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ABSTRACT
The combination of heterogeneous knowledge sources has
been widely regarded as an effective approach to boost re-
trieval accuracy in many information retrieval domains. Whi-
le various technologies have been recently developed for in-
formation retrieval, multimodal music search has not kept
pace with the enormous growth of data on the Internet. In
this paper, we study the problem of integrating multiple on-
line information sources to conduct effective query depen-
dent fusion (QDF) of multiple search experts for music re-
trieval. We have developed a novel framework to construct
a knowledge space of users’ information need from online
folksonomy data. With this innovation, a large number of
comprehensive queries can be automatically constructed to
train a better generalized QDF system against unseen user
queries. In addition, our framework models QDF problem
by regression of the optimal combination strategy on a query.
Distinguished from the previous approaches, the regression
model of QDF (RQDF) offers superior modeling capabil-
ity with less constraints and more efficient computation.
To validate our approach, a large scale test collection has
been collected from different online sources, such as Last.fm,
Wikipedia, and YouTube. All test data will be released to
the public for better research synergy in multimodal music
search. Our performance study indicates that the accuracy,
efficiency, and robustness of the multimodal music search
can be improved significantly by the proposed folksonomy-
RQDF approach. In addition, since no human involvement
is required to collect training examples, our approach offers
great feasibility and practicality in system development.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation, Search process; H.5.5 [Sound and Music Com-
puting]: Systems

General Terms
Algorithms, Design, Experimentation
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1. INTRODUCTION
As the amount of information on the Internet grows dra-

matically, the information retrieval (IR) technology advances
by combining multiple complementary sources to better sat-
isfy users’ information need. Particularly, multimodal based
scheme is becoming one of the most important trends in me-
dia (such as audio, image and video) retrieval today. It holds
great potential to be applied in many different applications
including: web search where the relevance of a web page to
a text query is scored based on its body text, anchor text,
and its linking relation to other pages [8]; multimedia search
where the textual metadata of a video, a image, or a music
track (e.g., titles, tags, descriptions) and their content fea-
tures (e.g., motion intensity, texture, timbre) are combined
to rank the media documents [27, 16, 4]; and meta-search
where multiple ranked lists from different search engines are
fused into a more relevant one [21]. The development of
advanced fusion techniques enables IR to fully unleash the
power of information from different modalities. Leveraging
this technology will allow retrieval systems to deliver better
quality results over a wide range of queries.

Currently, the most simple and efficient fusion approach
is Query Independent Fusion (QIF), which applies the same
combination strategy in search to any type of queries. The
disadvantage of this approach is its low query accuracy and
poor scalability to cover the high complexity of various query
topics. Research shows that different underlying search mod-
alities could provide different levels of contribution to the
final performance of a retrieval process. This observation
suggests the superiority of Query Dependent Fusion (QDF)
strategies, where the combination strategy of a search can
be adjusted based on user’s search intention. The desirable
solution of QDF is to derive the optimal combination strat-
egy for each possible query of a targeted application. While
QDF achieves better performance against QIF, existing ap-
proaches still suffer from two main weaknesses.

Firstly, previous QDF approaches [3, 27, 10, 26, 25, 9]
relied on manually designed queries in the TRECVID test
collections [23] as the training samples. Due to the high la-
bor cost in designing query topics, only a small number of
queries (∼100) were available for training and evaluating a
system which is to be used against a large number of unseen
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Figure 1: The framework of regression-on-folksonomy based query-dependent fusion for effective multimodal search.

user queries. This approach is less practical for two reasons:
1) it increases labor cost greatly in designing queries during
the system development; 2) it also significantly limits the
knowledge scope of the training queries, which may result
in poor generalization performance when predicting combi-
nation strategies on unseen user queries.

Secondly, many existing QDF schemes [3, 27, 10, 26, 25,
9] predicted the combination strategy for each query by
following the procedure of query feature extraction, query
matching, and combination weight optimization. The query
matching step may seem redundant and less efficient, if it is
possible to learn a model which directly predicts the op-
timal combination strategy from certain features of each
query. The direct prediction of combination strategy may
also lessen the model constraints imposed by the explicit
query matching. In addition, it would be important to
achieve an efficient fusion and online learning process to ac-
commodate and learn from a large number of unseen user
queries simultaneously. Unfortunately, no existing study in-
vestigates how to improve the efficiency and the adaptive
learning aspect of QDF for such purposes.

Motivated by the above observations, this paper studies
the problem of how to effectively combine heterogeneous
knowledge sources to facilitate accurate and efficient QDF
for multimodal music search. We design and implement a
novel framework called “folksonomy-RQDF”whose architec-
ture is illustrated in Fig. 1. Distinguished from the previous
QDF approaches only considering very limited amount of
knowledge, our approach contributes to QDF research for
multimodal music search in the following aspects.

A comprehensive knowledge base extracted from
the World Wide Web - With the phenomenal growth of
social network sites, such as Last.fm, MySpace, YouTube,
and Wikipedia,1 researchers have noticed that search queries
and online tags created by a common user population are
strongly coupled in expressing users’ information need [13].
Researchers also explored the possibility to construct an on-
tology of the knowledge space of users’ information need
from folksonomy data [14]. In this work, we follow those
beliefs and explore the possibility of automatically forming
user queries based on the online folksonomy data. Those
automatically-generated queries can be used as comprehen-
sive training and evaluation data in the QDF system.

1
http://www.last.fm, http://www.myspace.com, http://www.youtube.

com, http://www.wikipedia.com,

Automatic training example generation - This ap-
proach saves a large amount of human labor in forming
training examples. It enables the training of the QDF sys-
tem on a comparable knowledge scope to the potential un-
seen queries, which will significantly improve the general-
ization performance of the system against unseen queries.
As shown in our music search experiments in Section 6, the
retrieval accuracy can be boosted by a statistically signifi-
cant amount when more automatically-generated queries are
used for training.

