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ABSTRACT  
Motion estimation is a key component of modern video encoding 

and is very compute-intensive. We present a novel Sensor-assisted 
Video Encoding (SaVE) method to reduce the computational 
complexity of motion estimation in H.264/AVC encoders, 
leveraging accelerometers and digital compasses that are 
increasingly available on mobile devices. Using these sensors, 
SaVE calculates the rotational movement of a camera and then 
infers the global motion in the camera image sensor; it 
subsequently employs the estimated global motion to simplify the 
state-of-the-art motion estimation algorithms, UMHS and EPZS 
used in H.264/AVC encoders. We have constructed a prototype of 
SaVE and report extensive evaluation of it. Our experimental 
results show that SaVE can reduce the computations of UMHS 

and EPZS algorithms by up to 27% and 18%, respectively, while 
achieving the same or better video quality. 
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H.5.1 [Multimedia Information Systems]: Video 

General Terms 

Algorithms, Performance, Design 

Keywords 
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1. INTRODUCTION 
Video cameras have already become a standard component of 
Smartphones and other handheld devices. Amateur video clips 
captured by such cameras have populated social networking 

portals such as YouTube and enabled amateur journalism such as 
iReport. Yet, capturing videos on mobile devices is compute-
intensive and therefore power-hungry. A key compute-intensive 
module in modern video encoding is motion estimation. Because 
the same object may appear in consecutive frames but at different 
locations within the frames, motion estimation seeks to identify 
blocks from consecutive frames that match each other and 
subsequently eliminate redundancy. In modern video-coding 

standards such as H.264/AVC, motion estimation may examine a 
frame for block matching from multiple reference frames and 
using multiple block sizes [1]. Not surprisingly, the power and 
computational cost of video encoding is posing a significant 
challenge to video capturing on mobile devices. 

Our solution toward addressing this challenge is Sensor-assisted 

Video Encoding, or SaVE. SaVE leverages low-power sensors to 
estimate camera movement; and subsequently applies the 
estimation to significantly simplify motion estimation. SaVE is 
motivated by the following observations. Firstly, the motion of an 
object in video frames can be decomposed to global motion, 
introduced by camera movement and local motion introduced by 
the movement of the object itself. In many video sequences, 
particularly in amateur-captured video clips, global motion due to 
camera movement, particularly rotation, is very common. 
Secondly, modern mobile devices (e.g. the HTC G1) have 
embraced ultra low-power and low-cost sensors, including digital 
compasses and accelerometers. These sensors can efficiently 

provide accurate information regarding the camera movement. 

Our previous work [2] presented the preliminary results on 
employing sensors to improve video encoding. It detected camera 
rotational movement with a pair of tri-axis accelerometers, and 
showed that it can effectively improve the Full Search algorithm 
in MPEG2. In this work, we present a comprehensive study on the 
use of sensors in video encoding with sophisticated motion 
estimation algorithms, in particular in the H.264/AVC framework 
that is extremely relevant to resource-constrained mobile devices. 
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Figure 1. Basic structure of a H.264/AVC encoder together 

with the proposed SaVE scheme 



Our solution is the SaVE scheme, which advances our previous 
work [2] not only in its sophisticated use of movement estimated 
from sensors, but also in its exploration of new sensors, in 
particular the digital compass. 

Figure 1 shows the basic structure of a H.264/AVC encoder 
together with the SaVE scheme. SaVE employs either two 

accelerometers or the combination of one accelerometer and one 
digital compass to estimate camera rotation. Using these 
estimations, it infers the global motion in the subsequent frames. 
SaVE then utilizes the estimated global motion as predictors 
(initial search positions) in H.264/AVC motion estimation to 
reduce computation. 

We have built a prototype using a commercial camcorder with two 
different combinations of the digital compass and accelerometers. 
Our experimental evaluations show that SaVE can significantly 
reduce the complexity of H.264/AVC motion estimation with 
UMHS [3-4] and EPZS [1, 5 ] algorithms by up to 27% and 18%, 
respectively. To the best of our knowledge, SaVE is the first 

publicly reported attempt in using sensors to improve H.264/AVC 
video encoding. It embodies a new research direction in 
multimedia processing that explicitly employs physical 
information obtained from sensors.  

The rest of the paper is structured as follows. In Section 2, we 
outline background information and related work in video coding. 
In Section 3, we describe our method for camera movement 
estimation. The technical details of utilizing the estimated global 
motion as a SaVE predictor in H.264/AVC are explained in 
Section 4. We present a prototype of SaVE and the experiment 
setup in Section 5 and we present experimental results based on 

the prototype in Section 6. We address the limitation of SaVE in 
Section 7 and conclude in Section 8.  

2. BACKGROUND AND RELATED WORK 
We first provide background for SaVE and discuss related work. 

2.1 Motion Estimation 

When the camera or an object in its view moves, the captured 
image moves too. Therefore, a part of an image may appear in 
multiple consecutive video frames, at different but close locations, 
creating an opportunity that modern video encoding technologies 
leverage to compress the video sequence. The key to such 
compression is motion estimation, which seeks to identify blocks 
in a frame that matches those in a reference frame at different but 
close locations.  

