
SaVE: Sensor-assisted Motion Estimation for Efficient
H.264/AVC Video Encoding

Xiaoming Chen1, Zhendong Zhao1, Ahmad Rahmati2, Ye Wang1 and Lin Zhong2

1School of Computing
National University of Singapore

117590 Singapore

{chenxm, zhaozd, wangye}@comp.nus.edu.sg

2Department of Electrical & Computer Engineering

Rice University
Houston, TX, 77005

{rahmati, lzhong}@rice.edu

ABSTRACT
Motion estimation is a key component of modern video encoding

and is very compute-intensive. We present a novel Sensor-assisted
Video Encoding (SaVE) method to reduce the computational
complexity of motion estimation in H.264/AVC encoders,
leveraging accelerometers and digital compasses that are
increasingly available on mobile devices. Using these sensors,
SaVE calculates the rotational movement of a camera and then
infers the global motion in the camera image sensor; it
subsequently employs the estimated global motion to simplify the
state-of-the-art motion estimation algorithms, UMHS and EPZS
used in H.264/AVC encoders. We have constructed a prototype of
SaVE and report extensive evaluation of it. Our experimental
results show that SaVE can reduce the computations of UMHS

and EPZS algorithms by up to 27% and 18%, respectively, while
achieving the same or better video quality.

Categories and Subject Descriptors

H.5.1 [Multimedia Information Systems]: Video

General Terms

Algorithms, Performance, Design

Keywords

Sensor, Digital Compass, Accelerometer, Motion Estimation,
Video Encoding, H.264/AVC, MPEG

1. INTRODUCTION
Video cameras have already become a standard component of
Smartphones and other handheld devices. Amateur video clips
captured by such cameras have populated social networking

portals such as YouTube and enabled amateur journalism such as
iReport. Yet, capturing videos on mobile devices is compute-
intensive and therefore power-hungry. A key compute-intensive
module in modern video encoding is motion estimation. Because
the same object may appear in consecutive frames but at different
locations within the frames, motion estimation seeks to identify
blocks from consecutive frames that match each other and
subsequently eliminate redundancy. In modern video-coding

standards such as H.264/AVC, motion estimation may examine a
frame for block matching from multiple reference frames and
using multiple block sizes [1]. Not surprisingly, the power and
computational cost of video encoding is posing a significant
challenge to video capturing on mobile devices.

Our solution toward addressing this challenge is Sensor-assisted

Video Encoding, or SaVE. SaVE leverages low-power sensors to
estimate camera movement; and subsequently applies the
estimation to significantly simplify motion estimation. SaVE is
motivated by the following observations. Firstly, the motion of an
object in video frames can be decomposed to global motion,
introduced by camera movement and local motion introduced by
the movement of the object itself. In many video sequences,
particularly in amateur-captured video clips, global motion due to
camera movement, particularly rotation, is very common.
Secondly, modern mobile devices (e.g. the HTC G1) have
embraced ultra low-power and low-cost sensors, including digital
compasses and accelerometers. These sensors can efficiently

provide accurate information regarding the camera movement.

Our previous work [2] presented the preliminary results on
employing sensors to improve video encoding. It detected camera
rotational movement with a pair of tri-axis accelerometers, and
showed that it can effectively improve the Full Search algorithm
in MPEG2. In this work, we present a comprehensive study on the
use of sensors in video encoding with sophisticated motion
estimation algorithms, in particular in the H.264/AVC framework
that is extremely relevant to resource-constrained mobile devices.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM Multimedia 09, October 19–24, 2009, Beijing, China.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1. Basic structure of a H.264/AVC encoder together

with the proposed SaVE scheme

Our solution is the SaVE scheme, which advances our previous
work [2] not only in its sophisticated use of movement estimated
from sensors, but also in its exploration of new sensors, in
particular the digital compass.

Figure 1 shows the basic structure of a H.264/AVC encoder
together with the SaVE scheme. SaVE employs either two

accelerometers or the combination of one accelerometer and one
digital compass to estimate camera rotation. Using these
estimations, it infers the global motion in the subsequent frames.
SaVE then utilizes the estimated global motion as predictors
(initial search positions) in H.264/AVC motion estimation to
reduce computation.