Advanced regression model for effective QDF - In
this study, the QDF process is modeled as a regression prob-
lem from a query to its combination strategy. This concept
not only removes the model constraints of the query match-
ing step for better effectiveness, but also eliminates the re-
dundant computation during the online prediction of the
combination strategy. It also simplifies the query feature
extraction by employing a concise and efficient document
vector [12] model instead of using complex natural language
processing (NLP) techniques in the previous QDF methods.
In addition, we propose an efficient algorithm to learn a Sup-
port Vector Regression model, whose run-time has inverse
dependence on the size of the training set.

A comprehensive experimental study shows that the pro-
posed framework enjoys superior retrieval accuracy, efficiency
(in both offline training and online prediction), and robust-
ness in the multimodal music search application compared
with the previous QDF methods. Consequently, those ad-
vantages enable our approach to offer better practicality for
the system development in many real-life applications.

The paper is organized as follows. Section 2 reviews the
research development of multimodal fusion in the IR field.
Section 3 describes the construction of a social query space
from online folksonomy data and the automatic formation of
social queries . Section 4 formulates the proposed regression
model for QDF. Section 5 and 6 detail the experimental
setup and results followed by our conclusion in Section 7.

2. RELATED WORK
Multimodal fusion is an important research problem in in-

formation retrieval and multimedia systems. Existing tech-
niques can be categorized into: query-independent fusion
(QIF) and query-dependent fusion (QDF) schemes. In this
section, we review the two schemes and their advantages.

QIF approaches apply the same combination strategy of
multiple search experts to all queries. It assumes that var-
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Table 1: The comparison of different fusion schemes for multimodal search.

Scheme
Query

Formation
Query Feature

Query Matching Weight Op-
timization

Tested
App.Model Procedure

QIF

Manually
design a small
number
(∼ 100) of
queries.

N.A. N.A. N.A. N.A.
Text/video
search, etc.

CQDF-
Single

Semantic concepts extracted
from text by NLP techniques.
Features extracted from media
(video or image).

Designed or auto-
clustered classes.

Classify a query to a
single class.

Compute the
weights of the
best MAP on
the matched
queries.

Video
search.

CQDF-
Mixture

Auto-discovered
classes by pLQA.

Match a query to a
mixture of classes.

Video/meta-
search.

QDF-
KNN

The raw training
queries.

Match a query to
the first K nearest
neighbors.

Video
search.

Folkson-
omy-
RQDF

Automatically
form millions
of queries.

The document vector [12] of
text. Features extracted from
media (audio).

A regression model. N.A.
Directly
predict the
weights.

Music
search.

ious modalities enjoy a fixed contribution to the retrieval
performance regardless of the actual query topics. One typ-
ical QIF method was proposed by Shaw and Fox for text
retrieval [21]. The main advantage of QIF methods is their
computational efficiency and simplicity. However, it does
not provide adaptive fusion solutions to varied query topics
of users’ information need. QIF methods suffer from the
fact that the performance of an individual modality varies
considerably for different query topics.

In this case, QDF becomes a natural solution. It offers
better adaptiveness for various query types. In the meth-
ods [27, 3], the training queries were manually designed by
domain experts. A limited number of query-classes were
manually discovered based on the query topics with the hope
that all queries in a class share similar combination weights.
This approach suffers from two main disadvantages. Firstly,
it is highly complex to determine whether the actual un-
derlying combination weights of the queries in each class
are similar. In addition, domain knowledge and human ef-
forts are needed to define meaningful classes. In [10, 9],
a clustering approach was proposed to automatically dis-
cover classes based on the manually designed query pool of
TRECVID [23]. All queries in a query class share more sim-
ilar combination weights compared to the approaches with
manually discovered classes. However, a common combina-
tion strategy is used for all user queries that are classified
into a class regardless of the query topic and combination-
weight difference within a class. These class-based query
dependent fusion approaches with a single class to repre-
sent user queries are termed “CQDF-Single” in this paper.
To achieve better fusion effectiveness, Yan et al. proposed
the probabilistic latent query analysis (pLQA) [26]. The
key innovation is that combination weights of an incoming
query can be reconstructed by a mixture of query classes
(termed “CQDF-Mixture”). The scheme has been evalu-
ated in video retrieval over TRECVID’02∼’05 collections
and meta-search on the TREC-8 collection. This approach
offers better resolution in a query-to-combination-weights
mapping. However, its estimation model assumes that dif-
ferent queries in each query class share the same combina-
tion weights. The latest QDF method proposed by Xie et
al. [25] represented a user query by the linear combination
of its first K nearest neighbors in the raw training query
set (termed “QDF-KNN”). This QDF model offers better
resolution from query-to-combination-weights mapping, but
suffers from high computational load of nearest neighbor
searching in a large training set.

A detailed comparison between previous multimodal fu-

sion methods and the proposed folksonomy-RQDF approach
is summarized in Table 1. We can see that the previous QDF
methods impose expensive human involvement in query or
class design which greatly limits their feasibility in real-life
applications. In addition, the previous QDF schemes are
mainly developed for text or video retrieval. To the best of
our knowledge, no scheme has been proposed or tested for
large-scale music information retrieval.

3. AUTOMATIC QUERY FORMATION
Due to human labor constraints, the previous QDF ap-

proaches [3, 27, 10, 26, 25, 9] relied on a small number
(∼100) of manually designed queries to train a query-to-
combination-weights mapping. The limited knowledge scope
of users’ information need represented by the few hand-
crafted queries greatly diminishes the generalization perfor-
mance of QDF systems against a large number of unseen
user queries issued from a much wider knowledge scope of
users’ information need.

To overcome this problem, we propose a method to auto-
matically form a large number (in millions) of queries from
readily available online folksonomy data. In order to sim-
ulate unseen user queries in a comprehensive manner, the
automatically-formed queries from folksonomy data (termed
“social queries”) should have the following properties:

P.1: Social queries cover a comparable knowledge scope of
the users’ information need in unseen user queries;

P.2: They have the same semantic structure as unseen user
queries;

P.3: They reveal similar distribution of unseen user queries
over various query topics.