The naïve Full Search algorithm attempts to locate the moved 
image by searching all possible positions within a certain distance 
(search window). While the naïve Full Search yields optimal 

search results, it is extremely compute-intensive. There has been 
extensive research on more efficient motion estimation. Known 
techniques can be classified into three categories. The first 
category seeks to reduce the number of candidate blocks in the 
search window, e.g. three-step search (TSS) [6], new 3-step search 
(N3SS) [7], four-step search (FSS) [8], diamond search (DS) [9], 
cross-diamond search (CDS) [10], and kite cross-diamond search 
(KCDS) [11]. The second category attempts to reduce the number 
of pixels involved in the block comparison of each candidate, e.g. 
partial distortion search (PDS) [12], alternative sub-sampling 
search algorithm (ASSA) [13], normalized PDS (NPDS) [14], 
adjustable PDS (APDS) [15], and dynamic search window 

adjustment [16]. The third category takes a hybrid approach of the 

first two, e.g. Motion Vector Field Adaptive Search Technique 
(MVFAST) [17], predictive MVFAST (PMVFAST) [18], 
Unsymmetrical-cross Multi-Hexagon-grid Search (UMHS) [3-4] 
and Enhanced Predictive Zonal Search (EPZS) [1, 5]. In particular, 
UMHS and EPZS are very efficient. In comparison to the Full 
Search algorithm, they can reduce the computational requirement 

by 90%, while maintaining a fairly good video quality [1, 3]. 
UMHS and EPZS are adopted in the H.264/AVC standard. In this 
work, we use the implementation of UMHS and EPZS in 
H.264/AVC version JM14.2 as the baselines. 

Predictive motion estimation is very efficient in reducing the 
number of candidate blocks. Instead of attempting all motion 
vectors within a search range, the efficiency of the motion 
estimation algorithm can be improved by only checking a few 
highly promising predictors, which are expected to be close to the 
best motion vector. With simple yet efficient checking patterns, 
the motion estimation algorithms can find the optimal motion 
vector around the predictor quickly with a reliable early-
termination criterion [3, 5]. Predictive motion estimation 
algorithms, such as UMHS and EPZS, have provided predictors 
based on block correlations, such as median predictor and 

neighboring reference predictor, among others. The median 
predictor is believed to be more reliable and is more likely to be 
accurate [5] in comparison to others. A median predictor refers to 
the median motion vector of the top, left and top-right (or top-left) 
neighbor blocks of the current block, which is frequently used as 
the initial search predictor and also for motion vector prediction 
encoding [5].  

However, the predictors in both UMHS and EPZS are obtained by 
estimating the motion vector purely based on temporal or spatial 
correlations, which may not be reliable. There are quite a few 
methods, e.g. [19-21], explored the way of applying a global 
motion estimation (GME) process to obtain an initial position (we 
regard as a predictor) for local motion estimation. However, the 
GME of these methods requires additional operations (e.g. frame 
matching), leading to intensive computations. The development of 
sensor technology has inspired us to estimate camera movement 

(and apply the GME) by reliable sensors through very simple 
calculations, and then utilize the estimated movement as predictors 
in motion estimation. Our previous work [2] presented early 
results on employing sensors to improve video encoding. In this 
work, we provide a comprehensive treatment of SaVE and present 
solutions that significantly improves H.264/AVC video encoding, 
the state-of-the-art standard for mobile devices.   

2.2 Sensors 

In addition to our previous work [2], [22] also presented an idea of 
using sensors to assist compression for vehicle-captured videos. 
This work focuses on detect and use the palpable vehicle 
movement in video compression. Our SaVE scheme, however, is 
aiming at detecting and utilizing the rotational movement in 
amateur-captured videos for simplifying H.264/AVC encoding.  

SaVE employs ultra low-power and low-cost sensors to estimate 
camera rotations. Assuming negligible linear acceleration of the 

camera, a single tri-axis accelerometer can provide the vertical 
angle (respect to the ground), but it is unable to provide the 
horizontal angle. Dual accelerometers placed apart can measure 
rotational acceleration, both horizontally, and vertically. Similarly, 
a gyroscope can measure rotation speed. However, they are unable 
to provide the absolute angle of the device. Integrating the rotation 
speed or double integrating the rotational acceleration to calculate 



angle is impractical because sensor noise rapidly becomes 
egregious. In contrast, a tri-axis digital compass can directly 
measure both horizontal and vertical angles. However, digital 
compasses may be subject to external influence, such as nearby 

magnets and ferromagnetic objects, and radio interference (e.g. 
from mobile phones), as discussed in Section 7.1. Therefore, 
SaVE uses readings from a single accelerometer for the vertical 
angle. For the horizontal angle, we have implemented SaVE to use 
either the single tri-axis digital compass or the two accelerometers. 
The rotational acceleration measured from the dual accelerometers 
is directly used in SaVE, without integration. 

