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LyricAlly: Automatic Synchronization of Textual
Lyrics to Acoustic Music Signals

Min-Yen Kan, Ye Wang, Denny Iskandar, Tin Lay Nwe, and Arun Shenoy

Abstract—We present LyricAlly, a prototype that automatically
aligns acoustic musical signals with their corresponding textual
lyrics, in a manner similar to manually-aligned karaoke. We
tackle this problem based on a multimodal approach, using an
appropriate pairing of audio and text processing to create the
resulting prototype. LyricAlly’s acoustic signal processing uses
standard audio features but constrained and informed by the
musical nature of the signal. The resulting detected hierarchical
rhythm structure is utilized in singing voice detection and chorus
detection to produce results of higher accuracy and lower com-
putational costs than their respective baselines. Text processing
is employed to approximate the length of the sung passages from
the lyrics. Results show an average error of less than one bar for
per-line alignment of the lyrics on a test bed of 20 songs (sampled
from CD audio and carefully selected for variety). We perform a
comprehensive set of system-wide and per-component tests and
discuss their results. We conclude by outlining steps for further
development.

Index Terms—Acoustic signal detection, acoustic signal pro-
cessing, music, text processing.

I. INTRODUCTION

THANKS to lowered costs of storage, different media are
often used to record and represent a single event. News re-

ports are captured as MPEG video, WAV audio, and with closed
caption transcripts; popular music is often encoded as MP3 and
also represented by lyrics. When multiple forms of media docu-
menting the same object are available, the problem of alignment
arises.

This paper presents a solution and implemented system
for one such alignment problem: automatically synchronizing
music to its lyrics. More formally, given an acoustic musical
signal with sung vocals and a transcription of the vocals (its
lyrics) as a set of lines, we seek the time offset and duration
of each lyric line. We developed our system, LyricAlly, with
popular music in mind to maximize its real-world utility, and
during development found that the regular structure of popular
music greatly helps to constrain the problem and increase
performance.

Once lyrics are synchronized to a song, random access is
greatly facilitated. When paired with an indexing and search in-
terface, a user can easily browse and listen to different lines of a
song that contain specific lyrics across a music library. Such line
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alignment allows users to zoom quickly to vocal sections, skip-
ping nonvocal parts. LyricAlly also facilitates nonvocal music
access indirectly by labeling music sections (i.e., intro, chorus,
and verse), such that the user can jump to any instrumental sec-
tion between vocal sections. Such synchronization also facili-
tates karaoke, where the user sings along with the song. Today,
karaoke lyric timestamps are manually input employing tedious
human effort.

To solve the synchronization problem, we use a multimodal
approach. A key finding in our work is that the appropriate
pairing of audio and text processing on the separate modalities
helps to create a more accurate and capable system. The modali-
ties complement each other by providing information that is not
easily obtainable in the other. Our use of music knowledge re-
duces the complexity of downstream tasks and improves system
performance. We decompose the problem as two separate sub-
tasks performed in series: a high-level song section (e.g., chorus,
verse) alignment subtask, followed by a lower level line align-
ment subtask. In comparison to a single-level alignment model,
we feel that this cascaded architecture boosts our system’s per-
formance and allows us to pinpoint components responsible for
performance bottlenecks.

LyricAlly is a complex system whose development has been
documented in several previous publications [10], [21], [27]. In
this paper, we bring together these works to highlight the audio
processing components. Additionally, we extend our previous
work to give new, detailed, per-component performances and
error analyses. We have also clarified and expanded on how our
rule-based integration functions.

In Section II, we give an overview of related work. We then
introduce LyricAlly in Section III and give definition of terms
used throughout the paper. A description of the innovations and
details of its audio and text components follows. We then detail
our two-level integration of components in Section VI. We ana-
lyze the system’s performance and conclude with comments on
current and future work.

II. RELATED WORK

Managing and coordinating multimedia is a growing area of
research as more data requiring such processing becomes avail-
able. However, to our knowledge, little previous work addresses
the problem of automatically synchronizing lyrics to music sig-
nals. Clearly, interest is present, as [7] describes a framework to
embed lyric timestamps inside music files but does not describe
how to obtain them. In [32], Zhu et al. also consider the pro-
cessing of karaoke media in which video and audio streams are
already synchronized. Both works focus on utilizing embedded
alignment metadata, rather than automatically computing it as
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in our case. The Semantic Hi-Fi project [6] is also pursuing sim-
ilar goals of automatic synchronization as LyricAlly, but thus far
has not reported any results of their work. In the rest of this sec-
tion, we compare other alignment systems to LyricAlly; works
related to individual components are discussed later in the re-
spective component sections.

In the speech recognition community, spoken document re-
trieval attempts to align potentially inaccurate closed-caption
transcripts of news reportage to the corresponding video [4],
[18], [24], [25], [31]. Typically, a video corresponds to an en-
tire hour-long newscast, and coarse-grained alignments where
alignment can be off by more than a minute are acceptable, as
a video clip with the context is retrieved, rather than the exact
offset of a relevant word or phrase. Clearly, more fine-grained
accuracy is needed for karaoke applications where alignments
off by a single second can be unsatisfactory. Our application
domain is also more challenging in the sense that music has a
lower signal-to-noise ratio, due to distortion from instrumental
music accompaniment.

