beat detector. Besides, the performance and computa-
tional complexity of that system hinder its applications in bat-
tery-powered small devices. The beat detector described in this 
paper is designed to maintain the detection performance while 
reducing the computational complexity significantly. 
 
The proposed beat detector has many practical applications. It 
is suitable for fast processing of a pop music database stored in 
the MP3 format, as it does not require even partial decoding. 
Another possible application scenario is that we need beat 
information for visualization or lighting during the playback of 
MP3 music files using a small device such as a mobile phone. 
This scenario is shown in Figure 1. To reduce computational 
complexity and memory consumption, and enable audio and 
visual synchronization without an unnecessarily large playback 
buffer, it is clearly advantageous to detect beats in the com-

pressed domain, parallel to the decoding process. Furthermore, 
the proposed beat detector can be used by the user to extract 
beat of his/her favorite songs to control the speed of a mobile 
game [11]. 
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Figure 1. A possible application scenario of the pro-
posed beat detector. 

 
To our knowledge, our work is the first to design beat detec-
tion without decoding, i.e., the beat detection is based on fea-
tures directly from the compressed bitstream without even 
performing entropy decoding. As with most beat detectors 
dealing with pop music, we assume that the tempo is almost 
constant across the entire piece of music and roughly between 
70 - 160 beats per minute. The paper is organized as follows: 
Section 2 gives a detailed presentation of the detector. Section 
3 presents the evaluation. Section 4 concludes the paper. 

2. SYSTEM DESCRIPTION 

As with most beat detectors, our compressed domain beat 
detector (which will be referred to as CBD in the sequel) con-
sists of two main computation blocks: onset detection and beat 
induction. In CBD, they are carried out in cascade. A key 
contribution of this paper is to find good features in the Huff-
man coded domain as input to onset detection to maximize 
system performance. 

2.1. Feature Selection 

In an MP3 bitstream, some data is readily available without 
decoding, including: window type, part2_3_length, global 
gain, etc. [10]. To meet our design objective of pop music beat 
detection, we select features based on the following criteria: 1) 
The feature has good correlation with energy. 2) The feature 
exhibits good self-similarities. 3) The feature depends mainly 
on the music or the acoustic signals that are compressed, and 
not on the implementation of the encoder that has produced the 
data. This criterion renders data such as window type data un-
suitable for beat tracking.  



In practice, we use the following quantitative measure for fea-
ture selection: For each data type in the compressed domain, 
we form a sequence s by extracting the value from each gran-
ule (In MP3 bitstream, the temporal unit is a frame which is 
further divided evenly into two granules [10]). Then we form 
another sequence b by: 
bi±k = 1  if there is an annotated beat at granule i, k = 0,1,2; 
bi  = 0   if there is no annotated beat at granule i ± k, k = 0,1,2. 
We calculate the cross-correlations rb,s between b and s at de-
lay 0. We have applied the method on five songs, and the re-
sults are given in Table 1 (due to space constraints, we only list 
three features for comparison). Our investigations show that 
part2_3_length is the best compressed domain feature for beat 
detection because it is significantly more correlated with b than 
other compressed domain features such as global gain, and it is 
almost as correlated with b as full-band energy, calculated 
using transform domain data as in [1]. Despite this fact, trans-
form domain features generally yield better accuracy for beat 
detection than compressed domain features do because trans-
form domain features consist of multi-band data; the cost is 
computation time and memory. 
 
Song 
No. 

global gain part2_3_length full-band energy 

1 0.002 0.228 0.326 
2 0.036 0.194 0.253 
3 -0.043 0.184 0.184 
4 0.004 0.217 0.188 
5 -0.009 0.218 0.264 

Avg -0.002 0.2082 0.2430 
Table 1. Results of the cross-correlation method. 

2.2. Onset Detection 

Onset detection in CBD employs a very simple routine. As we 
have stated in Section 2.1, the input to onset detection is 
part2_3_lengths, which are 12-bit integers [10]. These inte-
gers form a single dimension vector v. Granule i is supposed 
to contain an onset if the i-th element in v satisfies the follow-
ing condition:  
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Using above rules, any two onsets are at least seven MP3 
granules apart from each other. 

2.3. Beat Induction 

The beat induction process determines beat times based on the 
onsets detected at the previous step. Features extracted from 
multiple bands from a PCM bitstream are generally more reli-
able for onset detection, while a single parameter from the 
compressed domain is much noisier resulting in lower accu-

racy in onset detection. Therefore, we develop our beat induc-
tion algorithm to cater for onsets of low accuracy. 
 
To facilitate illustration, we introduce a data structure called 
ordered event set, which is an ordered set (S, ≤R) of distinct 
events, to store onsets or beats. The relation ≤R is defined by: i 
≤R j iff event i occurs earlier in time than or at the same time 
as event j. The ordered event set can be implemented as a list. 
 