The power consumption of digital compasses and accelerometers 
is very small in comparison to the power required for H.264/AVC 
video encoding. For example, according to our measurements, the 
commercial sensor board in our prototype that has a digital 
compass and a tri-axis accelerometer consumes 66mW, and our 

custom sensor with two accelerometers consumes 15mW without 
Bluetooth. Furthermore, much of the power is consumed by 
components that will be obsolete when the sensors are properly 
integrated into the camera. For example, the Honeywell 
HMC6042/1041z tri-axis compass consumes 23mW, and each of 
the KXM52 tri-axis accelerometers used in our custom sensor 
board consume less than 5mW. All three sensors would add up to 
approximately 3% of the video encoding power of a typical 
H.264/AVC video encoding chip, consuming over a Watt [23]. 
Since sensors are increasing embedded on mobile devices (to 
decide screen orientation or for navigation purposes), this power 

consumption would not be considered as overheads caused by 
merely our SaVE scheme. 

3. GLOBAL MOTION ESTIMATION 
Camera movement can be linear or rotational. Linear movement is 
introduced by camera location change, while rotational movement 
can be introduced by tilting, i.e. turning the camera vertically, or 
by panning, i.e. turning the camera horizontally. In amateur video 

capturing with handheld devices, rotational movement is 
extremely common. Camera rotation will lead to significant global 
motion in the video frames. In this work, the global motion is 
described by a vector, or Global Movement Vector (GMV), 
specifying both vertical and horizontal movements of objects in 
two successive frames due to camera movement. In this section, 
we present several sensor-assisted methods of camera movement 

estimation and then address GMV estimation from camera 
movement. In Section 4, we will further apply the GMV estimation 
to motion estimation. 

3.1 Rotational Change Estimation 

SaVE employs a single tri-axis accelerometer to estimate absolute 
vertical angle. SaVE can employ two different methods for 
calculating the horizontal movement, using a digital compass to 
estimate absolute horizontal angle, or by using dual 
accelerometers to estimate rotational acceleration. In this 
subsection, we briefly present the mathematical foundations of 

calculating the horizontal and vertical angles, and the rotational 
acceleration from raw sensor data. 

3.1.1 Vertical Angle (Single Accelerometer) 

The vertical angle of the camera can be calculated using a single 
tri-axis accelerometer, similar to [2]. The effect of the earth’s 
gravity on acceleration measurements in three axes, ax, ay, and az, 

can be utilized to calculate the static angle of the camera 
accurately. For instance, when the camera rolls down from the 
illustrated position in Figure 2, ax will increase and az will 

decrease. The following equation can calculate the vertical angle 
Pn of the camera at frame Fn , : 

  

(1) 

In this equation, ax , ay and az are the acceleration readings from a 
tri-axis accelerometer (Figure 2). Hence the vertical rotational 
change v for 2 successive video frames Fn and Fn-1 can be 
calculated as: 

 (2) 

3.1.2 Horizontal Angle (Compass) 

The horizontal angle of the camera can also be calculated with a 
method identical to the above, using the readings from a tri-axis 
compass instead of the accelerometer. It would effectively 
calculate the angle of the camera with respect to the magnetic 
north instead of ground, producing the horizontal angle. Therefore, 
the horizontal rotational movement h between Fn and Fn-1 can 
also be directly obtained as: 

  

 
(a) (b) 

Figure 2. SaVE prototype Figure 3. From camera movement to projection movement in the video 

frame 



 (3) 

where Hn and Hn-1 are the horizontal angles at frame Fn and Fn-1 
from the compass readings. 

3.1.3 Horizontal Acceleration (Two Accelerometers) 

In [2], we showed that a pair of properly located accelerometers, 
by sensing rotational acceleration, can provide information 
regarding relative horizontal rotational movement. For 
convenience of discussion, we summarize the calculation of the 
horizontal rotational movement h below. For frame Fn we have: 

 (4) 

In this equation, S0y and S1y are the acceleration measurements in 
the Y direction from the dual accelerometers, respectively, and k is 
a constant that can be directly calculated from the distance 
between the two acceleration sensors, the frame rate and the pixel-
per-degree resolution of the camera.  

3.2 Global Movement Vector (GMV) 

Estimation 

When a camera rotates, the projection of an object in the view to 

the camera image sensor also moves, as illustrated in Figure 3. 
The movement of the projection on the image sensor can be 
described by the GMV that specifies the vertical and horizontal 
movements. 

To calculate the GMV, we must understand the camera 
characteristics and build an optical model. In Figure 3 (a) and (b), 
O denotes the optical center of the camera image sensor; f denotes 
the focal length and l denotes the distance between the object to 
the camera lens; B is a point in the object. In (a), the projection P 
of point B on the image sensor is located at a distance of d from O; 
 is the angle between the line BP and the perpendicular bisector 

of camera lens. The situation when the camera is turned by  is 
shown in Figure 3 (b), where the new projection P’ is located at d’ 
from O. The movement for projections of point B on the imager 
can be calculated as d = d – d’. From the optical model, we can 
easily calculate d and d’ with: 

 
 

(5) 

Hence the projection movement d can be calculated as:  

 (6) 

As  is usually very small between two successive frames of a 
video clip, we have: 

 
(7) 

Thus we can obtain d  as: 

 (8) 

Typically,  ranges between zero and half of the Field of View 
(FOV) of the lens. Hence, for all camera lenses except for extreme 
wide-angle and fisheye ones,  is reasonably small and d can be 
further reduced to: 

 (9) 

From the above formulas, we have that f and  are adequate to 
calculate the movement. We can then convert f in pixels by 
dividing the calculated distance by the pixel pitch of the image 
sensor (denoted by f'). The current focal length of the camera, f, 
and the pixel pitch of the image sensor are intrinsic parameters of 
the camera, and known to the camera at any time without extra 

cost. However, as our camera does not report these parameters to 
us, we have adopted an easy-to-use tool based on MATLAB from 
[24-26] to obtain these parameters (this is not a part of video 
encoding and will not be required by real applications). 