In this section, we describe the automatic formation of so-
cial queries from folksonomy data with a case study in mul-
timodal music search domain. Validated in our experiments,
the formed social queries fulfilled the above properties and
contributed to the superior generalization performance of
the QDF system.

3.1 Folksonomies to Social Query Space
In [13], the authors suggested that searching and tagging

are dual activities governed by the information need of a
common user population, and it is reasonable to use tag data
to approximate user queries in analyzing user behaviors and
improving search accuracy. Therefore, by using the online
tag records (folksonomy) as the vocabulary in forming social
queries, P.1 of the formed queries will be preserved.

Based on the tag set of the folksonomy, the simplest way
to automatically form social queries is to randomly select a
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Figure 2: The semantic structure of the music social query space. The font size of a tag indicates its popularity on Last.fm.

Table 2: The contribution of each online resource in constructing the music social query space.
Resource Contribution Details

Last.fm, MyS-
pace, Wikipedia

Raw set of con-
cepts/tags

244 tags were collected for the genre dimension; 286 tags for the mood dimension; 454 tags (instru-
ment names) for the instrument dimension; and 13 tags for the vocalness dimension.

Google Spell checks N.A.

Wikipedia,
WordNet

Semantic source
for homonyms,
synonyms and
hyponyms

Wikipedia disambiguation pages were used for homonyms. Particular Wikipedia pages, like
“Genre#Music genres”, “List of musical instruments”, were used to find hyponyms. WordNet is used
to find synonyms and hyponyms. All labels were grouped into clusters: 8 clusters for genre, 4 clusters
for mood, 4 clusters for instrument, and 4 clusters for vocalness.

reasonable number of tags as a description of a user’s infor-
mation need and concatenate the tags together as a social
query. However, a set of plain tags does not suffice to gener-
ate meaningful user queries. Semantic structures or relations
among the tags are required to form semantically consistent
queries. For example, the query “Find me a happy and sad
song” would not be formed, if the antonym relationship is
established between the plain tags “happy” and “sad”.

Therefore, to form consistent queries, a semantic network
(ontology) needs to be established on top of the folksonomy
data in order to put logically founded constraints on the use
of the plain tags. Based on the modeling approach in [14],
a lightweight ontology can be constructed from the folkson-
omy data by folding the Actor-Concept-Instance (user-tag-
music item) model into a semantic network emerged from
either overlapping communities or overlapping sets of in-
stances. According to the integrated approach to turning
folksonomies into ontologies in [5], the lightweight ontology
can be further enriched by numerous online resources: 1)
lexical resources like dictionaries and Google2; 2) ontolo-
gies and semantic web resources, such as WordNet [15] and
Wikipedia. With the folksonomy data as the tag base and
the constructed ontology as the semantic structure, semanti-
cally consistent queries can be automatically formed, which
preserves P.2 of the formed social queries.

To further simulate the distribution of user queries over
different query topics, we introduce an additional property

2
http://www.google.com

for each tag, i.e., popularity. The popularity of a tag can
be implemented as the number of times it has been used
by an actor to tag an instance. Tag popularity indicates
the frequency that the information represented by the tag
is requested by users, which in turn indicates the inherent
distribution of a query topic. The social query space aug-
mented with tag popularities to represent the query topic
distribution preserves P.3 of the formed social queries.

Based on the above discussions, a social query space for
content-based multimodal music search was constructed us-
ing the folksonomy data of Last.fm, MySpace, and Wikipedia
plus the synonym and hyponym relations in WordNet. The
detailed contribution of each online resource in construct-
ing the social query space is listed in Table 2. A pictorial
representation of the social query space is shown in Fig. 2.
The tree structure represents the semantic relations between
tags, which serves as the logical constraints in forming con-
sistent social queries. As can be seen from the music social
query space, music content can be described from multiple
music dimensions, e.g., genre, mood, instrument, and vocal-
ness. In each dimension, people use different concepts/tags
to describe the music styles. The concepts in each music
dimension are further grouped into meaningful clusters.

3.2 Social Query Sampling
From the social query space, we need to further specify a

set of rules to sample consistent social queries in simulating
unseen user queries. The rules for the music social query
space are: 1) the query cannot be empty (at least one tag
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should be sampled); 2) the number of sampled tags should
be less than the number of keywords in a reasonable query
issued by human (set as 5 in this case study); and 3) no con-
flicting tags (tags from different clusters of the same music
dimension) should be sampled to form a single query.

Based on the above rules and the semantic structure of
the social query space, tags were sampled based on their
distribution to form a large number of social queries. Some
exemplar raw queries are “classical violin”, “happy female
country”, etc. By augmenting the raw queries with“Find me
the music with style” heading, social queries can be formed
to simulate unseen user queries in searching music docu-
ments with certain content styles. From the music social
query space, more than 448 million unique social queries
could be formed to cover a wide scope of unseen users’ in-
formation need in searching music tracks by their content
styles. These comprehensive social queries are used to train
and evaluate a better generalized the QDF system discussed
in the following sections.

4. REGRESSION MODEL FOR QDF
In this section, we propose a novel approach to model the

QDF problem by regression. In addition, we extend the ef-
ficient algorithm Pegasos [22] for learning binary-class Sup-
port Vector Machines (SVM) to its online regression version
(ORPegasos) for learning Support Vector Regression (SVR)
models. We also prove that ORPegasos enjoys same effi-
ciency property as the original Pegasos: its run-time has
inverse dependence on the training set size in learning a re-
gression model with the same generalization performance.