In [26], the authors use a large-vocabulary speech recognizer
to perform lyric recognition, but their system only works with
pure singing voice. However, our previous work [27] shows that
real-world acoustic musical signals are significantly more com-
plex than pure singing; models created for pure singing voice
require considerable adaptation if they are to be successfully
applied to acoustic musical signals. Our experience shows that
the transcription of lyrics from polyphonic songs using speech
recognition is an extremely challenging task. This has been val-
idated by other groups [12]. This difficulty has led us to reex-
amine the transcription problem. We recognize that transcrip-
tion is often not necessary, as many lyrics are already freely
available on the Internet. As such, we formulate the problem
as one of lyric alignment rather than transcription. This de-
sign decision implies that traditional speech recognition is not
employed in LyricAlly—we attempt to detect the presence of
singing voice but not recognize its contents.

In a sense, our work is analogous to those in [1], [5], and
[22] which perform automatic audio-MIDI alignment. However,
their task is quite different from ours, as MIDI files provide both
timing and frequency information while lyrics normally do not.
In audio-MIDI alignment, it has become fairly standard to use
dynamic time warping to align polyphonic music to scores [5],
[20]. A key difference is that in MIDI-audio synchronization,
one can transform audio data from both MIDI and audio sources
into a common, feature-based representation (peak structure dis-
tance in [20], chromagrams in [5]), whereas in lyrics-audio syn-
chronization one only has such information from the original
polyphonic source.

III. SYSTEM DESCRIPTION

LyricAlly’s architectural decisions are mainly motivated
by the principle of using music knowledge to constrain and
simplify the synchronization process whenever possible. As we
deal with music rather than general audio, we first process the
acoustic signal to find the tempo and segment the signal into
discrete, musical bar-sensitive time units for further processing.
LyricAlly features a two-phase architecture in which both
audio and text analysis are first performed independently. In

Fig. 1. Block diagram of our LyricAlly lyric alignment system.

the second phase, LyricAlly then aligns these two modalities in
a top-down approach to yield the final synchronization results,
as shown in Fig. 1.

We pause to give definitions of the structural elements of
music (also referred to as sections) used in our paper.

Intro: The opening section that begins the song, which does
not have singing voice, may contain silence and may lack
a strong beat (i.e., it may be arrhythmic).
Verse: A section that roughly corresponds with a poetic
stanza and is the preamble to a chorus section.
Chorus: A refrain section. It often sharply contrasts the
verse melodically, rhythmically, and harmonically, and as-
sumes a higher level of dynamics and activity, often with
added instrumentation. As noted in [9], chorus sections are
often not identical, but may vary in sung lyrics and with
added or inserted repetition.
Bridge: A short section of music played between the
parts of a song. It is a form of alternative verse that often
modulates to a different key or introduces a new chord
progression.
Outro (or Coda): A section that brings the song to a conclu-
sion. For our purpose, an outro is a section that follows the
bridge until the end of the song. This can be characterized
by the repetition and fading out of the chorus.

Music exhibits a wide range of melodic and rhythmic charac-
teristics. LyricAlly has been built and evaluated with real-world
popular music, and as such, to make the problem tractable and
simplify our work, we limit the scope of music that LyricAlly
handles. First, the songs must have a common time signature
(i.e., 4/4; four beats to a bar). Second, the structure of song is
rigid: comprising an intro, two verses, two choruses, a bridge,
and an outro. Finally, the tempo of the song should roughly be
constant and in the range of 40–185 beats per minute. Thus, we
limit the scope of our dataset to music with a strong percussive
element. In our informal survey of popular songs, these restric-
tions are not overly restrictive—over 40% of songs surveyed fit
this profile. With respect to the lyrics, we assume that each sec-
tion’s lyrics are marked as a single block of lines, and that the
lyrics accurately reflect the complete set of words sung in the
song. It should be noted that accurate lyrics can be found uti-
lizing the Web to find and align multiple lyrics [11]. Finally,
note that certain components do not have these restrictions; the
requirements above are strictly the union of all limitations of
each component.

As we detail the workings of the components in Sections IV–
VII, we will use a running example of such a song, 25 Minutes,
performed by Michael Learns To Rock (MLTR).
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Fig. 2. Rhythm structure of an excerpt in 25 Minutes.

Fig. 3. Block diagram of our hierarchical rhythm structure component.

IV. AUDIO PROCESSING

Audio processing in LyricAlly attempts to localize sections
of vocals, which are then refined to line level alignment in a
final integration component. In technical terms, this processing
has two objectives: finding the boundaries of repeated chorus
sections and finding time spans in the input music that contains
singing vocals. Each objective is achieved by a separate com-
ponent as illustrated in Fig. 1. Note that even though the two
components’ objective may overlap, this is not necessarily the
case: repeated sections may not necessarily have singing voice.

