
POP MUSIC BEAT DETECTION IN THE HUFFMAN CODED DOMAIN

Jia Zhu and Ye Wang

Department of Computer Science, School of Computing
National University of Singapore, Singapore 177543

{zhujia, wangye}@comp.nus.edu.sg

ABSTRACT

This paper presents a novel beat detector that operates in the
Huffman coded domain of a MP3 audio bitstream. We seek to
answer two main questions. First, whether it is possible to ex-
tract beats without even partial decoding of a MP3 audio. Sec-
ond, how to construct a low complexity algorithm to detect
beats for multimedia applications in small devices such as
mobile phones, if the answer to the first question is positive.
Our investigation shows that beat detection in the Huffman
coded domain can achieve fairly good results with a signifi-
cantly reduced demand for computation. We also propose a
graph-based algorithm to tackle the beat detection problem
from an algorithmic perspective.

Keywords: Compressed domain beat detection, computation
time

1. INTRODUCTION

The beat of a piece of pop music is the sequence of almost
equally spaced phenomenal impulses which define the tempo
of the music [7]. Automatic beat detection has a history of
almost two decades. A fairly comprehensive review is given in
[3]. Early beat tracking systems operate on MIDI; recent ones
such as [2][4][6][7] operate on PCM samples. Since more and
more music is now stored in compressed formats, such as MP3,
it is natural to argue for the possibility and applicability of beat
detection in the compressed domain. In [1], a beat detector is
proposed using the MDCT coefficients, partially decoded from
the MP3 bitstream. According to the definition of compressed
domain in [9], the system proposed in [1] belongs to a trans-
form domain beat detector rather than a real compressed do-
main beat detector. Besides, the performance and computa-
tional complexity of that system hinder its applications in bat-
tery-powered small devices. The beat detector described in this
paper is designed to maintain the detection performance while
reducing the computational complexity significantly.

The proposed beat detector has many practical applications. It
is suitable for fast processing of a pop music database stored in
the MP3 format, as it does not require even partial decoding.
Another possible application scenario is that we need beat
information for visualization or lighting during the playback of
MP3 music files using a small device such as a mobile phone.
This scenario is shown in Figure 1. To reduce computational
complexity and memory consumption, and enable audio and
visual synchronization without an unnecessarily large playback
buffer, it is clearly advantageous to detect beats in the com-

pressed domain, parallel to the decoding process. Furthermore,
the proposed beat detector can be used by the user to extract
beat of his/her favorite songs to control the speed of a mobile
game [11].

Audio Decoder

Compressed bitstream

Synchronization

Music Playback Visualization

PCM Samples Beat Information

Compressed Domain
Beat Detector

Figure 1. A possible application scenario of the pro-
posed beat detector.

To our knowledge, our work is the first to design beat detec-
tion without decoding, i.e., the beat detection is based on fea-
tures directly from the compressed bitstream without even
performing entropy decoding. As with most beat detectors
dealing with pop music, we assume that the tempo is almost
constant across the entire piece of music and roughly between
70 - 160 beats per minute. The paper is organized as follows:
Section 2 gives a detailed presentation of the detector. Section
3 presents the evaluation. Section 4 concludes the paper.

2. SYSTEM DESCRIPTION

As with most beat detectors, our compressed domain beat
detector (which will be referred to as CBD in the sequel) con-
sists of two main computation blocks: onset detection and beat
induction. In CBD, they are carried out in cascade. A key
contribution of this paper is to find good features in the Huff-
man coded domain as input to onset detection to maximize
system performance.

2.1. Feature Selection

In an MP3 bitstream, some data is readily available without
decoding, including: window type, part2_3_length, global
gain, etc. [10]. To meet our design objective of pop music beat
detection, we select features based on the following criteria: 1)
The feature has good correlation with energy. 2) The feature
exhibits good self-similarities. 3) The feature depends mainly
on the music or the acoustic signals that are compressed, and
not on the implementation of the encoder that has produced the
data. This criterion renders data such as window type data un-
suitable for beat tracking.

In practice, we use the following quantitative measure for fea-
ture selection: For each data type in the compressed domain,
we form a sequence s by extracting the value from each gran-
ule (In MP3 bitstream, the temporal unit is a frame which is
further divided evenly into two granules [10]). Then we form
another sequence b by:
bi±k = 1 if there is an annotated beat at granule i, k = 0,1,2;
bi = 0 if there is no annotated beat at granule i ± k, k = 0,1,2.
We calculate the cross-correlations rb,s between b and s at de-
lay 0. We have applied the method on five songs, and the re-
sults are given in Table 1 (due to space constraints, we only list
three features for comparison). Our investigations show that
part2_3_length is the best compressed domain feature for beat
detection because it is significantly more correlated with b than
other compressed domain features such as global gain, and it is
almost as correlated with b as full-band energy, calculated
using transform domain data as in [1]. Despite this fact, trans-
form domain features generally yield better accuracy for beat
detection than compressed domain features do because trans-
form domain features consist of multi-band data; the cost is
computation time and memory.