4.1 Model Definition
A textual user query can be modeled as a real vector q

by the document vector model (DV) [12] where an element
1 indicates the presence of a vocabulary word in the query
while an element 0 indicates its absence.3 The dimension
of q equals to the number of words in the vocabulary of all
possible queries.4 The combination strategy of the underly-
ing multiple search experts can be formulated as a weight
vector W = [W1, ..., WN ]T , where N is the number of search
experts, 0 ≤ Wj ≤ 1, and

∑
Wj = 1. The QDF problem

which derives the optimal W for each q can be modeled as
multiple regression of W on q: W = f(q). The multiple
regression model can be further decomposed into a series of
single regression models of Wj on q as: Wj = fj(q) [7]. Af-
ter normalization of Wj , each of the single regression models
can be used for deriving the combination weight of an un-
derlying search expert.

To realize a single regression model, we employ the Sup-
port Vector Regression (SVR) formulation [20], y = 〈w,x〉+
b, due to its superior generalization performance and simple
modeling approach. For clearer notation, we use x and y to
represent the query q and its combination weight Wj of a sin-
gle search expert respectively in the following text. Based on
a training set of query-weight pairs S = {(xi, yi)}m

i=1 (Sec-
tion 5.3 details the generation of the training data), SVR
derives its model w by minimizing the unconstrained em-

3
Bold letters notate column vectors. Italic letters (lower and upper

cases) notate scalars. Calligraphic upper case letters notate sets.
4
As noted, q is inevitably high dimensional and sparse (only a few

words in a query generate 1s in its DV). In practice, this does not
degrade the computational efficiency of our model. On the contrary,
its sparsity enables better generalization performance in a linear SVR
model, thus provides better efficiency by avoiding kernels.

pirical loss function plus a regularization term of w:

min
w

f(w) =
λ

2
||w||2 +

1

m

∑

(x,y)∈S
`(w; (x, y)), (1)

where

`(w; (x, y)) = max{0, |y − 〈w,x〉| − ε} (2)

is the ε-insensitive empirical loss function. The bias term,
b, in the original SVR problem is implicitly incorporated
in w, which amounts to adding one more constant feature
dimension with value 1 in each sample x.

In the following sections, we first derive a batch regres-
sion version of Pegasos (RPegasos) for learning SVR models
based on an initial training set of query data. Then, we ex-
tend RPegasos into its online version ORPegasos for online
learning based on unseen queries.

4.2 Regression Pegasos
Based on the ideas of Pegasos [22] for binary-class SVM,

the proposed RPegasos algorithm solves the SVR optimiza-
tion problem of Eq. (1) in a stochastic sub-gradient manner.
RPegasos performs T iterations with k samples randomly
chosen to calculate the sub-gradient at each iteration. Ini-
tially, w1 is set to the zero vector. On iteration t, we form
a set At ⊆ S of size k and Eq. (1) can be approximated by

f(w;At) =
λ

2
||w||2 +

1

k

∑

(x,y)∈At

`(w; (x, y)). (3)

Next, wt can be updated in two steps. The first is the
sub-gradient step formulated as:

wt+ 1
2

= wt − ηt5t, (4)

where

5t = λwt − 1

|At|
∑

(x,y)∈A+
t

sign(y − 〈wt,x〉)x (5)

is the sub-gradient of f(wt;At) at wt and ηt = 1/(λt) is
the learning rate. A+

t is formed by (x, y) ∈ At but with
non-zero loss. The second step is the projection of wt+ 1

2

onto the set B = {w : ||w|| ≤ 1/
√

λ}, in which the optimal
w resides. Therefore,

wt+1 = min{1, 1/(
√

λ ||wt+ 1
2
||)} wt+ 1

2
. (6)

Based on the representer theorem [20], the kernel version of
RPegasos can be obtained by representing wt =

∑
i∈It

αixi,

where It is a subset of {1, ..., m}, and calculating 〈wt,xt〉 =∑
i∈It

αi〈xi,xt〉 and ||wt||2 =
∑

i,j∈It
αiαj〈xi,xj〉.

4.3 Online Regression Pegasos
Now we can extend RPegasos into its online version OR-

Pegasos. The SVR will be dynamically adjusted according
to future user queries when predicting the optimal combina-
tion weights. Similar to the batch version, the ORPegasos
performs sub-gradient update and projection. However, the
main difference is the instantaneous loss function at the i-th
online sample (xi, yi), which can be defined by

f(w;xi, yi) =
λ

2
||w||2 + `(w; (xi, yi)). (7)

The sub-gradient update rule is derived as below,

wi− 1
2

= (1− ηtλ)wi−1 + ηtsign(yi − 〈wi−1,xi〉)xi, (8)
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Algorithm 1: The algorithm of ORPegasos.

Input: Offline initial training set, S = {(xi, yi)}m
i=1;

Online individual training pair, (xm+i, ym+i);
Output: Learned SVR model, w;
Description:

Offline:
1: Initialize w1 as the zero vector;
2: for t = 1 to T do
3: Randomly choose At ⊆ S, where |At| = k;

4: Set A+
t = {(x, y) ∈ S) : |y − 〈wt,x〉| < ε };

5: Set ηt = 1/(λt);
6: Set wt+ 1

2
=

(1− ηtλ)wt + ηt
k

∑
(x,y)∈A+

t
sign(y − 〈wt,x〉)x;

7: Set wt+1 = min{1, 1/(
√

λ ||wt+ 1
2
||)} wt+ 1

2
;

8: end for
9: return wT as the offline model wm.

Online:
10: Set wm+i− 1

2
=

(1− ηtλ)wm+i−1 + ηtsign(ym+i − 〈wm+i−1,xm+i〉)xm+i;

11: Set wm+i = min{1, 1/(
√

λ ||wm+i− 1
2
||)} wm+i− 1

2
;

12: return wm+i as the online model.

and the projection step of wi− 1
2

to wi is the same as Eq. (6).

Following the work in [11], ORPegasos can be easily ex-
tended into its kernel version.

The pseudo-code of RPegasos and ORPegasos is shown
in Alg. 1, which takes an offline initial training set and an
online individual training pair (an user query plus its oracle
weight vector discussed in Section 5.3) as the input data to
simulate the real-life requirement of QDF systems.