We have built a prototype using a commercial camcorder with two
different combinations of the digital compass and accelerometers.
Our experimental evaluations show that SaVE can significantly
reduce the complexity of H.264/AVC motion estimation with
UMHS [3-4] and EPZS [1, 5] algorithms by up to 27% and 18%,
respectively. To the best of our knowledge, SaVE is the first

publicly reported attempt in using sensors to improve H.264/AVC
video encoding. It embodies a new research direction in
multimedia processing that explicitly employs physical
information obtained from sensors.

The rest of the paper is structured as follows. In Section 2, we
outline background information and related work in video coding.
In Section 3, we describe our method for camera movement
estimation. The technical details of utilizing the estimated global
motion as a SaVE predictor in H.264/AVC are explained in
Section 4. We present a prototype of SaVE and the experiment
setup in Section 5 and we present experimental results based on

the prototype in Section 6. We address the limitation of SaVE in
Section 7 and conclude in Section 8.

2. BACKGROUND AND RELATED WORK
We first provide background for SaVE and discuss related work.

2.1 Motion Estimation

When the camera or an object in its view moves, the captured
image moves too. Therefore, a part of an image may appear in
multiple consecutive video frames, at different but close locations,
creating an opportunity that modern video encoding technologies
leverage to compress the video sequence. The key to such
compression is motion estimation, which seeks to identify blocks
in a frame that matches those in a reference frame at different but
close locations.

The naïve Full Search algorithm attempts to locate the moved
image by searching all possible positions within a certain distance
(search window). While the naïve Full Search yields optimal

search results, it is extremely compute-intensive. There has been
extensive research on more efficient motion estimation. Known
techniques can be classified into three categories. The first
category seeks to reduce the number of candidate blocks in the
search window, e.g. three-step search (TSS) [6], new 3-step search
(N3SS) [7], four-step search (FSS) [8], diamond search (DS) [9],
cross-diamond search (CDS) [10], and kite cross-diamond search
(KCDS) [11]. The second category attempts to reduce the number
of pixels involved in the block comparison of each candidate, e.g.
partial distortion search (PDS) [12], alternative sub-sampling
search algorithm (ASSA) [13], normalized PDS (NPDS) [14],
adjustable PDS (APDS) [15], and dynamic search window

adjustment [16]. The third category takes a hybrid approach of the

first two, e.g. Motion Vector Field Adaptive Search Technique
(MVFAST) [17], predictive MVFAST (PMVFAST) [18],
Unsymmetrical-cross Multi-Hexagon-grid Search (UMHS) [3-4]
and Enhanced Predictive Zonal Search (EPZS) [1, 5]. In particular,
UMHS and EPZS are very efficient. In comparison to the Full
Search algorithm, they can reduce the computational requirement

by 90%, while maintaining a fairly good video quality [1, 3].
UMHS and EPZS are adopted in the H.264/AVC standard. In this
work, we use the implementation of UMHS and EPZS in
H.264/AVC version JM14.2 as the baselines.

Predictive motion estimation is very efficient in reducing the
number of candidate blocks. Instead of attempting all motion
vectors within a search range, the efficiency of the motion
estimation algorithm can be improved by only checking a few
highly promising predictors, which are expected to be close to the
best motion vector. With simple yet efficient checking patterns,
the motion estimation algorithms can find the optimal motion
vector around the predictor quickly with a reliable early-
termination criterion [3, 5]. Predictive motion estimation
algorithms, such as UMHS and EPZS, have provided predictors
based on block correlations, such as median predictor and

neighboring reference predictor, among others. The median
predictor is believed to be more reliable and is more likely to be
accurate [5] in comparison to others. A median predictor refers to
the median motion vector of the top, left and top-right (or top-left)
neighbor blocks of the current block, which is frequently used as
the initial search predictor and also for motion vector prediction
encoding [5].