Song
No.

global gain part2_3_length full-band energy

1 0.002 0.228 0.326
2 0.036 0.194 0.253
3 -0.043 0.184 0.184
4 0.004 0.217 0.188
5 -0.009 0.218 0.264

Avg -0.002 0.2082 0.2430
Table 1. Results of the cross-correlation method.

2.2. Onset Detection

Onset detection in CBD employs a very simple routine. As we
have stated in Section 2.1, the input to onset detection is
part2_3_lengths, which are 12-bit integers [10]. These inte-
gers form a single dimension vector v. Granule i is supposed
to contain an onset if the i-th element in v satisfies the follow-
ing condition:

⎩
⎨
⎧

>
>

±kii

ii

vv
thrv (1)

for k = ±1, ±2, …, ±7, where thri is calculated using (2):

∑
+

−=

−=
3

3

4/)(
i

ik
iki vvthr (2)

Using above rules, any two onsets are at least seven MP3
granules apart from each other.

2.3. Beat Induction

The beat induction process determines beat times based on the
onsets detected at the previous step. Features extracted from
multiple bands from a PCM bitstream are generally more reli-
able for onset detection, while a single parameter from the
compressed domain is much noisier resulting in lower accu-

racy in onset detection. Therefore, we develop our beat induc-
tion algorithm to cater for onsets of low accuracy.

To facilitate illustration, we introduce a data structure called
ordered event set, which is an ordered set (S, ≤R) of distinct
events, to store onsets or beats. The relation ≤R is defined by: i
≤R j iff event i occurs earlier in time than or at the same time
as event j. The ordered event set can be implemented as a list.

We formulate the beat induction problem as follows:
Input: An ordered event set O.
Output: A pair (d, B) which satisfies the following three condi-
tions:
• Condition 1: d is a real number and QMIN ≤ d ≤ QMAX,

where QMIN and QMAX are constants; B is an ordered event
set.

• Condition 2: For every pair (i, j), where i, j ∈ B, and i and
j are adjacent in order in B, the time difference between
the occurrence of i and that of j, denoted by diff(i, j), is in
the range [d – є, d + є]. We call such a pair a consecutive
pair of B.

• Condition 3: For any pair (d’, B’) that satisfies conditions
1 and 2 and is not identical to (d, B), |O ∩ B’| < |O ∩ B|.

Intuitively, the input set O contains all the detected onsets of a
piece of music, the output value d is the anticipated quarter
note length, and the output set B contains all the beats. QMIN
and QMAX are the smallest and largest possible quarter note
length an algorithm is to consider respectively. In our current
implementation, QMIN = 375ms and QMAX = 850ms (corre-
sponding to tempo ranging from 70 to 160 beat per minute),
and deviation є is set to 25ms.

Next, we introduce another data structure that is used in the
algorithm, pattern，which is an ordered event set with an as-
sociated pair (s, d). A pattern P meets the following condi-
tions:
• Condition 1: P ⊆ O, where O is the ordered event set

containing all the onsets.
• Condition 2: |P| ≥ 1 and the first element in P, denoted by

head(P), is s.
• Condition 3: For every consecutive pair (i, j) of P, if there

is any, diff(i, j) ∈ [d – є, d + є].
• Condition 4: There does not exist another ordered event

set S such that P ⊂ S, and S also meets the above three
conditions.

The associated pair (s, d) of a pattern uniquely identifies the
pattern alone. This can be proven using contradiction, and
using the fact that any two onsets are at least seven MP3 gran-
ules apart from each other. Thus, subsequently in this paper,
we use identification pair and associated pair synonymously.
If a pattern P has an identification pair (s, d), we denote d as
the lapse of P, i.e., lapse(P) = d. The algorithm for extracting
the pattern given the identification pair is straightforward – a
simple iterative procedure suffices.

The beat induction algorithm starts with determining the an-
ticipated quarter note length, using an inter-onset interval (IOI)
histogram-based method which is similar to the one proposed
in [2][4]. The histogram accounts for all IOIs in the range of
[QMIN, QMAX].

After the anticipated quarter note length is detected, the next
step is to compute beat times based on the quarter note length
qnl. The aim is to compute an ordered event set B such that for
every consecutive pair (i, j) of B, diff(i, j) ∈ [qnl – є, qnl + є],
and |B ∩ O| is maximum. To solve this problem, we propose a
graph-based approach. Before describing the approach, we first
introduce another relation – compatibility.