Based on the analysis in [19, 22] with the binary-classifica-
tion loss term replaced by the regression loss term, we can
easily prove that ORPegasos converges in Õ( 1

λδξ
) iterations

for learning a ξ optimal SVR with confidence 1 − δ. Less
number of iterations are required to achieve the same gen-
eralization performance, when more training samples are
available [22]. The proof details are omitted due to space
constraints. Therefore, the run-time of ORPegasos has the
same inverse dependence as Pegasos, i.e., the more training
samples available, the faster ORPegasos can learn a SVR
with the same generalization performance. In addition, the
number of support vectors in the kernel version of ORPe-
gasos does not depend on the number of training samples,
which is a desirable property for fast online SVR prediction.
In summary, ORPegasos learns the same well generalized
SVR faster in larger databases while keeping the same model
complexity for fast online prediction.

4.4 Class-based v.s. Regression-based QDF
Compared with class-based QDF (CQDF) approaches, the

proposed regression-based QDF (RQDF) directly predicts
the optimal combination weights for each online user query
without any query matching computation. RQDF enjoys
several advantages. First, it is much faster to predict the
optimal combination weights as it only needs to perform
one inner product in linear SVR or a small number of ker-
nel evaluations in its kernel version. In contrast, CQDF
needs to conduct extra expensive query classification [3, 27,
10], calculation of the query-class mixture [26], or nearest
query searching [25]. Second, RQDF adapts better to fu-
ture user queries than CQDF, because the extra underlying
class structure of CQDF makes it hard to adapt and update
based on online queries. Third, it simplifies the query feature

extraction by using an efficient DV model instead of com-
plex natural language processing (NLP) techniques [3, 27,
10, 26, 25]. Fourth, the devised learning algorithm ORPe-
gasos empowers RQDF to learn a better generalized query-
to-combination-weights mapping with less run-time, which
is a desirable property in large databases.

5. EXPERIMENTAL CONFIGURATION
In this section, we give a detailed description of the exper-

imental configuration for empirical study. It includes three
components: test collection, multimodal search experts, and
methodology. Basic test procedures were designed follow-
ing the guidelines of TRECVID [23] for performance eval-
uation of multimedia search systems. All experiments were
conducted on a DELL PowerEdge 2970 workstation with 2
CPUs (each is a Quad-Core Intel Xeon E5420, 2x6MB cache
CPU) and 32GB memory (DDR-2 667MHz).

5.1 Test Collection
A test collection was constructed with a large number of

music items, the annotated ground truth, and a comprehen-
sive set of social queries5.

5.1.1 Music Items
To leverage the readily available online resources, the ti-

tles of the most popular 17000 music items related to the
tag set in the social query space were automatically discov-
ered from Last.fm based on its track popularity API. The
actual audio track and metadata (title, description, tags,
comments, etc.) of each music item were further crawled
from YouTube using its open data API. The music data are
diversely distributed due to the diversity of the social tags
in the social query space. For each music dimension under
consideration (i.e., genre, mood, instrument, and vocalness),
ground truth data (the actual music style in each dimen-
sion) for the crawled music items were annotated and cross
checked by amateur musicians with a reference to the pop-
ular social tags on Last.fm. The detailed data distribution
over different music styles can be found in Table 3.

5.1.2 Social Queries
For evaluation, 236,973 social query topics for multimodal

music search were automatically formed using the method
described in Section 3. 200K of them were randomly selected
as the training set, and the rest were used as the testing set of
different QDF approaches. The query distribution over dif-
ferent music dimension combinations is shown in Table 4. As
can be seen, the formed social queries range from less com-
plex (only one music dimension is requested) to more com-
plex (more music dimensions are requested) queries. This
simulates the different levels of complexity in users’ infor-
mation need. In addition, we can see that the large number
of automatically-formed social queries cover the knowledge
scope of the social query space comprehensively, which lays
the foundation for training a better generalized QDF system
against unseen user queries.

5.2 Multimodal Search Experts
A text retrieval expert and a content-based audio retrieval

expert were implemented for each of the four music dimen-
sions being studied. Totally, 8 retrieval experts were used in
the QDF evaluation. Each incoming query was parsed based
on the social query space so that the music dimensions and

5
The test collection can be obtained by emailing the first author.
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Table 3: The detailed distribution of the music items in different music dimensions and styles. The number of collected
music items is indicated after each style label. Some music items are shared by multiple music dimensions.

Genre:13747 Mood:1596 Vocalness:2981 Instrument:1392
Classical:1359 Jazz:1837 Joyful:359 Nonvocal:975 Brass:310 Woodwinds:382 Percussion:356 Strings:344
Country:1954 Rock:1417 Pleasure:405 Male:1025 Trombone:103 Flute:124 Piano:129 Violin:111
Pop:2028 HipHop:1062 Sad:459 Female:484 Trumpet:104 Clarinet:125 Snare:100 Cello:100
Electronic:1987 Metal:2103 Angry:373 Mixed:497 Tuba:103 Saxophone:133 DrumKit:127 Guitar:133