The raw acoustic music signal is voluminous, and processing
it using short 80-ms frames as was done in [9] would be very
time consuming. As we are dealing with music, we can reduce
the search space by using a longer time unit motivated by music
knowledge. Instead of using short time frames as base time
units, our work uses a frame width equal to the interbeat interval
(IBI), which is often significantly longer. Processing is also as-
sisted when the hierarchical rhythm structure is known. We first
discuss how this preprocessing step is performed, then discuss
chorus and vocal detection.

A. Hierarchical Rhythm Preprocessing

Hierarchical rhythm processing finds both the tempo of the
input song and its bar structure. In the common time signature,

the latter step determines the strong beats (the beats that fall on
the 1 and 3 beats of the bar) and the weak beats (the beats that
fall on the 2 and 4 beats of the bar). Beat detection is done to
first find the tempo of the music and further analysis is done to
derive the rhythm structure.

1) Beat Detection: Beat detection in LyricAlly follows stan-
dard beat processing: we find salient onsets in subbands of the
input using an energy-based function with adaptive thresholding
[28]. Onset detection results from all subbands are then com-
bined to produce a series of detected onsets, as shown in line (b)
of Fig. 2. To find the tempo, LyricAlly builds a histogram of
the intervals between any two onsets (not necessarily consec-
utive) for the entire song. We also identify relationships with
other intervals to recognize harmonic relationships between the
beat (quarter note level) and simple integer multiples of the beat
(half and whole notes). Intervals allow for a margin of 25 ms ac-
counting for slight variations in the tempo. The interval length
that has the highest frequency is assumed to be the interbeat in-
terval (IBI), equivalent to a quarter note, given that the input is
in common time. We then track only the onsets that are sepa-
rated by exactly the IBI and interpolate any missing beats, as
shown in the line (c) of Fig. 2.

2) Finding Hierarchical Structure: The architecture of our
hierarchical rhythm detector is summarized in Fig. 3, which fur-
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Fig. 4. Chord correction. Four different scenarios where three consecutive IBI
chord detection results are corrected. Check 1 checks for chords not in the song’s
key, then replaces it with one in the same pitch class (row 1; C Minor ! C
Major) or eliminating it altogether (row 2; D# Major! missing). Check 2 co-
erces chords in adjacent beats to conform, correcting both erroneous (row 3)
and missing chord (row 4) errors.

ther builds on beat detection to derive the hierarchical rhythm
structure given in line (d) of Fig. 2.

Previous work [8] states that chord changes in music are more
likely to occur at the beginning of a bar than at other beat po-
sitions. Thus, if we can detect chord changes, we can use this
information to infer the hierarchical rhythm structure.

Chord detection is done by calculating chroma vectors for
each beat (IBI). By formulation, a chroma vector captures the
12 pitch classes (each class is associated to a semitone) across
multiple octaves. Chroma vectors are intended to capture the
harmonic characteristics and be robust to different instrumenta-
tions. We use the chroma vectors to compute the chords present
in each beat by extracting three prominent frequencies and com-
paring them against a set of templates that describe all possible
chord types with three notes (triads).

Chord detection accuracy can be further improved using
knowledge of the song’s key. We assume that songs use a single
key throughout the entire song. According to music theory,
there are 12 major keys and 12 minor keys. Each key has a
unique combination of chords. The key detection computes co-
sine similarity measure between all the detected chords and the
chords in each of the 12 major/minor keys. The key detection
returns the key that is most consistent with the histogram of
the detected chords [21]. Using the derived key, we can filter
out incorrectly detected chords that are inconsistent with the
key, increasing the accuracy of the chord detector from 48.1%
(without key filtering) to 63.2% (with filtering). As highlighted
earlier, chord changes in music are more likely to occur at
the beginning of the bar (strong beat 1). Thus, within the bar,
neighboring chords are most often identical. We coerce chords
at consecutive IBIs to be consistent with one another, to smooth
and filter the chord detection results, as shown in Fig. 4. For
beat , we look at the detected chords in beat and beat

. If the detected chords in these adjacent beats are the same,
we assign the chord at beat to be same chord as its neighbors.

The bar boundaries are then identified as follows: Every beat
location could be a possible measure boundary. This set is fur-
ther refined by identifying only those beat locations that have
the same chord in four consecutive beat boundaries. This fol-
lows from our premise that chord changes are likely to occur
at the beginning of the bar. However inaccuracies in chord de-
tection may lead to incorrect detection of bar boundaries. We
thus compute all possible patterns of these beats with spacing
in multiples of four. The longest pattern is selected as the bar
boundary and all the missing bar boundaries are interpolated. In
prior work [21], it has been highlighted that the beat detection
technique used does not perform very well for drumless music
signals since the onset detector has been optimized to detect the
onset of percussive events. Additionally, the system interpolates
missing beats, thus assuming that there is no break in the inter-
beat-interval structure throughout the length of the song. This
assumption would however not hold in cases where there is a
rest in the music which does not correspond to exactly a few
bars. This can often be seen in expressive performances. Thus,
for the dataset used, the accuracy of the beat detection is a little
less than 90%. Failure of the beat detection would have a direct
impact on the accuracy of the rhythm detection. The rhythm de-
tection has, however, been observed to be more robust to low
chord detection accuracy, achieving a net accuracy of around
84%.