We formulate the beat induction problem as follows: 
Input: An ordered event set O. 
Output: A pair (d, B) which satisfies the following three condi-
tions: 
• Condition 1: d is a real number and QMIN ≤ d ≤ QMAX, 

where QMIN and QMAX are constants; B is an ordered event 
set. 

• Condition 2: For every pair (i, j), where i, j ∈ B, and i and 
j are adjacent in order in B, the time difference between 
the occurrence of i and that of j, denoted by diff(i, j), is in 
the range [d – є, d + є]. We call such a pair a consecutive 
pair of B. 

• Condition 3: For any pair (d’, B’) that satisfies conditions 
1 and 2 and is not identical to (d, B), |O ∩ B’| < |O ∩ B|. 

Intuitively, the input set O contains all the detected onsets of a 
piece of music, the output value d is the anticipated quarter 
note length, and the output set B contains all the beats. QMIN 
and QMAX are the smallest and largest possible quarter note 
length an algorithm is to consider respectively. In our current 
implementation, QMIN = 375ms and QMAX = 850ms (corre-
sponding to tempo ranging from 70 to 160 beat per minute), 
and deviation є is set to 25ms. 
 
Next, we introduce another data structure that is used in the 
algorithm, pattern，which is an ordered event set with an as-
sociated pair (s, d). A pattern P meets the following condi-
tions: 
• Condition 1: P ⊆ O, where O is the ordered event set 

containing all the onsets. 
• Condition 2: |P| ≥ 1 and the first element in P, denoted by 

head(P), is s. 
• Condition 3: For every consecutive pair (i, j) of P, if there 

is any, diff(i, j) ∈ [d – є, d + є]. 
• Condition 4: There does not exist another ordered event 

set S such that P ⊂ S, and S also meets the above three 
conditions. 

The associated pair (s, d) of a pattern uniquely identifies the 
pattern alone. This can be proven using contradiction, and 
using the fact that any two onsets are at least seven MP3 gran-
ules apart from each other. Thus, subsequently in this paper, 
we use identification pair and associated pair synonymously. 
If a pattern P has an identification pair (s, d), we denote d as 
the lapse of P, i.e., lapse(P) = d. The algorithm for extracting 
the pattern given the identification pair is straightforward – a 
simple iterative procedure suffices. 
 
The beat induction algorithm starts with determining the an-
ticipated quarter note length, using an inter-onset interval (IOI) 
histogram-based method which is similar to the one proposed 
in [2][4]. The histogram accounts for all IOIs in the range of 
[QMIN, QMAX]. 



After the anticipated quarter note length is detected, the next 
step is to compute beat times based on the quarter note length 
qnl. The aim is to compute an ordered event set B such that for 
every consecutive pair (i, j) of B, diff(i, j) ∈ [qnl – є, qnl + є], 
and |B ∩ O| is maximum. To solve this problem, we propose a 
graph-based approach. Before describing the approach, we first 
introduce another relation – compatibility. 
 
Definition: Pattern A is compatible with Pattern B with lapse 
d (d > є) iff the following condition holds: 
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(ROUND is an operation that rounds its parameter to the near-
est integer.) If A is compatible with B with lapse d, we denote 

A c
d
→ B.  

 
The graph-based approach starts with the collection of all pat-
terns with lapse qnl from the onsets, where qnl is the antici-
pated quarter note length. With some sophistication, a single 
iterative pass through the sequence of onsets shall exhaust all 
patterns with the prescribed lapse. We use another ordered 
event set (L, ≤R’) of the same properties and operations as (S, 
≤R) as the data structure to store all the patterns. The relation 
≤R’ is defined by: Li ≤R’ Lj iff head(Li) ≤R head(Lj). 
After collecting all the patterns, we create a compatibility ma-
trix CM whose size is |L| × |L| and: 
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for 1 ≤ i, j ≤ |L|. (get is an operation which, given a rank as 
input, returns the element with that rank in an ordered event 
set. rank is its reverse operation; namely, given an element, 
rank returns the rank of that element in an ordered event set.) 
CM can be viewed as the adjacent matrix of a graph G = (V, 
E), where V[G] ={x | x ∈ Ζ ∧ x ≥ 0 ∧ ∃p, x = rank(L, p) }, E[G] 
= {(j, k) | j, k ∈ V[G] ∧ CM[j, k] = 1}. This graph is directed 
and acyclic. The problem is transformed to finding a path 
p=<v0, v1…, vk>, where v0, v1…, vk ∈V[G], such that 
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|get(L, vi)| is maximized. In order to solve the problem, we 