Table 4: The distribution of the automatically formed social queries over different music dimension combinations.
Query Type No. Example Queries with “Find me the music with style” as the heading
Genre 158 classical; country; disco; jazz; metal; hip-hop; funk; black-metal; R&B; soul; romantic.
Mood 173 happy; excited; affective; hostile; flaming; aggressive; tearing; tense; fierce; playful.
Instrument 309 brass; trumpet; percussion; piano; drum-kit; strings; violin; woodwinds; flute; clarinet.
Vocalness 13 female; girl; woman; boy; male; man; mixed; nonvocal; instrumental.
Genre, Mood 13165 affective classical; hostile disco; flaming metal; excited country; joyful electronic.
Genre, Instrument 13373 classical violin; jazz saxophone; hip-hop drum; soul violin; metal clarinet; classical bagpipes.
Genre, Vocalness 2546 female country; mixed classical; nonvocal jazz; boy metal; girl pop; man electronic.
Mood, Instrument 13783 happy violin; hostile woodwinds; excited flute; affective piano; tearing trumpet.
Mood, Vocalness 2951 affective girl; happy boy; tearing mixed; hostile nonvocal; excited man; joyful girl.
Instrument, Vocalness 4293 violin female; drum male; violin girl; piano mixed; saxophone man; nonvocal guitar.
Genre, Mood, Instrument 21395 happy classical violin; tearing country guitar; fierce disco drum; joyful jazz saxophone.
Genre, Mood, Vocalness 19209 happy jazz female; affective classical male; aggressive metal mixed.
Genre, Instrument, Vocalness 19305 classical violin female; jazz saxophone male; hip-hop drum man; techno clarinet nonvocal.
Mood, Instrument, Vocalness 19658 excited violin boy; tearing piano girl; flame trumpet nonvocal; joyful guitar man.
Genre, Mood, Instrument,
Vocalness

106642 happy classical violin female; tearing pop piano male; excited jazz saxophone nonvocal; flame
metal drum mixed; affective country guitar man.

actual music styles requested in the query can be recognized.
The keyword of each music dimension in the query will be
sent to the corresponding text retrieval and audio retrieval
experts for unimodal search.

5.2.1 Retrieval based on Text
Text is a very important knowledge source for multimodal

music search. For each music dimension, the text retrieval
expert takes the corresponding keywords extracted from a
social query and searches for relevant music items in their
metadata. As described in Section 5.1.1, the metadata of
a music item contains the title, description, tags, and com-
ments. The textual metadata are stemmed using Porter’s
algorithm [17] and stop words are removed. The retrieval
is done using the OKAPI BM-25 formula [18]. Our experi-
ments show that the performance of the text retrieval expert
varies in different music dimensions, because the keywords
describing music styles may appear more often in some di-
mensions like genre than others like vocalness.

5.2.2 Retrieval based on Audio Content
Audio content could play a crucial role in music search. In

the audio retrieval expert of each music dimension, a com-
pact audio signature called Fuzzy Music Semantic Vector
(FMSV) is constructed as the content representation using
Multi-class Support Vector Machines to classify the audio
features presented in [28]. The audio signature is formed
by the activation probabilities of the music classes in this
dimension. For example, 8 activation probability values
of the genre classes form a genre audio signature. To im-
prove scalability and efficiency, a high dimensional index
of audio signatures is constructed using the Locality Sen-
sitive Hashing (LSH) algorithm [1]. When a keyword de-
scribing a music style is extracted from a social query, a
query audio signature q can be generated by setting the
activation probability of the corresponding music class as
1 and other classes as 0. Nearest neighbors of q are then
retrieved by LSH from the index. Further ranked by the
inverse value of the Euclidean distance from an audio sig-

nature to q, the most similar music items are retrieved to
the music style described by the keyword of a music dimen-
sion in the social query. In this study, we implemented the
audio analysis based on Marsyas [24], which is the system
having achieved the best performance in the corresponding
classification tracks of MIREX2008 [6].

5.2.3 Score Normalization, Fusion,
and Relevance Judgment

To achieve a more robust ranking process, the scores {si,dj |
1 ≤ j ≤ Nr} for the i-th ranked list of music items are
normalized as si,dj = 1 − Ranki(dj)/Nr, where Nr is the
maximum number of music items returned by each retrieval
expert (set as 100 in our experiment) and dj indicates the
unique id of the j-th music item [27]. When a weight vec-
tor W = [W1, ..., WN ]T is available, the final ranking scores
of the music items from all retrieval experts can be linearly
combined as sd =

∑N
i=1 Wi · si,d, where N is the number of

search experts, 0 ≤ Wi ≤ 1, and
∑

Wi = 1.
The relevance of each music item in the final ranked list is

judged by comparing its annotated music styles (described
in Section 5.1.1) with the music styles requested in a social
query. If a music item matched m out of n music styles in
a social query, the relevance score can be set as r = m/n.
Since users tend to issue queries with orthogonal informa-
tion need in different music dimensions (e.g., Find me mu-
sic with style classical female), the fraction relevance score
introduced in this work is necessary to reflect the partial
match of a music item to a social query and guarantee a
more accurate measurement of different search methods.

5.3 Methodology
The goal of our empirical study is to investigate the perfor-

mance of the proposed algorithm and its competitors from
different aspects. To evaluate effectiveness of various sys-
tems, Average Precision (AP) is applied to measure the re-
trieval accuracy of a ranked list at depth 100. We also use
Mean Average Precision (MAP) to evaluate the retrieval
accuracy of a QDF method over a set of social queries,
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Figure 3: The comparison of different QDF methods in terms of effectiveness and efficiency.

and t test to assess the significance of performance improve-
ment between different QDF methods. We have fully imple-
mented the previous QDF methods for comparison study.
They include: the CQDF method based on a single-class
query matching (CQDF-Single) with learning on the oracle
APs or combination weights [10]; a mixture-of-classes query
matching (CQDF-Mixture) based on the oracle combina-
tion weights [26]; together with the nearest-neighbor query
matching approach (QDF-KNN) based on the oracle com-
bination weights [25]. To further illustrate the superior effi-
ciency of ORPegasos in RQDF, we also implemented a Lib-
SVM [2] version of RQDF (RQDF-LibSVM).

For each social query, the AP of each search expert was
calculated. Grid search was used to compute the oracle com-
bination weights. A social query plus its oracle combination
weights form a training sample for different QDF methods.
Different training set sizes were used (100, 400, 1.6K, 25.6K,
102.4K and 200K) to evaluate the impact of the training
knowledge scope on the retrieval performance. For a par-
ticular training set size, training samples were randomly
selected from the total 200K training queries to train all
the QDF methods. The trained QDF model was validated
against all testing social queries (about 36.9K). Three trials
were conducted for each QDF method to assess its aver-
age performance. The average APs or MAPs were collected
to compare the retrieval accuracy. The average run-time
of each QDF method in training a query-to-combination-
weights mapping and in predicting the combination weights
of a common query set were used to measure the efficiency.