Having the horizontal and vertical rotation h and v, we can 
calculate the GMV for 2 successive frames Fn and Fn-1 as: 

 (10) 

where dh and dv are the movement of the projection along the 
horizontal and vertical directions, respectively; f’ is the focal 

length in pixels. 

4. SaVE MOTION ESTIMATION  
With the GMV estimation, we next describe how SaVE applies the 
GMV to H.264/AVC motion estimation.  

4.1 GMV  Per Reference Frame 

Multiple-reference-frame motion vector prediction is an important 
feature of H.264/AVC. For a video frame Fn, a single GMV 
calculated for merely its previous reference frame Fn-1 is 
inadequate to obtain accurate predictors in other reference frames. 
To address this problem, SaVE dynamically calculates the 
reference-dependant GMVs. For example, when using Fn-k as the 

reference frame,  for the frame Fn can be calculated as: 

 
(11) 

Using dynamic GMVs allows motion estimation to be started from 
different positions for different reference frames. 

4.2 SaVE Predictor Insertion 

To improve motion estimation, we can insert the calculated 
GMV( dh, dv) into the UMHS and EPZS algorithms as the SaVE 
predictor (SPx, SPy). In our SaVE scheme, the SaVE predictor is 
given preference to be attempted first before trying those original 
predictors in UMHS and EPZS. In particular, we have: 

 
 

(12) 

where x and y are the horizontal and vertical coordinates of the 
current block to be encoded.  

We examine two strategies to use the SaVE predictor as the initial 
search position. The first, we shall call Arbitrary Strategy, is 

adopted from our preliminary work reported in [2]. The Arbitrary 
Strategy employs the SaVE predictor as the initial predictor for all 
macroblocks in a video frame. The obvious drawback of the 
Arbitrary Strategy is that it excessively emphasizes on the 
measured global motion while ignoring the local motion and the 
correlations between spatially adjacent blocks. Our initial 
experiments showed that the Arbitrary Strategy will not provide 
significant gains over UMHS and EPZS. 

Therefore, in order to consider both global and local motion, we 
present a Selective Strategy based on our examination of many 



insertion strategies, i.e. attempting the insertion with different 
number of blocks and in different locations of the picture. The 
Selective Strategy inserts the SaVE predictors into the top and left 
boundary of a frame. As mentioned in Section 2, the original 
predictors in UMHS and EPZS can spread the current motion 
vector tendency to the remaining blocks in the lower and right part 

of the video picture, because they highly rely on the top and left 
neighbors of the current block, As a result, the Selective Strategy 
spreads the global motion estimated from sensors to the entire 
frame. Let MB(i,j) denote the macroblock located at ith column and 
j
th row in the video picture (MB(0,0) is regarded as the top-left 

macroblock). The Selective Strategy will use the SaVE predictor 
as the initial search position only when (i < n OR j < n) and will 
use the original predictors in UMHS and EPZS otherwise. We 
have experimentally determined that n=2 yields good results.  

The Selective Strategy improves UMHS/EPZS due to the 
following two reasons. First, it benefits from the SaVE predictor 
that reflects the global motion estimated from sensors. Second, it 
respects the spatial correlations of adjacent blocks by using the 
original UMHS and EPZS predictors. 

4.3 Effectiveness of SaVE Predictor 

We next explain how the SaVE predictor can reduce the 
complexity of motion estimation using Figure 4. Figure 4 (a) 
shows that UMHS original predictor has no knowledge of global 
motion, and therefore the motion estimation may just start from 
the neighboring motion vectors. In this case, original UMHS may 
require a fairly large search window to identify the best matching 

block (black) for a given block (grey), especially for clips that 
contain fast camera movement. In another word, original UMHS is 
not able to quickly reach the real predictors.  

As we reviewed in Section 2.1, the methods in [19-21] employ an 
additional GME process and therefore are able to provide more 
accurate predictors. Consequently, this kind of algorithms can 

reduce the search window size. Our SaVE scheme also takes the 
advantage of the GME process but it obtains the global motion and 
the predictor in a completely new way: the camera global motion 
is precisely estimated from reliable sensors. With SaVE, the 
motion estimation can immediately start from a position that is 
close to the real predictor. Hence, SaVE will only need a much 
smaller search window in motion estimation, as shown in Figure 4 
(b). This will be confirmed in our prototype-based 
experimentation, reported later.  