However, the predictors in both UMHS and EPZS are obtained by
estimating the motion vector purely based on temporal or spatial
correlations, which may not be reliable. There are quite a few
methods, e.g. [19-21], explored the way of applying a global
motion estimation (GME) process to obtain an initial position (we
regard as a predictor) for local motion estimation. However, the
GME of these methods requires additional operations (e.g. frame
matching), leading to intensive computations. The development of
sensor technology has inspired us to estimate camera movement

(and apply the GME) by reliable sensors through very simple
calculations, and then utilize the estimated movement as predictors
in motion estimation. Our previous work [2] presented early
results on employing sensors to improve video encoding. In this
work, we provide a comprehensive treatment of SaVE and present
solutions that significantly improves H.264/AVC video encoding,
the state-of-the-art standard for mobile devices.

2.2 Sensors

In addition to our previous work [2], [22] also presented an idea of
using sensors to assist compression for vehicle-captured videos.
This work focuses on detect and use the palpable vehicle
movement in video compression. Our SaVE scheme, however, is
aiming at detecting and utilizing the rotational movement in
amateur-captured videos for simplifying H.264/AVC encoding.

SaVE employs ultra low-power and low-cost sensors to estimate
camera rotations. Assuming negligible linear acceleration of the

camera, a single tri-axis accelerometer can provide the vertical
angle (respect to the ground), but it is unable to provide the
horizontal angle. Dual accelerometers placed apart can measure
rotational acceleration, both horizontally, and vertically. Similarly,
a gyroscope can measure rotation speed. However, they are unable
to provide the absolute angle of the device. Integrating the rotation
speed or double integrating the rotational acceleration to calculate

angle is impractical because sensor noise rapidly becomes
egregious. In contrast, a tri-axis digital compass can directly
measure both horizontal and vertical angles. However, digital
compasses may be subject to external influence, such as nearby

magnets and ferromagnetic objects, and radio interference (e.g.
from mobile phones), as discussed in Section 7.1. Therefore,
SaVE uses readings from a single accelerometer for the vertical
angle. For the horizontal angle, we have implemented SaVE to use
either the single tri-axis digital compass or the two accelerometers.
The rotational acceleration measured from the dual accelerometers
is directly used in SaVE, without integration.

The power consumption of digital compasses and accelerometers
is very small in comparison to the power required for H.264/AVC
video encoding. For example, according to our measurements, the
commercial sensor board in our prototype that has a digital
compass and a tri-axis accelerometer consumes 66mW, and our

custom sensor with two accelerometers consumes 15mW without
Bluetooth. Furthermore, much of the power is consumed by
components that will be obsolete when the sensors are properly
integrated into the camera. For example, the Honeywell
HMC6042/1041z tri-axis compass consumes 23mW, and each of
the KXM52 tri-axis accelerometers used in our custom sensor
board consume less than 5mW. All three sensors would add up to
approximately 3% of the video encoding power of a typical
H.264/AVC video encoding chip, consuming over a Watt [23].
Since sensors are increasing embedded on mobile devices (to
decide screen orientation or for navigation purposes), this power

consumption would not be considered as overheads caused by
merely our SaVE scheme.

3. GLOBAL MOTION ESTIMATION
Camera movement can be linear or rotational. Linear movement is
introduced by camera location change, while rotational movement
can be introduced by tilting, i.e. turning the camera vertically, or
by panning, i.e. turning the camera horizontally. In amateur video

capturing with handheld devices, rotational movement is
extremely common. Camera rotation will lead to significant global
motion in the video frames. In this work, the global motion is
described by a vector, or Global Movement Vector (GMV),
specifying both vertical and horizontal movements of objects in
two successive frames due to camera movement. In this section,
we present several sensor-assisted methods of camera movement

estimation and then address GMV estimation from camera
movement. In Section 4, we will further apply the GMV estimation
to motion estimation.

3.1 Rotational Change Estimation

SaVE employs a single tri-axis accelerometer to estimate absolute
vertical angle. SaVE can employ two different methods for
calculating the horizontal movement, using a digital compass to
estimate absolute horizontal angle, or by using dual
accelerometers to estimate rotational acceleration. In this
subsection, we briefly present the mathematical foundations of

calculating the horizontal and vertical angles, and the rotational
acceleration from raw sensor data.