first convert graph G into another directed acyclic but weighted 
graph G’ = (V, E). G’ is formed as: V[G’] = V[G] ∪ {dummy}, 
and E[G’] = E[G] ∪ {(dummy, k) | k ∈ V[G]}. The weight of 
an edge (j, k) in G’ is assigned –|get(L, k)|. The negation allows 
us to compute minimum instead of maximum of total weights 
so that the Bellman-Ford algorithm can fit in. After we apply 
the Bellman-Ford algorithm on G’ to compute the path with 
minimal total weights, we collect patterns represented by the 
vertices on the path and store elements of those patterns in an 
ordered event set B. Then B contains partial beats. The next 
step is to obtain the complete beats. The rest of the beats are 
interpolated based on the partial beats in B. Interpolation is 
done as follows: For every consecutive pair (x, y) in B, if 
diff(x, y) ∉ [qnl – є, qnl + є], then x and y do not appear in the 
same pattern; x is the tail of one pattern P1, and y is the head 

of another pattern P2. We can also infer P2 is compatible with 
P1 with lapse qnl. Based on the definition of compatibility, we 
have: 
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So if we insert k = ( ) )1),(( −qnlyxdiffROUND  number of 
beats b1, b2…, bk between x and y such that diff(x, b1) = diff(b1, 
b2) =  ··· = diff(bk, y) = d = diff(x, y)/k, we can infer from equa-
tion (5) that d ∈ [qnl – є, qnl + є], which implies the tempo is 
validly maintained across the interpolated beats. 
 
Figure 2 shows the compressed domain feature, detected onsets 
and beats of a pop music clip. 
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Figure 2. (a) Compressed domain feature – part_2_3_length; 
(b) Detected onsets; (c) Detected beats. 

3. EVALUATION 

We evaluate CBD from two aspects: accuracy and time com-
plexity. We present our evaluation results next. 

3.1. Accuracy Evaluation 

We used the evaluation method presented in [5], and tested 
our system using 25 real-world pop songs sampled from com-
mercial CDs. The result is shown in Table 2. CBD success-
fully tracked 21 of the 25 test songs, and for the remaining 
four songs, CBD also tracked partially the beat of three of 
them. Therefore, we conclude that CBD achieves quite satisfy-
ing accuracy for the set of test music.   

 
No. Song Title Result 
1 Back to you C 
2 Breathless C 
3 Burn C 
4 Crush C 
5 Drops of Jupiter C 
6 Gangsta’s paradise C 
7 Heal the world C 
8 I can’t tell you why C 
9 It must have been love C 



10 I want to know what love is P 
11 Losing my religion C 
12 Mmmbop  C 
13 One  P 
14 One of us P 
15 Road to hell C 
16 Seasons in the sun C 
17 Someday C 
18 Stayin’ alive C 
19 The way it is C 
20 Torn N 
21 Truly, madly, deeply C 
22 Viva forever C 
23 Walking away C 
24 Whenever, wherever C 
25 You love making fun C 
Remark: C: completely tracked;  
P: partially tracked; N: completely not tracked. 

Table 2. Experiment Results. 

3.2. Time Complexity Evaluation 

As expected, CBD is much less computationally intensive 
than a typical PCM domain beat detector such as [2]. The 
reasons are: 1) CBD deals with compressed domain data, 
which is much smaller in quantity than its PCM domain coun-
terpart; 2) CBD avoids operations of high computational com-
plexity, such as transform. In this section, we give a compari-
son in time complexity between CBD and the PCM domain 
beat detector (PBD) presented in [2]. We plot in Figure 3 the 
time consumed by CBD and PBD for tracking 21 songs (those 
songs are completely tracked by CBD). The average duration 
of the 21 songs is 4.2 min. The two beat detectors ran on an 
IBM R40 laptop with Intel Celeron CPU of 1.7GHz and 256M 
of RAM. 
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Figure 3. Time complexity comparison 

 
It is clear that CBD saves a lot of computation time – the av-
erage time taken by CBD for a song with an average duration 
of 4.2 min is 1.23 sec while that taken by PBD is 15.92 sec. 
Note that for PBD, we do not include the time required for 
decoding; otherwise, the savings will be even higher. 
 
We have also implemented the proposed algorithm on a HP 
iPAQ hx4700 running Microsoft Windows Mobile 2003 SE. 

In summary, the average decoding time per song from MP3 to 
PCM is about 21 seconds. The average beat detection time is 
about 1 second for CBD and 13 minutes for PCM domain beat 
detector (PBD). These results show that the compressed do-
main processing provides a significant advantage for mobile 
platforms, while PBD is more suitable for PC or server plat-
forms. 

4. CONCLUSION 

In this paper, we have investigated the feasibility of a real 
compressed domain beat detection and have implemented a 
novel low-complexity beat detector both in laptop and PDA 
platforms. Although our current algorithm processes data in an 
all-at-once manner, it still has clear value in real-life applica-
tions such as personalized mobile gaming. We plan to investi-
gate the feasibility of a real time algorithm for compressed 
domain beat detection. 
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