5. PROTOTYPE IMPLEMENTATION 

5.1 Hardware Implementation 

In order to evaluate SaVE, we have implemented a prototype with 
a consumer-grade camcorder and two sensor boards (Figure 5). 
One sensor board was custom designed and carries dual tri-axis 
accelerometers. The other board, an OS5000 from OceanServer 

Technology [27], is a commercial tri-axis digital compass with an 
embedded tri-axis accelerometer. The commercial sensor 

  

Figure 4. SaVE predictor reduces the search window of motion estimation: (a) Original predictor; (b) SaVE predictor 
 

 
 (a) 

 
(b) 

 
(c) 

Figure 5. Prototype implementation of SaVE: (a) the commercial board with a digital compass and a tri-axis 

accelerometer (left) and the in-house built board with dual tri-axis accelerometers (right) used in SaVE; (b) camcorder 

and the digital compass and dual accelerometers bundled for video capturing; and (c) the prototype in working 

Table 1. Video Sequences for systematical recording 

                 Object 

Camera 

Still Moving 

Keep almost still Clip01 Clip02 

Slow Vertical Movement Clip03 Clip04 

Fast Vertical Movement Clip05 Clip06 

Slow Horizontal Movement Clip07 Clip08 

Fast Horizontal Movement Clip09 Clip10 

Irregular Movement Clip11 Clip12 



computes and reports the absolute horizontal and vertical angles 
using its tri-axis compass and tri-axis accelerometer respectively. 
Our custom sensor outputs raw accelerometer readings and we 
perform the necessary calculations offline. Using the methods 
presented in Section 3, we have implemented SaVE with both 
boards, denoted as SaVE/DAcc (using dual accelerometers) and 
SaVE/Comp (using the digital compass).  

The camcorder used in this prototype has a resolution of 576 480, 
and we set its frame rate to 25fps. Since the camcorder does not 
support raw video sequence format, we have converted the 
captured sequences into the YUV format with software. We firmly 
attach both sensor boards to the camcorder so that the sensor 
boards and the camcorder lens are aligned in the same direction as 
shown in Figure 5. 

5.2 Data Collection and Synchronization 

We have systematically captured 12 video clips with different 
combinations of global (camera) and local (object) motions, as 
described in Table 1. Snapshots of the clips are shown in Figure 8.  
The location motions were introduced by walking pedestrians.  

We collect the sensor data while capturing the video clips and then 
synchronize them manually, because our hardware prototype is 
limited in that the video and its corresponding sensor data are 
collected separately: video were captured directly by the 

camcorder and the sensor data were captured by the digital 
compass or accelerometers but stored by a laptop. The 
synchronization between the dual accelerometers and video clips 
has been introduced in [2]. For the digital compass, we align the 
maximum recorded angle of the digital compass with the frame 
taken at largest vertical angle in a video clip.  

We should note that this manual synchronization will not be 
required in real applications. On an integrated hardware 
implementation, it would be fairly straightforward to synchronize 
video and sensor readings, e.g., the sensor data recording and 
video capturing start simultaneously when a user presses the 
Record button of a camcorder or mobile device. 

5.3 Software Implementation 

To implement SaVE, we start from the standard H.264/AVC 
encoder (version JM 14.2), which implements up-to-date UMHS 
and EPZS algorithms. For each predictive frame (P- and B- frame), 
we employ SaVE predictors in UMHS and EPZS with the 
selective insertion strategy (n = 2) according to Sections 3 and 4. 
We then encode each sequence using the Baseline profile with 
variable block sizes and 5 reference frames. The Rate Distortion 
Optimization (RDO) is turned on. A Group of Picture (GOP) of 10 

frames is used in the encoding. The first frame of each GOP is 
encoded as an I-frame and all the other 9 frames are encoded as P-
frames. Each sequence was cut to 250 frames (10 seconds for 25 
fps). All sequences were encoded with a fixed bitrate at 1.5Mbps. 
For each sequence, we expect that the original encoder will 
produce bitstreams with the same bitrate and different video 
quality when the search window size (SWS) varies: a larger search 
window will produce smaller residual error in motion estimation 
and thus better overall video quality. 

The SaVE implementation is based on C language and consists of 
only about 200 lines of code in addition to the H.264/AVC 
encoder. Such simplicity makes it easy to be incorporated into 
practical encoding systems. 

 

 
Figure 6. PSNR comparisons for UMHS, EPZS and SaVE-enhanced UMHS and EPZS (clips with vertical movement). Note that 

because SaVE/Comp and SaVE/DAcc are identical in vertical motion estimation, we only show the results of SaVE/Comp 



6. EXPERIMENTAL EVALUATION 
We encode each clip collected with the hardware prototype with 
original UMHS and EPZS, and the enhanced algorithms with 
SaVE predictors, i.e. UMHS+DAcc, UMHS+Comp, EPZS+DAcc 
and EPZS+Comp. Here “+DAcc” and “+Comp” refer to SaVE 
predictors obtained by SaVE/Comp and SaVE/DAcc respectively. 

The search window size (SWS) ranges from ±3 to ±32 (denoted as 
SWS = 3 to SWS = 32). All encodings were carried on a PC with a 
2.66GHz Intel Core 2 Duo processor and 4GB memory.  

We next show the superiority of SaVE in terms of video quality 
improvement and computational reductions.  