3.1.1 Vertical Angle (Single Accelerometer)

The vertical angle of the camera can be calculated using a single
tri-axis accelerometer, similar to [2]. The effect of the earth’s
gravity on acceleration measurements in three axes, ax, ay, and az,

can be utilized to calculate the static angle of the camera
accurately. For instance, when the camera rolls down from the
illustrated position in Figure 2, ax will increase and az will

decrease. The following equation can calculate the vertical angle
Pn of the camera at frame Fn , :

(1)

In this equation, ax , ay and az are the acceleration readings from a
tri-axis accelerometer (Figure 2). Hence the vertical rotational
change v for 2 successive video frames Fn and Fn-1 can be
calculated as:

 (2)

3.1.2 Horizontal Angle (Compass)

The horizontal angle of the camera can also be calculated with a
method identical to the above, using the readings from a tri-axis
compass instead of the accelerometer. It would effectively
calculate the angle of the camera with respect to the magnetic
north instead of ground, producing the horizontal angle. Therefore,
the horizontal rotational movement h between Fn and Fn-1 can
also be directly obtained as:

(a) (b)

Figure 2. SaVE prototype Figure 3. From camera movement to projection movement in the video

frame

 (3)

where Hn and Hn-1 are the horizontal angles at frame Fn and Fn-1
from the compass readings.

3.1.3 Horizontal Acceleration (Two Accelerometers)

In [2], we showed that a pair of properly located accelerometers,
by sensing rotational acceleration, can provide information
regarding relative horizontal rotational movement. For
convenience of discussion, we summarize the calculation of the
horizontal rotational movement h below. For frame Fn we have:

 (4)

In this equation, S0y and S1y are the acceleration measurements in
the Y direction from the dual accelerometers, respectively, and k is
a constant that can be directly calculated from the distance
between the two acceleration sensors, the frame rate and the pixel-
per-degree resolution of the camera.

3.2 Global Movement Vector (GMV)

Estimation

When a camera rotates, the projection of an object in the view to

the camera image sensor also moves, as illustrated in Figure 3.
The movement of the projection on the image sensor can be
described by the GMV that specifies the vertical and horizontal
movements.

To calculate the GMV, we must understand the camera
characteristics and build an optical model. In Figure 3 (a) and (b),
O denotes the optical center of the camera image sensor; f denotes
the focal length and l denotes the distance between the object to
the camera lens; B is a point in the object. In (a), the projection P
of point B on the image sensor is located at a distance of d from O;
 is the angle between the line BP and the perpendicular bisector

of camera lens. The situation when the camera is turned by is
shown in Figure 3 (b), where the new projection P’ is located at d’
from O. The movement for projections of point B on the imager
can be calculated as d = d – d’. From the optical model, we can
easily calculate d and d’ with:

(5)

Hence the projection movement d can be calculated as:

 (6)

As is usually very small between two successive frames of a
video clip, we have:

(7)

Thus we can obtain d as:

 (8)

Typically, ranges between zero and half of the Field of View
(FOV) of the lens. Hence, for all camera lenses except for extreme
wide-angle and fisheye ones, is reasonably small and d can be
further reduced to:

 (9)

From the above formulas, we have that f and are adequate to
calculate the movement. We can then convert f in pixels by
dividing the calculated distance by the pixel pitch of the image
sensor (denoted by f'). The current focal length of the camera, f,
and the pixel pitch of the image sensor are intrinsic parameters of
the camera, and known to the camera at any time without extra

cost. However, as our camera does not report these parameters to
us, we have adopted an easy-to-use tool based on MATLAB from
[24-26] to obtain these parameters (this is not a part of video
encoding and will not be required by real applications).

Having the horizontal and vertical rotation h and v, we can
calculate the GMV for 2 successive frames Fn and Fn-1 as:

 (10)

where dh and dv are the movement of the projection along the
horizontal and vertical directions, respectively; f’ is the focal

length in pixels.

4. SaVE MOTION ESTIMATION
With the GMV estimation, we next describe how SaVE applies the
GMV to H.264/AVC motion estimation.