B. Chorus Detection

LyricAlly implements a repetition based chorus detection al-
gorithm adapted from previous work by Goto [9]. This method
defines a chorus as a section in the input that is most often re-
peated. In practice, determining the chorus section is difficult as
choruses are not strictly identical and the length of the chorus is
not known. To counter the first difficulty, chroma vectors are used
as the representation for repetition detection as they are largely
robust to variations caused by using different instruments to carry
the same melody. The added difficulty of key modulation in cho-
ruses is also addressed by using chroma vectors—by looking for
shifts of the same chroma patterns up or down.

A key difference in our work is in computing chroma vectors
only per beat rather than per frame. In the original method spec-
ified by Goto, 4096-sample frames are used as time units with
1280-sample shifts between two consecutive frames (around
30-ms frames). In contrast, we simplify the representation using
the IBI as the time unit. On average this calculates over 90%
fewer chroma vectors than the original algorithm, while main-
taining similar accuracy. Since chorus detection does exhaus-
tive pairwise comparison, its complexity is , resulting in
a total savings of around 98% over the original algorithm. Fig. 5
illustrates automatic detection results on 25 Minutes, in which
the two choruses and outro (the long, textured box at the end)
have been detected and labeled.

As the focus of this component’s implementation centered on
scalability, we have yet to evaluate this component with respect
to accuracy on the dataset. However, as it performs identically to
earlier work by Goto, we assume that our component’s accuracy
is similar to the 80% that he reported [9].



342 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 2, FEBRUARY 2008

Fig. 5. (a) Waveform of the song 25 Minutes. (b) Manually annotated chorus
sections. (c) Automatically detected chorus sections.

C. Vocal Detection

LyricAlly equates finding vocal segments with classifying
each time unit of the song (IBIs) as either vocal or nonvocal.
Similar to much work in speech recognition, we employ standard
hidden Markov models (HMMs) for classification [2], [3], [23].
For example, a basic approach employs two HMMs, one each for
the vocal and nonvocal classes. Given an input, the model with
the lower perplexity is considered to have generated the input.

In contrast to this conventional HMM training method, we
create multiple HMM models (referred to as multimodel HMM
or MM-HMM) to represent the vocal and nonvocal classes, as
we feel a single model for each class does not accurately re-
flect the ground truth. For example, it is immediately obvious
that the spectral characteristics of pure vocals and vocals with
instruments are different, although both should be classified as
having vocals.

We extract features based on the energy distribution in dif-
ferent frequency bands [19] to differentiate vocal from nonvocal
segments, using the interbeat interval as the unit time frame. Fi-
nally, we also employ model adaptation which tunes the baseline
HMMs to the specific input song, further increasing accuracy.

1) Multimodel HMM for Vocal Segment Classification: We
use a MM-HMM framework specifically to capture the intra-
song and intersong signal variations. Section types often can
account for a signal’s intrasong variations. For example, signal
strength usually varies among the different section types in pop-
ular songs. From our observations, the signal strength of intros
is lower than that of verses and choruses. Choruses are usu-
ally stronger in comparison with verses since they may have
more complex drums, additional percussion, fuller string ar-
rangement, or an additional melody line [29]. Bridges usually
have lighter arrangement than choruses and have stronger ar-
rangement than verses. Outros may repeat vocal phrases from
the chorus. Intersong signal variations we feel are harder to
quantify. In LyricAlly, we introduce the usage of tempo and
loudness features to model intersong variation, which we have
observed as good distinguishing features on our training dataset.

Our MM-HMM vocal and nonvocal classes are thus charac-
terized as separate models that differ with respect to these di-
mensions: section type, male/female vocals, and tempo/loud-
ness. The training data (vocal or nonvocal segments) is manually
labeled based on the section type (three types: chorus, verse, or
other), the sex of the singer (two types), and classified with re-
spect to tempo and loudness (four types). In this way, we build

Fig. 6. Multimodel HMM configuration.

Fig. 7. Block diagram of the vocal detection component, featuring adaptation
and segmentation processes.

TABLE I
AVERAGE VOCAL/NONVOCAL MISCLASSIFICATION ERROR RATES

HMMs for the vocal class and 24 HMMs for the
nonvocal class. This framework is illustrated in Fig. 6. Each of
the 48 HMMs is trained using standard subband-based log fre-
quency power coefficients (LFPCs) as feature vectors. We use
an ergodic HMM topology, using forward–backward to estimate
transition parameters for each of the vocal/nonvocal models.

2) Adapting HMMs Using Bootstrapping: Tempo, timbre,
and loudness are the song specific characteristics. These char-
acteristics differ among songs. If we can create a vocal detector
that learns the characteristics of the vocals and instruments of a
particular song, we believe higher vocal detection accuracy can
be achieved. We propose an adaptation method that tailors the
baseline models towards song-specific vocal and nonvocal char-
acteristics, inspired by [23]. The original work in [23] requires
human annotated vocal and nonvocal segments (bootstrapped
samples) of every test song to build song-specific vocal and non-
vocal models and also requires having a number of samples for
adaptation.