6. RESULT ANALYSIS
6.1 Effectiveness Study

Retrieval accuracy is one of the main concerns in any IR
system. In this section, we study and compare the effec-
tiveness of different QDF methods when different number of
training samples are available.

Fig. 3(a) and Table 5 illustrate the retrieval accuracy
(MAP) of different QDF methods under their best param-
eter settings. 40 classes (C=40) were discovered on oracle
APs in CQDF-Single. Learned on combination weights, 50
classes (C=50) and a mixture of top 10 classes (T = 10)
were chosen in CQDF-Mixture to match an unseen query.
QDF-KNN used the top 5 nearest neighbors (K = 5) to
represent a user query. Linear kernels were used for RQDF-
LibSVM and RQDF-ORPegasos. 5 training samples were
chosen (k = 5) at each iteration of ORPegasos. From these
results, the following two trends can be discovered.

More training queries produce better generalization per-

formance. In Fig. 3(a), as more training queries become
available to each algorithm, the retrieval accuracy gets im-
proved. The previous QDF methods (CQDF-Single, CQDF-
Mixture, and QDF-KNN) are improved by absolute (rela-
tive) 2.8% (10.4%), 0.9% (3.1%), and 2.2% (8.2%) in MAP
respectively, when the number of training queries increases
from 100 to 200K. The fluctuation of their MAPs is due to
the poor robustness, which will be discussed in Section 6.3.
The two versions of the regression-QDF (RQDF-LibSVM
and RQDF-ORPegasos) are improved by 3.5% (12.46%) and
2.8% (9.8%) respectively under the same condition. In Ta-
ble 5, the retrieval accuracy of each method on different
query types shows the same trend, especially in query types
with more information need (more complex queries). Since
the training queries are randomly sampled from the social
query space, more training queries cover a wider knowledge
scope of unseen user queries. QDF methods trained with
more query knowledge reveal better generalization perfor-
mance. Therefore, these results support our hypothesis that
as the knowledge scope of the training queries gets closer to
the unseen user queries, the generalization performance of
QDF approaches will be improved. This demonstrates the
significance of automatically forming a large number of com-
prehensive social queries to better develop QDF systems.

Regression-QDF (RQDF) outperforms other methods. In
Fig. 3(a), both versions of RQDF outperform previous QDF
methods except CQDF-Mixture with a small number of train-
ing samples. As more training samples become available,
RQDF reveals more improvement in the retrieval accuracy
over other methods. When using 200K training samples,
RQDF outperforms other methods by about absolute (rel-
ative) 1.3% (4.3%) in MAP. Between the two versions of
RQDF, ORPegasos matches the performance of LibSVM.
The MAPs in Table 5 also illustrate the superior retrieval
accuracy of RQDF. In most query types, RQDF performs
the best. RQDF reveals more improvement as the query be-
comes more complex. The significance of the effectiveness
improvement by RQDF over other methods is verified by
t test. The p-value is less than 0.05, which indicates that
the effectiveness improvement of RQDF is statistically sig-
nificant. These results demonstrate the superior modeling
capability of RQDF to learn and predict the optimal com-
bination strategy.

6.2 Efficiency Study
With increasing attention in academia, efficiency is an-

other concern in real-life IR applications. In this section, we
compare the training time and prediction time of different
QDF methods. Less training time enables faster system de-
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Table 5: The retrieval accuracy (MAP) of each QDF method in different query types. CQDF-Mixture-Weight used 10
mixture classes (T=10). No. (∗) indicates the number of training queries, ∗ = ×103. G, M, I, V indicate the four music
dimensions (genre, mood, instrument and vocalness). A indicates all the four dimensions. Bold font indicates the best MAP
across all training sets of the same method. † indicates the best MAP across all methods.

Method No. (∗) A G M I V GM GV GI MI MV IV GMI GMV GIV MIV GMIV
CQDF-
Single-
AP,
C=40

0.1 .270 .307 .439 .850 .525 .271 .289 .341 .334 .367 .399 .235 .249 .283 .306 .229
1.6 .287 .305 .446 .851 .527 .291 .303 .376 .396 .367 .434 .257 .255 .304 .320 .238
25.6 .284 .303 .445 .810 .536 .311 .306 .358 .358 .372 .422 .255 .259 .300 .313 .237
200 .298 .304 .450 .830 .525 .308 .310 .391 .385 .373 .451 .265 .260 .319 .331 .250

CQDF-
Single-
Weight,
C=40

0.1 .278 .303 .442 .850 .541 .278 .285 .385 .377 .360 .398 .258 .246 .283 .304 .232
1.6 .290 .298 .442 .850 .525 .298 .285 .419 .406 .371 .421 .274 .247 .290 .323 .237
25.6 .291 .312 .444 .855† .532 .314† .295 .394 .399 .374 .414 .276 .257 .289 .325 .239
200 .302 .300 .445 .854 .522 .309 .295 .438 .434 .371 .421 .293 .257 .302 .327 .249

CQDF-
Mixture-
Weight,
C=50

0.1 .290 .304 .441 .850 .537 .278 .272 .410 .413 .374 .445 .272 .239 .305 .325 .238
1.6 .299 .308 .441 .850 .554 .287 .309 .421 .408 .378 .446 .277 .266 .315 .329 .247
25.6 .301 .310 .449 .851 .544 .309 .310 .430 .425 .380 .427 .289 .264 .305 .326 .246
200 .299 .310 .444 .851 .541 .301 .310 .426 .418 .380 .426 .283 .265 .304 .327 .246

QDF-
KNN,
K=5

0.1 .268 .307 .440 .850 .550 .279 .296 .361 .383 .345 .395 .248 .238 .272 .290 .218
1.6 .277 .309 .441 .852 .560† .292 .308 .394 .376 .352 .399 .260 .248 .284 .300 .225