Definition: Pattern A is compatible with Pattern B with lapse
d (d > є) iff the following condition holds:

].,[
)))(),(((

))(),((

,)()(),()(

εε +−∈

==≤

dd
dAheadBtaildiffROUND

AheadBtaildiff

anddBlapseAlapseAheadBtail R

 (3)

(ROUND is an operation that rounds its parameter to the near-
est integer.) If A is compatible with B with lapse d, we denote

A c
d
→ B.

The graph-based approach starts with the collection of all pat-
terns with lapse qnl from the onsets, where qnl is the antici-
pated quarter note length. With some sophistication, a single
iterative pass through the sequence of onsets shall exhaust all
patterns with the prescribed lapse. We use another ordered
event set (L, ≤R’) of the same properties and operations as (S,
≤R) as the data structure to store all the patterns. The relation
≤R’ is defined by: Li ≤R’ Lj iff head(Li) ≤R head(Lj).
After collecting all the patterns, we create a compatibility ma-
trix CM whose size is |L| × |L| and:

⎪⎩

⎪
⎨
⎧ →=

,0

);,(),(1]][[
otherwise

jLgetiLgetifjiCM c

qnl

 (4)

for 1 ≤ i, j ≤ |L|. (get is an operation which, given a rank as
input, returns the element with that rank in an ordered event
set. rank is its reverse operation; namely, given an element,
rank returns the rank of that element in an ordered event set.)
CM can be viewed as the adjacent matrix of a graph G = (V,
E), where V[G] ={x | x ∈ Ζ ∧ x ≥ 0 ∧ ∃p, x = rank(L, p) }, E[G]
= {(j, k) | j, k ∈ V[G] ∧ CM[j, k] = 1}. This graph is directed
and acyclic. The problem is transformed to finding a path
p=<v0, v1…, vk>, where v0, v1…, vk ∈V[G], such that

∑
=

k

i 0
|get(L, vi)| is maximized. In order to solve the problem, we

first convert graph G into another directed acyclic but weighted
graph G’ = (V, E). G’ is formed as: V[G’] = V[G] ∪ {dummy},
and E[G’] = E[G] ∪ {(dummy, k) | k ∈ V[G]}. The weight of
an edge (j, k) in G’ is assigned –|get(L, k)|. The negation allows
us to compute minimum instead of maximum of total weights
so that the Bellman-Ford algorithm can fit in. After we apply
the Bellman-Ford algorithm on G’ to compute the path with
minimal total weights, we collect patterns represented by the
vertices on the path and store elements of those patterns in an
ordered event set B. Then B contains partial beats. The next
step is to obtain the complete beats. The rest of the beats are
interpolated based on the partial beats in B. Interpolation is
done as follows: For every consecutive pair (x, y) in B, if
diff(x, y) ∉ [qnl – є, qnl + є], then x and y do not appear in the
same pattern; x is the tail of one pattern P1, and y is the head

of another pattern P2. We can also infer P2 is compatible with
P1 with lapse qnl. Based on the definition of compatibility, we
have:

() []εε +−∈ qnlqnl
qnlyxdiffROUND

yxdiff ,
),(

),((5)

So if we insert k = ())1),((−qnlyxdiffROUND number of
beats b1, b2…, bk between x and y such that diff(x, b1) = diff(b1,
b2) = ··· = diff(bk, y) = d = diff(x, y)/k, we can infer from equa-
tion (5) that d ∈ [qnl – є, qnl + є], which implies the tempo is
validly maintained across the interpolated beats.

Figure 2 shows the compressed domain feature, detected onsets
and beats of a pop music clip.

3150 3200 3250 3300 3350 3400 3450 3500
500

1000

1500

2000
Compressed Domain Features

MP3 granule index

3150 3200 3250 3300 3350 3400 3450 3500
0

0.2

0.4

0.6

0.8

1

Detected Onsets

MP3 granule index

(a)

(b)

3150 3200 3250 3300 3350 3400 3450 3500
0

0.2

0.4

0.6

0.8

1

Detected Beats

MP3 granule index

(c)

Figure 2. (a) Compressed domain feature – part_2_3_length;
(b) Detected onsets; (c) Detected beats.

3. EVALUATION

We evaluate CBD from two aspects: accuracy and time com-
plexity. We present our evaluation results next.

3.1. Accuracy Evaluation

We used the evaluation method presented in [5], and tested
our system using 25 real-world pop songs sampled from com-
mercial CDs. The result is shown in Table 2. CBD success-
fully tracked 21 of the 25 test songs, and for the remaining
four songs, CBD also tracked partially the beat of three of
them. Therefore, we conclude that CBD achieves quite satisfy-
ing accuracy for the set of test music.