6.1  Video Quality Improvement 

Peak Signal-to-Noise Ratio (PSNR) is an objective measurement 

of video quality. A higher PSNR usually indicates a higher 
quality. Figure 6 and Figure 7 present the PSNR gains obtained by 
SaVE in comparison to the original H.264/AVC encoder with 
UMHS and EPZS. For clips with only vertical movement, we only 
present the results obtained by using SaVE/Comp, as both the 
SaVE/DAcc and SaVE/Comp use a single accelerometer to 
calculate the vertical rotation. For clips containing horizontal 
movement, we compare the results obtained by SaVE/DAcc and 
SaVE/Comp respectively. For Clip06, Clip07 and Clip12, we 
show the results for SWS ranging from 3 to 31. For other clips we 
only show SWS = 3 to 20, as our SaVE will not provide gains over 
this range.  

Still camera: Clip01 and Clip02  
Clip01 and Clip02 were captured with the camera held still. While, 
none of the SaVE-enhanced algorithms can help in achieving 
higher PSNR, as there is no camera rotation. However, we can see 
that SaVE does not hurt the performance in such cases. 

Vertical Movement: Clip03 to Clip06 
Clip03 to Clip06 were captured with the camera moving 
vertically. With the same SWS, the PSNRs obtained by 
UMHS+Comp and EPZS+Comp are clearly higher than those of 
the original UMHS and EPZS, especially for small SWS. For 
example, when SWS = 5, the PSNR gains obtained by 

UMHS+Comp over UMHS are 1.61dB, 1.40dB, 1.38dB and 
1.05dB for Clip03-06 respectively; when SWS = 11, the gains by 
EPZS+Comp over EPZS are 0.40dB, 0.25dB, 0.65dB and 0.78dB. 
UMHS+Comp and EPZS+Comp can maintain superior PSNR 
performance over the original algorithms until SWS  16 for 
Clip03 and Clip04, SWS  19 for Clip05 and SWS  28 for 
Clip06.  

Horizontal Movement: Clip07 to Clip10 

Clip07 to Clip10 were captured with the camera moving 
horizontally. We evaluated SaVE/Comp and SaVE/DAcc, and 
discovered that both the methods can achieve significant 
improvement over the original algorithms. For SaVE/Comp on one 

hand, the gains by UMHS+Comp over UMHS can be up to 2.59dB 
for Clip09. But this gain is achieved only when SWS = 5 is used 
According to our results, SaVE can particularly obtain gains when 
smaller SWS is used. For larger SWS, e.g. 11, UMHS+Comp still 
can achieve more than 1dB improvement for most of the clips. For 
SaVE/DAcc on the other hand, the performance of UMHS+DAcc 
and EPZS+DAcc can be close to UMHS+Comp and EPZS+Comp 
in some cases, e.g. for Clip08. But for clips with faster camera 
movement, such as Clip09 and Clip10, it appeared that the 
benefits of using UMHS+Comp and EPZS+Comp are quite 
obvious, especially at a small SWS.  

Irregular Movement: Clip11 and Clip12  

 

 
Figure 7. PSNR comparisons for UMHS, EPZS and SaVE-enhanced UMHS and EPZS (clips contains horizontal movement) 



Clip11 and Clip12 were captured with irregular and random 
movements (real-world video capturing scenario). The figure 
shows that the SaVE-enhanced algorithms can achieve 
considerable PSNR gains over the original algorithms when SWS 

 24 (for Clip11) or SWS  18 (for Clip12). When medium SWSs 
are used, the PSNR gains are usually from 1.0dB to 1.5dB for 
Clip11 and 0.4dB to 1.6dB for Clip12. 

The above results show that, with the current prototype, SaVE can 

provide reasonable PSNR gains when SWS  20 for most clips. 
When larger SWS (e.g. 24 to 32) is used, SaVE only shows a 
reduced improvement for Clip06, Clip07 and Clip11. However, 
these results only show the potential of our SaVE scheme. We 
expect the performance of SaVE will be further improved with an 
industrial implementation. 

Figure 8 shows an example (frame 76 of Clip11) of decoded 
pictures by EPZS (27.01dB) and EPZS+Comp (31.42dB) with 
same SWS = 11. Due to the camera movement, the picture 
decoded by EPZS is highly blurred. It is obvious that the picture 
offered by EPZS+Comp has much better quality. 

To sum up, since the estimated global motion is well-utilized, the 
SaVE predictor is often closer to the real predictor than others. 
Hence, in rate-distortion optimized motion estimation, SaVE is 
able to produce smaller block SAD, reduce the MCOST (which is 
the block SAD plus the motion vector encoding cost), and 
therefore to obtain a higher PSNR at a given SWS. 

6.2 Speedup 

We now present the results regarding the computation reduction 
realized by SaVE. We measure the computation load of encoding 
with the motion estimation time. The motion estimation time of 
UMHS and EPZS increases as SWS increases. Since the SaVE-
enhanced algorithms using a small SWS, usually can achieve the 
same PSNR of the original algorithms using a much larger SWS, 
we can practically save the motion estimation time by reducing the 
SWS while maintaining the same video quality.  