4.1 GMV Per Reference Frame

Multiple-reference-frame motion vector prediction is an important
feature of H.264/AVC. For a video frame Fn, a single GMV
calculated for merely its previous reference frame Fn-1 is
inadequate to obtain accurate predictors in other reference frames.
To address this problem, SaVE dynamically calculates the
reference-dependant GMVs. For example, when using Fn-k as the

reference frame, for the frame Fn can be calculated as:

(11)

Using dynamic GMVs allows motion estimation to be started from
different positions for different reference frames.

4.2 SaVE Predictor Insertion

To improve motion estimation, we can insert the calculated
GMV(dh, dv) into the UMHS and EPZS algorithms as the SaVE
predictor (SPx, SPy). In our SaVE scheme, the SaVE predictor is
given preference to be attempted first before trying those original
predictors in UMHS and EPZS. In particular, we have:

(12)

where x and y are the horizontal and vertical coordinates of the
current block to be encoded.

We examine two strategies to use the SaVE predictor as the initial
search position. The first, we shall call Arbitrary Strategy, is

adopted from our preliminary work reported in [2]. The Arbitrary
Strategy employs the SaVE predictor as the initial predictor for all
macroblocks in a video frame. The obvious drawback of the
Arbitrary Strategy is that it excessively emphasizes on the
measured global motion while ignoring the local motion and the
correlations between spatially adjacent blocks. Our initial
experiments showed that the Arbitrary Strategy will not provide
significant gains over UMHS and EPZS.

Therefore, in order to consider both global and local motion, we
present a Selective Strategy based on our examination of many

insertion strategies, i.e. attempting the insertion with different
number of blocks and in different locations of the picture. The
Selective Strategy inserts the SaVE predictors into the top and left
boundary of a frame. As mentioned in Section 2, the original
predictors in UMHS and EPZS can spread the current motion
vector tendency to the remaining blocks in the lower and right part

of the video picture, because they highly rely on the top and left
neighbors of the current block, As a result, the Selective Strategy
spreads the global motion estimated from sensors to the entire
frame. Let MB(i,j) denote the macroblock located at ith column and
j
th row in the video picture (MB(0,0) is regarded as the top-left

macroblock). The Selective Strategy will use the SaVE predictor
as the initial search position only when (i < n OR j < n) and will
use the original predictors in UMHS and EPZS otherwise. We
have experimentally determined that n=2 yields good results.

The Selective Strategy improves UMHS/EPZS due to the
following two reasons. First, it benefits from the SaVE predictor
that reflects the global motion estimated from sensors. Second, it
respects the spatial correlations of adjacent blocks by using the
original UMHS and EPZS predictors.

4.3 Effectiveness of SaVE Predictor

We next explain how the SaVE predictor can reduce the
complexity of motion estimation using Figure 4. Figure 4 (a)
shows that UMHS original predictor has no knowledge of global
motion, and therefore the motion estimation may just start from
the neighboring motion vectors. In this case, original UMHS may
require a fairly large search window to identify the best matching

block (black) for a given block (grey), especially for clips that
contain fast camera movement. In another word, original UMHS is
not able to quickly reach the real predictors.

As we reviewed in Section 2.1, the methods in [19-21] employ an
additional GME process and therefore are able to provide more
accurate predictors. Consequently, this kind of algorithms can

reduce the search window size. Our SaVE scheme also takes the
advantage of the GME process but it obtains the global motion and
the predictor in a completely new way: the camera global motion
is precisely estimated from reliable sensors. With SaVE, the
motion estimation can immediately start from a position that is
close to the real predictor. Hence, SaVE will only need a much
smaller search window in motion estimation, as shown in Figure 4
(b). This will be confirmed in our prototype-based
experimentation, reported later.