25.6 .270 .306 .454† .853 .525 .300 .310 .394 .388 .346 .370 .250 .245 .263 .281 .219

200 .290 .313† .449 .854 .525 .309 .332† .389 .364 .381 .440 .250 .270 .302 .320 .239

RQDF-
ORPeg-
asos,
k=5

0.1 .287 .307 .442 .850 .559 .280 .298 .423 .419 .362 .425 .276 .246 .294 .312 .231
1.6 .302 .306 .439 .851 .525 .302 .317 .432 .425 .377 .451 .283 .269 .314 .330 .244
25.6 .314 .303 .441 .850 .527 .306 .321 .440 .438 .385 .458 .299 .279 .325 .342 .258
200 .315† .301 .441 .850 .524 .305 .323 .440† .438† .388† .460† .299† .281† .326† .344† .259†

Oracle N.A. .337 .393 .521 .874 .787 .354 .368 .451 .451 .417 .485 .313 .311 .344 .365 .280

velopment and upgrade while less prediction time increases
the system scalability in accommodating a large number of
online queries simultaneously.

The run-time (training time and prediction time) of differ-
ent QDF methods are illustrated in Fig. 3(b) and Fig. 3(c).
As can be seen, the run-time of RQDF-ORPegasos is much
less than other methods in both training and prediction
stages when different number of training queries are used.
In addition, as the number of training queries increases, the
run-time of RQDF-ORPegasos stays almost constant while
the run-time of other QDF methods increases dramatically.

The results can be explained by the learning model em-
ployed by each QDF method. When more training queries
are used, class-based QDF (CQDF-Single/CQDF-Mixture)
requires more training time to discover classes by weight
clustering [10] or latent query class analysis [26]. Their pre-
diction time also increases as there are more non-zero ele-
ments in the discovered query-class centroids, which are used
to assign an unseen query to a query-class (query-classes)
and derive the predicted combination weights. QDF-KNN
requires no training time since the combination weights are
predicted by linearly embedding an unseen query into its
nearest neighbors in the raw training set. However, its pre-
diction time increases dramatically when a large training
set is used due to the time consuming linear search of near-
est queries to an unseen query. Compared with the pre-
vious QDF approaches, RQDF-ORPegasos/RQDF-LibSVM
eliminates the query matching step. However, the run-time
of RQDF-LibSVM suffers in large training sets because the
SVM model tends to discover and use more support vectors
to represent the query-to-combination-weights mapping. As
analyzed in Section 4, the run-time of ORPegasos is inde-
pendent of the number of training samples. Analyzed and
verified in [22], ORPegasos will reveal reduced run-time in
extremely large training data sets when learning SVR mod-
els with the same generalization performance.

The scalability of QDF-ORPegasos on large data sets is
superior to other QDF methods. Based on the run-time of
different QDF methods, RQDF-ORPegasos is suitable for

efficient training of an effective QDF system in real-life ap-
plications where a large volume of training data are avail-
able. In addition, due to its efficient prediction time, RQDF-
ORPegasos will scale well when a large number of online
users queries needs to be processed simultaneously.

6.3 Robustness Study
As mentioned in Section 6.1, poor robustness is one dis-

advantage of the previous QDF methods, which makes the
system tuning tricky. In this section, we compare the robust-
ness of different QDF methods by investigating the effect of
different parameter settings on their retrieval accuracy.

Fig. 4 illustrates the retrieval accuracy of different QDF
methods with various parameter settings. As can be seen,
the retrieval accuracy of RQDF (RQDF-ORPegasos) is much
more stable than other methods. Under all parameter set-
tings, ORPegasos outperforms other methods when suffi-
cient training samples are available. In addition, its peak
performance always appears with the maximum number of
training samples. Due to its stochastic nature, the parame-
ter k of ORPegasos has little influence on its generalization
performance. Although fewer number (when k is small) of
training samples are chosen at each iteration to update the
SVR model, the expectation of the model converges to the
global optimal over T iterations (see Section 4 for details).

However, the effectiveness of other methods fluctuates
severely under different parameter settings. In particular,
QDF-KNN reveals two peak performance regions in Fig. 4(e).
The region with less training samples and larger K performs
well because using more nearest neighbors to match a user
query results in better robustness when less training sam-
ples are available. However, as more training samples be-
come available to cover a wider knowledge scope of unseen
user queries, using less nearest neighbors (smaller K) will
increase the query matching accuracy. This also explains
the MAP fluctuation of QDF-KNN in Fig. 3(a).

All these results show that it is easier to tune a QDF
system with RQDF than with other methods, which means
RQDF has higher usability and better robustness in real-life
applications. In addition, the superior retrieval accuracy
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(d) CQDF-Mixture (T=10)
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Figure 4: The retrieval accuracy comparison of different QDF methods under various parameter settings.

of RQDF and the overall trend that more training samples
produce better effectiveness are verified once more in Fig. 4.

7. CONCLUSION
We have outlined a novel query-dependent fusion (QDF)

method using regression-on-folksonomies to facilitate multi-
modal music search in large databases. Previous QDF ap-
proaches rely on manually designed queries, which imposes
expensive human involvement in system development. We
have pursued the alternative automatic query formation to
easily generate a large number (in millions) of comprehen-
sive queries from readily available online folksonomy data.
This approach not only provides better generalization per-
formance for real-life search systems in accommodating fu-
ture user queries, but also offers great feasibility and prac-
ticality in real-life system development.

In addition, we have proposed an online-regression model
for query-dependent fusion (RQDF). It represents a further
step towards the optimal query-dependent fusion, which un-
leashes the power of multimodal music search. Its superior
modeling capability not only enhances the effectiveness of
query-dependent fusion systems, but also significantly im-
proves the system efficiency, scalability, and robustness. Due
to the generality of RQDF, we believe that it can be easily
extended to other multimodal search applications such as
text/video/image search and meta-search as well.
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