Vertical Movement: Clip03 to Clip06  

Table 2 shows, for clips with only vertical movement, the speedup 
achieved by UMHS+Comp and EPZS+Comp over the original 
algorithms while obtaining the same or even higher PSNR. We 
have selected a very small SWS = 3 and a relatively large SWS = 
11 for the SaVE-enhanced algorithms. The “CSWS” in Table 2 
denotes the Corresponding SWS used in the original UMHS 
(EPZS) that is able to obtain the similar PSNR to UMHS+Comp 
(EPZS+Comp) using SWS = 3 or SWS = 11. It is important to 
note that UMHS+Comp with SWS = 3, usually can obtain higher 

PSNR than original UMHS with SWS = 7 to 9. This results in up 
to 26.59% motion estimation time being saved.  

Horizontal / Irregular Movement: Clip07 to Clip12 

In Table 3, we present and compare the results of UMHS+DAcc, 
UMHS+Comp, EPZS+DAcc and EPZS+Comp for clips that 
contain horizontal movement. We discovered that SaVE-enhanced 
UMHS and EPZS achieve speedups by up to 24.60% and 17.96% 
respectively. It is also discovered that using the digital compass is 
more stable and efficient than dual accelerometers in reducing the 
motion estimation time overall.  

In summary, SaVE achieves significant speedups for the tested 
video clips, which represent a wide variety of combinations of 
global and local motions. Our SaVE scheme takes the advantage 
of traditional GME for predictive motion estimation, but it 
estimates the global motion with a novel approach. With very 

simple calculations, SaVE is able to remove a great amount of 
redundant computations from H.264/AVC motion estimation.  

6.3 Extensive Local Motion 
While we have showed the benefits of SaVE for various natural 
video clips, we have also considered one extreme circumstance  

when the video clip contains very complicated and extensive local 

Table 2. CSWS, PSNR Gains, and Speedup achieved by 

SaVE-enhanced UMHS and EPZS when SWS = 3 and SWS = 

11 for clips with vertical movement 

SaVE-enhanced UMHS 
SWS = 3 SWS = 11 

Clip 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 

03 8 +0.16 +23.61 14 +0.01 +7.98 

04 7 +0.30 +14.70 14 +0.03 +7.28 

05 8 +0.12 +23.71 15 +0.10 +8.00 

06 9 +0.08 +26.59 16 +0.09 +8.94 

SaVE-enhanced EPZS 

SWS = 3 SWS = 11 

Clip 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 

03 8 0.00 +12.32 13 +0.04 +3.47 

04 6 +0.54 +7.58 13 +0.01 +3.21 

05 8 +0.14 +11.76 14 +0.09 +3.01 

06 9 +0.02 +13.51 15 +0.08 +5.08 

Table 3.  CSWS, PSNR Gains, and Speedup achieved by UMHS+DAcc and UMHS+Comp when SWS = 3 and SWS = 11 for clips 

that contain horizontal movement 
SaVE-enhanced UMHS 

UMHS+DAcc (SWS = 3) UMHS+Comp (SWS = 3) UMHS+DAcc (SWS = 11) UMHS+Comp (SWS = 11) 

Clip 
CSWS 

PSNR 

Gains 

(dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains 

(dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 

07 4 +0.16 +13.88 6 +0.24 +16.41 16 +0.19 +5.92 18 +0.03 +12.93 

08 5 +0.24 +17.31 6 +0.29 +15.16 19 +0.06 +8.47 17 +0.06 +11.45 

09 6 +0.22 +17.84 10 +0.26 +24.25 18 0.00 +7.99 17 +0.04 +11.61 

10 5 +0.24 +16.71 9 0.00 +23.58 17 +0.03 +7.53 16 +0.05 +10.82 

11 5 +0.06 +16.21 7 +0.01 +17.99 20 +0.05 +11.20 17 +0.02 +13.20 

12 4 +0.02 +13.79 8 +0.02 +24.60 17 +0.03 +6.07 14 +0.15 +7.98 

SaVE-enhanced EPZS 

EPZS+DAcc (SWS = 3) EPZS+Comp (SWS = 3) EPZS+DAcc (SWS = 11) EPZS+Comp (SWS = 11) 

Clip 
CSWS 

PSNR 

Gains 

(dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains 

(dB) 

Speedup 

(%) 
CSWS 

PSNR 

Gains (dB) 

Speedup 

(%) 

07 5 +0.09 + 7.01 6 +0.25 +11.61 18 +0.07 +3.95 19 +0.03 +9.34 

08 5 +0.42 +9.94 6 +0.28 +10.79 20 +0.04 +7.03 18 +0.07 +7.65 

09 6 +0.06 +12.51 10 +0.12 +13.91 18 +0.04 +6.03 17 +0.05 +6.75 

10 5 +0.34 + 8.70 9 +0.06 +13.68 18 +0.03 +5.28 17 +0.02 +6.70 

11 5 +0.13 +6.09 6 +0.29 +10.94 20 +0.15 +17.96 17 +0.06 +7.93 

12 4 +0.07 +5.10 8 +0.02 +13.64 19 0.00 +5.29 15 +0.08 +6.52 



motion. We have taken a video clip in a busy crossroad with 
numerous local motion introduced by fast moving vehicles and 
slow moving pedestrians, at various distances to the camera. As 
shown in Figure 9, SaVE/Comp can still outperform the original 
algorithms but with reduced improvement (compared to Clip03-12 
in Section 6.1). The improvement is further reduced in 
SaVE/DAcc because it partially relies on the motion vectors in the 
previous frame [2]. The reduction in improvement is expected 
because SaVE only provides extra information about the global 
motion. 