To circumvent the need of human annotation, we explore a
three-step semiautomatic approach, as shown in Fig. 7.

• Segment a test song into vocals and nonvocals IBIs (boot-
strapped samples) using MM-HMM training method.

• Use these bootstrapped samples to build a song-specific
vocal and nonvocal models (adapted HMM models) for
each individual test song. The adaptation process modifies
a basic two-class HMM classifier.

• Finally, perform a second round of vocal detection using
the adapted HMM.

This adaptation process is similar to the unsupervised
acoustic segment modeling approach [13] in speech recognition.

3) Evaluation: We conducted a comparative experiment
using the basic HMM, MM-HMM, and adapted HMM. We
also compared the performance of our HMM-based methods
against a SVM-based classification method using the same
audio features.

The average vocal/nonvocal misclassification error rates are
presented in Table I which shows that the basic HMM which in-
corporates contextual information reduces error over the base-
line SVM classifier by 2.4%. Within HMM-based approaches,
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Fig. 8. Vocal detection results. (a) The segment (Verse 1, 23 s) of 25 Minutes.
(b) Manually annotated vocal segments. (c) Automatically detected vocal seg-
ments.

the MM-HMM outperforms the basic HMM training approach,
while adaptation further reduces error rate. Note that error re-
duction of the adapted HMM over the MM-HMM is not signif-
icant, but that the combined MM-HMM and model adaptation
reduce vocal/nonvocal classification error significantly over the
basic approach (28.2% to 24.8%). Fig. 8 shows a sample result
of manually and automatically detected vocal segments.

We have examined the source of errors in our vocal detection
component. In songs where the background instrumental sound
dominates vocals, detection error rates increase. Also, we note
that the adaptation process improves performance only when the
basic HMM performs relatively well. The fact that adaptation
improves performance gives evidence that our strategic appli-
cation of vocal detection is quite good.

V. LYRIC PROCESSING

Input song lyrics are processed by a text analysis component
that estimates the duration of the lyrics, first producing a rough
estimate for each section, then refines these to line-level dura-
tions using tempo information derived from hierarchical rhythm
preprocessing. The text processor makes duration estimations
based on supervised training. In training, we learn durations of
phonemes in singing voice. In testing, we decompose lyrics into
phonemes and use the learned phoneme durations to calculate a
duration estimate.

We estimate phoneme length from singing training data. As
phoneme durations in song and speech differ, we do not use in-
formation from speech recognizers or synthesizers. Ideally, we
should measure the lengths of sung phonemes directly, but gath-
ering a large set of such measurements is tedious and difficult,
as individual phoneme durations are short. We choose instead
to manually annotate a large dataset at a coarser grained level
and interpolate individual phoneme durations. In our scheme,
human annotators delimit the start and end times for entire lines
of sung lyrics. These annotations effectively give the duration
of each line of song. We use dictionary lookup in the CMU
phoneme dictionary [30] to map the words in each sung line
to an inventory of 37 phonemes. We uniformly parcel the du-
ration of a line among the phonemes which make up the line.
After processing many lyric lines in this manner, we acquire a
set of different duration estimates for each of the 37 phonemes.
For simplicity, we view this set of estimates as observed sam-
ples of an underlying Gaussian distribution. We thus calculate
the mean and variance of the samples to use in testing.

In testing, the component first estimates the duration for each
section of a test song and later refines the estimates to each

Fig. 9. Finding ending offsets in 25 Minutes. (a) Case where the bar length
overrides the initial estimate. (b) Case in which the initial estimate is used.

TABLE II
ERROR RATES FOR THE TEXT-BASED DURATION ESTIMATION COMPONENT

section’s individual lyric lines. It first decomposes a section to
its component inventory of phonemes by the same dictionary
lookup process, as done in training. The estimate is the sum of
the mean duration estimates for the individual phonemes in the
section. Note that our approximations model the section as a set
of phonemes being sung in sequence without pauses.

We use the same process to derive initial estimates for lines
based on their phoneme inventory. Once the tempo of the song
is known from the rhythm analysis, we refine these durations
using music knowledge. As the input is a song in common time,
we assume that lines should have a duration that is an integer
multiple of 1/2, 1, 2, or 4 bars. We thus round the initial estimates
to an integer multiple of the bar. We then calculate the majority
bars per line for each song, and force other line durations within
the song to be either 1/2 or 2 times this value. For example, songs
in which most lines take 2 bars of time may have some lines that
correspond to 1 or 4 bars.

The text model developed thus far assumes that lyrics are
sung from the beginning of the bar until the end of the bar,
as shown in line (a) of Fig. 9. When lyrics are actually shorter
than the bar length, there is often a pause in which vocals rest to
breathe before singing the subsequent line, as shown in line (b)
of Fig. 9. To model this correctly, we first calculate the ending
time for each line by summing up constituent phoneme dura-
tions as described above. Then, we check the following condi-
tions. For lines that are estimated to be shorter and were rounded
up by the rounding process, vocals are assumed to rest before the
start of the following line. In these cases, the initial estimate is
used as the ending offset. For lines that are initially estimated
to be too long and were rounded down in the process, we pre-
dict that the singing leads from one line directly into the next,
and that the ending offset is the same as the duration. The ending
point of the line is thus given by starting point plus ending offset.