No. Song Title Result
1 Back to you C
2 Breathless C
3 Burn C
4 Crush C
5 Drops of Jupiter C
6 Gangsta’s paradise C
7 Heal the world C
8 I can’t tell you why C
9 It must have been love C

10 I want to know what love is P
11 Losing my religion C
12 Mmmbop C
13 One P
14 One of us P
15 Road to hell C
16 Seasons in the sun C
17 Someday C
18 Stayin’ alive C
19 The way it is C
20 Torn N
21 Truly, madly, deeply C
22 Viva forever C
23 Walking away C
24 Whenever, wherever C
25 You love making fun C
Remark: C: completely tracked;
P: partially tracked; N: completely not tracked.

Table 2. Experiment Results.

3.2. Time Complexity Evaluation

As expected, CBD is much less computationally intensive
than a typical PCM domain beat detector such as [2]. The
reasons are: 1) CBD deals with compressed domain data,
which is much smaller in quantity than its PCM domain coun-
terpart; 2) CBD avoids operations of high computational com-
plexity, such as transform. In this section, we give a compari-
son in time complexity between CBD and the PCM domain
beat detector (PBD) presented in [2]. We plot in Figure 3 the
time consumed by CBD and PBD for tracking 21 songs (those
songs are completely tracked by CBD). The average duration
of the 21 songs is 4.2 min. The two beat detectors ran on an
IBM R40 laptop with Intel Celeron CPU of 1.7GHz and 256M
of RAM.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

4

song index

ex
ec

ut
io

n
tim

e
(u

ni
t:

m
s)

Compressed domain beat detector
PCM domain beat detector

Figure 3. Time complexity comparison

It is clear that CBD saves a lot of computation time – the av-
erage time taken by CBD for a song with an average duration
of 4.2 min is 1.23 sec while that taken by PBD is 15.92 sec.
Note that for PBD, we do not include the time required for
decoding; otherwise, the savings will be even higher.

We have also implemented the proposed algorithm on a HP
iPAQ hx4700 running Microsoft Windows Mobile 2003 SE.

In summary, the average decoding time per song from MP3 to
PCM is about 21 seconds. The average beat detection time is
about 1 second for CBD and 13 minutes for PCM domain beat
detector (PBD). These results show that the compressed do-
main processing provides a significant advantage for mobile
platforms, while PBD is more suitable for PC or server plat-
forms.

4. CONCLUSION

In this paper, we have investigated the feasibility of a real
compressed domain beat detection and have implemented a
novel low-complexity beat detector both in laptop and PDA
platforms. Although our current algorithm processes data in an
all-at-once manner, it still has clear value in real-life applica-
tions such as personalized mobile gaming. We plan to investi-
gate the feasibility of a real time algorithm for compressed
domain beat detection.

5. REFERENCES

[1] Wang, Y., Vilermo, M., “A Compressed Domain Beat
Detector Using MP3 Audio Bitstreams,” ACM Multime-
dia 2001, Ottawa, Canada, pp. 194-202, Sept. 30-Oct. 5,
2001.

[2] Shenoy, A., Wang, Y., “Key, Chord and Rhythm Tracking
of Popular Music Recordings,” Computer Music Journal,
pp. 75-86, Fall 2005

[3] Guoyon, F., Dixon, S., “A Review of Automatic Rhythm
Description Systems,” Computer Music Journal, 29(1):34-
54, 2005

[4] Dixon, S., “Automatic extraction of tempo and beat from
expressive performances,” Journal of New Music Re-
search, 30(1):39-58, 2001.

[5] Goto, M., and Muraoka, Y., “Issues in Evaluating Beat
Tracking Systems,” Working Notes of the IJCAI-97
Workshop on Issues in AI and Music – Evaluation and
Assessment, pp.9-16, August 1997.

[6] Goto, M., “An Audio-based Real-time Beat Tracking Sys-
tem for Music With or Without Drum-sounds,” Journal of
New Music Research, Vol.30, No.2, pp.159-171, June
2001.

[7] Scheirer, E., “Tempo and Beat Analysis of Acoustic Musi-
cal Signals,” Journal of the Acoustical Society of Amer-
ica, 103:1 (Jan 1998), pp. 588-601.

[8] Povel, D.-J., and Essens, P. (1985). “Perception of tempo-
ral patterns,” Music Perception 2, p.p. 411-440.

[9] Wang, Y., Huang, W., Korhonen, J., “A Framework for
Robust and Scalable Audio Streaming,” ACM MM 2004,
New York, USA, Oct 10-16, 2004.

[10] ISO/IEC JTC/SC29, “Information Technology – Coding
of Moving Pictures and Associated Audio for Digital
Storage Media at up to about 1,5 Mbit/s-IS 11172 (Part 3,
Audio),” 1992.

[11] Holm, J., Havukainen, K., Arrasvuori, J., “Novel Ways to
Use Audio in Games,” Game Developer Conference, 2005