7. DISCUSSIONS 
While we show that SaVE can reduce video encoding complexity, 
we acknowledge that our work is limited in the following aspects 
due to limitations in the space, scope, and available hardware. 
Nevertheless, we believe our work has demonstrated the potential 
of the sensor-assisted multimedia processing and paved the way 
for further investigations.  

7.1 Compass vs. Accelerometers 

As apparent from Section 6, the digital compass-based SaVE 
implementation (SaVE/Comp) provides more improvement than 
the accelerometer-only implementation (SaVE/DAcc), in 
particular when horizontal camera rotation dominates. This is 
because the digital compass directly provides the absolute 
horizontal angle with much higher accuracy. In contrast, as shown 
in Equation 4, the accelerometer-only implementation calculates 
camera rotation during the current frame with the help from that 
during the previous frame, which leads to reduced accuracy. 

The accelerometer-only implementation does enjoy a few practical 
advantages. First, accelerometers are cheaper and lower-power 
than digital compasses because of advancement in 

microelectromechanical system (MEMS) technologies. For 
example, the digital compass used in our experiments costs over 
$300 and consumes about 66mW while the board with two 
accelerometers used costs about $40 and consumes about 15mW. 
More importantly, accelerometers are more immune to external 
interference than digital compasses, which rely on the Earth’s 
magnetic field. As Figure 10 shows, the reading of the compass 
used in this work can be affected when it is closely placed with a 
mobile phone in use. This problem will be addressed in our future 
work.  

7.2 Limitations on Global Motion Estimation 

Firstly, we have only considered rotational camera movement. 
Though the linear movement is less common in video clips taken 
by handheld devices, SaVE cannot handle it adequately at this 
moment. The reasons are multiple: 1) it is well-known that 

accelerometers are unreliable to detect linear movement, even over 
modest distances [28], and compasses cannot determine location 
change; 2) knowing the linear movement of the camera without 
knowing the distance between the object and the camera is 
inadequate for global motion estimation because the object 
movement in the frame will be proportional to the inverse distance. 
Secondly, we have not tackled another source of motion: zooming. 
However, we believe zooming data can be easily captured from 
the camera itself and be utilized in improving SaVE. Moreover, 
we have only used a simple translational model for global motion 
estimation, and this only shows the potential of SaVE. In our 
future work, we may attempt to use an affine or perspective model 
to estimate the global motion.  

In spite of these limitations, we believe our SaVE scheme does 
provide obvious advantages. To our knowledge, the existing 
global motion estimation algorithms may require complicated 

 
(a) 

 
(b) 

Figure 8. Example of decoded pictures: (a) Picture decoded by EPZS with SWS = 11 (27.01dB) (b) Picture decoded by 

EPZS+Comp with SWS = 11 (31.42dB) 
 

 
Figure 9. Performance of SaVE under extensive local motion Figure 10. Compass readings affected by mobile phone signals 

272.0 

272.4 

272.8 

273.2 

273.6 

274.0 

0 20 40 60 80 100

O
ri

e
n

ti
o

n
 (

d
e
g

re
e
) 

Time (1/7 second) 

Clean With phone interference 



computations. The global motion used in SaVE, however, is 
obtained from sensors (through very simple calculations), which 
are already available on mobile devices. We have also shown that 
the power consumption of sensors of SaVE is ignorable. Indeed, 
we could consider SaVE as a “free lunch” for video capturing on 
mobile devices. 

8. CONCLUSIONS 
We reported the first attempt, SaVE, to utilize sensors to simplify 
motion estimation in H.264/AVC. We showed that a digital 
compass with a tri-axis accelerometer or two tri-axis 
accelerometers can accurately estimate global motion vector 
predictors. With SaVE, a fair PSNR performance can be 
maintained even with a much smaller search window for motion 

estimation, which leads to significantly reduced computation and 
therefore reduced hardware requirement and longer battery 
lifetime for handheld video recording devices.  

SaVE improves global motion estimation, i.e. motion due to a 

moving camera. Although a stable camera is essential for 
capturing high-quality professional video, the increasingly popular 
handheld camcorders, intended for user-created, amateur video, 
inherently experience significant motion, including panning, 
tilting and zooming. Due to the explosive growth in video-enabled 
small devices such as video phones, the creation of video by 
amateur users is increasingly popular. The phenomenal success of 
portals such as YouTube has demonstrated such a social trend. It 
was one of the motivations to our research and also attests the 
practical significance and broader impact of our work. 

An emerging trend in the mobile device industry is the integration 
of the multiple components and functionalities. Conventional 
wisdom would expect the computational complexity and thus the 
energy consumption increase monotonously with the number of 
integrated components and functionalities. Our work has shown, 

for the first time, that the system-level computational complexity 
thus energy consumption can be effectively reduced by leveraging 
the synergy between different modalities, acceleration, angular 
rotation and vision in our case. We believe that there is plenty of 
redundant computation in a multi-component multimedia device 
such as a video phone, which could be removed by exploiting a 
similar methodology presented in this paper.  
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