Table II shows the error rates of the duration subsystem
for both sections and lines, in tenfold cross validation on our
dataset. The line estimates given are after the tempo based cor-
rection. Any duration within two standard deviations ( 95
confidence interval) of the actual duration is deemed as correct.

VI. SYSTEM INTEGRATION

With the component results calculated, we proceed to inte-
grate the evidence from the audio and text components. Note
that in our current implementation, LyricAlly only aligns the
main sections of the song: namely, the two verses and the two
choruses; vocals in the bridge and outro are not aligned.
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Fig. 10. Four sections: Verse (V ), Chorus (C ); Verse (V ); Chorus (C )
and four gaps: G , G , G , G in a popular song. G is the Intro before start
of V . G , G , G are the gaps between the sections. Bridges and Outros are
not currently aligned by LyricAlly.

Fig. 11. Duration distributions of (a) nonvocal gaps, (b) different sections of
the popular songs with V � C � V � C � B �O structure. X-axis rep-
resents duration in bars. Note that gap durations have a smaller range compared
to section durations.

Our algorithm is heuristically driven and logically consists of
two steps:

• section-level alignment, which uses the chorus and vocal
detectors outputs to demarcate the section boundaries;

• line-level alignment, which uses the vocal detector, line
duration estimation, and calculated section boundaries as
input to demarcate individual line boundaries.

A. Section-Level Alignment

We observe that the audio processing components have dif-
ferent levels of accuracy. As the repetition-based chorus de-
tector is more accurate than the vocal detector, we use this com-
ponent as an anchor to determine the remaining alignment. The
chorus detector provides the start and end points for both cho-
ruses in the input. Section-level alignment is thus equivalent to
finding the boundaries of the remaining two verse sections.

Recall that the input songs to LyricAlly must have a struc-
ture consisting of Verse , Chorus , Verse , and
Chorus sections. A dual representation of this structure fo-
cuses on the instrumental gaps, rather than the sung sections. We
denote this representation with gaps , , , and , where
gaps occur between the beginning of the song and the first verse

and between each of the four sections - , as illus-
trated in Fig. 10. From an analysis of the songs in our testbed,
we observe that the section durations are highly variable, but
that gap durations are more stable and have a smaller range (gap
lengths are usually small multiples of the bar, whereas section
lengths are usually much longer).

The start and end points for the verse sections are bounded
by the choruses and the gap length distributions. For example,
Verse must start after the beginning of the song but before

bars (as the maximum gap length observed for is
ten bars, as shown in line (a) of Fig. 11), and Verse must start
after the end of Chorus but before bars (the
maximum gap length for ).

Fig. 12. Forward search in Gap using VIDR to locate the start of Verse . Win-
dows are grown by four IBIs (one bar) at each iteration.

Let us consider the specific process of detecting the start of
Verse . We search forward within the window bars
(the window which covers the gap ) starting from the first IBI
for the most likely point where Verse starts using the vocal de-
tector. The intuition is that gaps contain only instrumental sound
while Verse contains vocal singing; we reduce the problem into
finding a point where vocals are most likely to start. If the vocal
detector had high accuracy, we could search for the first inter-
beat interval classified as vocal, and equate it with the start of
the verse. However, the vocal detector is inaccurate and some-
times reports spurious results, necessitating postprocessing.

We define the vocal to instrumental duration ratio (VIDR)
metric to assist with this postprocessing. It is defined as the ratio
of vocal to instrument probability in a time window

VIDR
number of vocal IBIs in

number of non - vocal IBIs in

where IBI is the interbeat interval for which we classify as vocal
or nonvocal. We calculate the VIDR for a series of time win-
dows, anchored at the start point of the search and growing to-
wards the end point. Specifically, we start with a length of one
bar (four IBIs), and over ten iterations, grow the window by one
bar each time, in the direction of the end point. The change in
VIDR over a growing window of IBIs indicates the growing or
diminishing presence of vocals. Normally, when the window is
in a gap, the VIDR is low, close to 0. When the window grad-
ually moves into the verse and IBIs are classified as vocals, the
VIDR increases. We mark the window where the VIDR starts to
increase as the verse starting point.

Fig. 12 plots VIDR as it changes over the ten windows,
showing that the VIDR starts to increase after the fourth
window. We make two observations: first, the beginning of
the verse is characterized by the strong presence of vocals that
causes a rise in the VIDR over subsequent windows; second,
as the vocal detector may erroneously detect vocal segments
within the gap (as in the first window), the beginning of the
verse may also be marked by a decline in VIDR over previous
windows. We thus use the global minimum in the VIDR curve
as the start point. Note that we only calculate VIDR at bar
boundaries as we assume vocals start and end at bar boundaries
as well.

We conduct a similar forward search to find the start point
for using and the end point of . In a similar manner,
backward searches are conducted to determine the end points
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Fig. 13. Backward search to locate the ending of a verse.

Fig. 14. (a) Grouping, (b) partitioning, and (c) forced alignment. White rectan-
gles represent vocal segments (from vocal detector), and black rectangles rep-
resent durations of lyric lines (given by text processor).

of verse sections, as shown in Fig. 13. Once both starting and
ending points of sections are determined, we calculate section
lengths which are used in line level alignment, described next.

B. Line-Level Alignment

In line-level alignment, we combine the line duration esti-
mates from text processing with vocal detection results. The text
processor is fairly accurate in estimating line duration but is in-
capable of providing starting point of a line. The vocal detector
is able to detect the presence of vocals in the audio—which can
be used as evidence of line starting points—but does not accu-
rately determine line durations. These complementary strengths
are combined in line-level alignment.

The objective of line alignment is to localize each lyric line
within the section start and end points given by section align-
ment. We take the number of lines given by the text lyrics as
the target number of vocal segments to find in the audio. As
the vocal detection output may not match the target number,
we force align the vocal detection output to map one-to-one
to the number of lyric lines when necessary. When the number
of vocal segments is greater or less than the target, we need to
perform grouping or partitioning of the vocal segments. This
process is illustrated in Fig. 14.

First, we normalize both duration times from the vocal detec-
tion and the text processing section results to sum to 1. Next,
we consider different ways to partition or group detected vocal
segments to match the target number of lyric lines. We consider
a partition or a grouping optimal when the resulting normalized
vocal segment durations best match the normalized text dura-
tions. This is calculated by minimizing the absolute difference
between each line’s text duration and its corresponding vocal
segment duration, while constraining the number of edits made
(grouping or partitioning).

The system then combines both the text and vocal duration
estimates to output a single, final estimate of line duration. We
start by calculating the final section duration as

Fig. 15. Line segment alignment for (top) a verse section and (bottom) a chorus
section.

Here, is optimized empirically such that the total duration
of the vocal segments within each section is closest to the section
duration estimates, calculated in the previous section. The final
duration of individual lines are calculated as a ratio of
this section length, specifically

where is total number of lines in the section. Note that only
the text estimates for the line are used explicitly in the formula,
as we have them to be more reliable. Example results of our
automatic synchronization for sample lines in the chorus and
verse are shown in Fig. 15.

VII. EVALUATION

We have evaluated LyricAlly on our testbed of 20 popular
songs, for which we manually annotated the songs with starting
and ending timestamps of each lyric line. When possible, we
observe training and testing separation by using leave-one-out
cross-validation (i.e., train on 19 songs’ data, test on 1, repeat 20
times, and average the results). Past work used random sampling
to compute these alignment errors. In contrast, we evaluate our
system over our entire testbed.

Evaluation in past audio alignment work [5] computes an
alignment error using the mean and standard deviation of the
error in estimating the start point and duration, given in sec-
onds. We note that error given in seconds may not be ideal, as
a one-second error may be perceptually different in songs with
different tempos. We suggest measuring error in terms of bars as
a more appropriate metric. We show alignment error measured
in bars in Fig. 16 for both section and line-level alignments.

In analyzing these results, we see that starting point calcu-
lation is more difficult than duration estimation for individual
lines. This is likely because the starting point is derived purely
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Fig. 16. Section- and line-level alignment error in bars.

Fig. 17. Absolute alignment error over all lines (n = 565) in the dataset. The
number of songs where the specific component fails is indicated in parentheses.

by audio processing, whereas the text processing assists in the
duration estimation. We also see that durations of entire sections
are more variable than single lines, as sections are larger units.
On the other hand, the performance of starting point estimation
does not vary significantly between lines and sections.

A. Error Analysis of Individual Components

As LyricAlly is a prototype based on an integration of sepa-
rate components, we also want to identify critical points in the
system. Which component is the bottleneck in system perfor-
mance? Does a specific component contribute more error than
others in start point localization or in estimating duration?

To answer these questions, we need to analyze each compo-
nent’s contribution to the system. We reanalyze our system’s
performance by categorizing cases in which one component

fails. As expected, the system works best when all components
perform well, but performance degrades gracefully when cer-
tain components fail.

Different components are responsible for different types of
errors. If we classify starting point and duration calculations as
either good or poor, then we have four possible scenarios for a
song’s alignment, as exemplified in Fig. 18.

Failure of the rhythm detector affects all components as esti-
mates are rounded to the nearest bar, but the effect is limited to
beat length over the base error (row 1 in Fig. 17). The text pro-
cessor is only used to calculate durations, and its failure leads to
less accurate line level duration, as in line (b) of Fig. 18. Failure
of the chorus detection causes the starting point anchor of chorus
sections to be lost, resulting in cases such as line (c) of Fig. 18.
When the vocal detector fails, both starting point and duration
mismatches can occur, as shown in line (d) of Fig. 18.

VIII. DISCUSSION

These results indicate that each component contributes a per-
formance gain in the overall system. Excluding any component
degrades performance. If we weight starting point and duration
errors equally, and equate minimizing the sum of squares of the
per-line error as the performance measure, we can rank the com-
ponents in decreasing order of criticality

Vocal Measure Chorus Text

We believe that errors in starting point and duration are likely
to be perceived differently. In specific, starting point errors are
more likely to cause difficulties for karaoke applications in com-
parison to duration errors. When we weight start point estima-
tion five times more important than duration estimation, a dif-
ferent ranking emerges

Chorus Vocal Text Measure

We believe that this is a more realistic ranking of the impor-
tance of each of the components. As the components contribute
differently to the calculation of start point and duration calcula-
tion, their effect on the overall system is different. As can be seen
by our integration strategy, the accurate detection and alignment
of choruses is paramount as it provides an anchor for subsequent
verse alignment.
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Fig. 18. Alignment between manual (upper line) and automatic timings (lower line). (a) Perfect alignment. (b) Duration mismatch. (c) Starting point mismatch.
(d) Both duration and starting point mismatches.

While we have emphasized error analysis in our evaluation,
it is not the only criteria in assessing performance. Efficiency
is also paramount, especially for applications that may be de-
ployed in mobile devices or in real-time applications. As the text
processing of the dataset requires magnitudes less computation
to perform as compared to the audio components, current work
on LyricAlly hopes to push the use of such efficiently obtain-
able information earlier on in the architecture to achieve faster
alignment processing.

It should be noted that we have adopted strong model assump-
tions to simplify implementation. We believe that the proposed
approach can generalize to other scenarios, perhaps by deter-
mining the song structure first by preprocessing the audio and
lyrics. These model assumptions are further enhanced by the
use of heuristics based on music knowledge. We adopt this to
correct the unsatisfactory performance of singing voice sepa-
ration. In the future, when singing voice separation technology
matures, lyric/signal alignment may be solved without the need
for rhythm and chorus information.

IX. CONCLUSION AND FUTURE WORK

Creating a usable music library requires addressing the de-
scription, representation, organization, and use of music infor-
mation [17]. A single song can be manifested in a range of sym-
bolic (e.g., score, MIDI, and lyrics) and audio formats (e.g.,
MP3). Currently, audio and symbolic data formats for a single
song exist as separate files, typically without cross-references
to each other [17]. An alignment of these symbolic and audio
representations is definitely meaningful but is usually done in a
manual, time-consuming process. We have pursued the alterna-
tive of automatic alignment for audio data and text lyrics, in the
hopes of providing karaoke-type services with popular music
recording.

To address this goal, we have developed LyricAlly, a mul-
timodal approach to automate the alignment of text lyrics with
acoustic musical signals. It incorporates state-of-the-art compo-
nents for music understanding for rhythm, chorus, and singing
voice detection. We leverage text processing to add constraints
to the audio processing, pruning unnecessary computation, and
creating rough estimates for duration, which are refined by the
audio processing. LyricAlly is a case study that demonstrates

that two modalities are better than one, and furthermore, demon-
strates the need for processing of acoustic signals on multiple
levels.

Our project has lead to several innovations in combined audio
and text processing. In the course of developing LyricAlly, we
have demonstrated a new chord detection algorithm and ap-
plied it to hierarchical rhythm detection. We capitalize on the
rhythm structure preprocessing to improve the accuracy and ef-
ficiency of all components in LyricAlly. This is most effectively
demonstrated in the chorus detection where a computational
efficiency of 98% is gained over the previous state-of-the-art
while maintaining similar accuracy. We have also developed
a singing voice detection algorithm which combines multiple
HMM models with bootstrapping to achieve higher accuracy. In
our text processing models, we use a phoneme duration model
based on singing voice to predict the duration of sections and
lines of lyrics.

To integrate the system, we have viewed the problem as a
two-stage forced alignment problem. A key observation is that
each component gives different evidence for alignment and at
different accuracy levels. In LyricAlly’s architecture, we cap-
italize on this as much as possible. For example, the repeti-
tion-based chorus detection is quite accurate and serves to an-
chor the alignment process for verses. As such, we can limit
the use of the more computationally intensive vocal detection to
places where it is necessary; in particular, in a neighborhood of
start time candidates of verses. Similarly, text processing yields
a more accurate description and duration estimation of lyric
lines—a constraint that is used to force align and filter the de-
tected vocal segments.

LyricAlly is currently limited to songs of a limited structure
and meter. Our hierarchical rhythm detector is limited to the
common 4/4 time signature. Integration currently only aligns
choruses and verses of songs. Furthermore, the chorus detector
is constrained to produce exactly two chorus detections as this
is the input specification to LyricAlly. In vocal detection, we
could consider an implementation using mixture modeling or
classifiers such as neural networks. These are important areas
in the audio processing component for future work. These lim-
itations are used to constrain the audio processing and achieve
more accurate results: for example, knowing that there are two
choruses in a song instead of three helps the chorus detector
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prune inconsistent hypotheses. In this paper, we have presented
LyricAlly as a holistic system. However, its components differ
in terms of their individual limitations. For example, the text
processing component can process input lyrics of arbitrary
structure (i.e., songs with more or less chorus/verses, with
intros, bridges and outros). Similarly, the chorus detector can
be constrained to find additional choruses or outros, where the
constraints may be provided by text processing. As LyricAlly
is scaled up to handle more complex song structures, we feel
that such synergies between text and audio processing will play
a larger role.
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