5. PROTOTYPE IMPLEMENTATION

5.1 Hardware Implementation

In order to evaluate SaVE, we have implemented a prototype with
a consumer-grade camcorder and two sensor boards (Figure 5).
One sensor board was custom designed and carries dual tri-axis
accelerometers. The other board, an OS5000 from OceanServer

Technology [27], is a commercial tri-axis digital compass with an
embedded tri-axis accelerometer. The commercial sensor

Figure 4. SaVE predictor reduces the search window of motion estimation: (a) Original predictor; (b) SaVE predictor

 (a)

(b)

(c)

Figure 5. Prototype implementation of SaVE: (a) the commercial board with a digital compass and a tri-axis

accelerometer (left) and the in-house built board with dual tri-axis accelerometers (right) used in SaVE; (b) camcorder

and the digital compass and dual accelerometers bundled for video capturing; and (c) the prototype in working

Table 1. Video Sequences for systematical recording

 Object

Camera

Still Moving

Keep almost still Clip01 Clip02

Slow Vertical Movement Clip03 Clip04

Fast Vertical Movement Clip05 Clip06

Slow Horizontal Movement Clip07 Clip08

Fast Horizontal Movement Clip09 Clip10

Irregular Movement Clip11 Clip12

computes and reports the absolute horizontal and vertical angles
using its tri-axis compass and tri-axis accelerometer respectively.
Our custom sensor outputs raw accelerometer readings and we
perform the necessary calculations offline. Using the methods
presented in Section 3, we have implemented SaVE with both
boards, denoted as SaVE/DAcc (using dual accelerometers) and
SaVE/Comp (using the digital compass).

The camcorder used in this prototype has a resolution of 576 480,
and we set its frame rate to 25fps. Since the camcorder does not
support raw video sequence format, we have converted the
captured sequences into the YUV format with software. We firmly
attach both sensor boards to the camcorder so that the sensor
boards and the camcorder lens are aligned in the same direction as
shown in Figure 5.

5.2 Data Collection and Synchronization

We have systematically captured 12 video clips with different
combinations of global (camera) and local (object) motions, as
described in Table 1. Snapshots of the clips are shown in Figure 8.
The location motions were introduced by walking pedestrians.

We collect the sensor data while capturing the video clips and then
synchronize them manually, because our hardware prototype is
limited in that the video and its corresponding sensor data are
collected separately: video were captured directly by the

camcorder and the sensor data were captured by the digital
compass or accelerometers but stored by a laptop. The
synchronization between the dual accelerometers and video clips
has been introduced in [2]. For the digital compass, we align the
maximum recorded angle of the digital compass with the frame
taken at largest vertical angle in a video clip.

We should note that this manual synchronization will not be
required in real applications. On an integrated hardware
implementation, it would be fairly straightforward to synchronize
video and sensor readings, e.g., the sensor data recording and
video capturing start simultaneously when a user presses the
Record button of a camcorder or mobile device.

5.3 Software Implementation

To implement SaVE, we start from the standard H.264/AVC
encoder (version JM 14.2), which implements up-to-date UMHS
and EPZS algorithms. For each predictive frame (P- and B- frame),
we employ SaVE predictors in UMHS and EPZS with the
selective insertion strategy (n = 2) according to Sections 3 and 4.
We then encode each sequence using the Baseline profile with
variable block sizes and 5 reference frames. The Rate Distortion
Optimization (RDO) is turned on. A Group of Picture (GOP) of 10

frames is used in the encoding. The first frame of each GOP is
encoded as an I-frame and all the other 9 frames are encoded as P-
frames. Each sequence was cut to 250 frames (10 seconds for 25
fps). All sequences were encoded with a fixed bitrate at 1.5Mbps.
For each sequence, we expect that the original encoder will
produce bitstreams with the same bitrate and different video
quality when the search window size (SWS) varies: a larger search
window will produce smaller residual error in motion estimation
and thus better overall video quality.

The SaVE implementation is based on C language and consists of
only about 200 lines of code in addition to the H.264/AVC
encoder. Such simplicity makes it easy to be incorporated into
practical encoding systems.

Figure 6. PSNR comparisons for UMHS, EPZS and SaVE-enhanced UMHS and EPZS (clips with vertical movement). Note that

because SaVE/Comp and SaVE/DAcc are identical in vertical motion estimation, we only show the results of SaVE/Comp

6. EXPERIMENTAL EVALUATION
We encode each clip collected with the hardware prototype with
original UMHS and EPZS, and the enhanced algorithms with
SaVE predictors, i.e. UMHS+DAcc, UMHS+Comp, EPZS+DAcc
and EPZS+Comp. Here “+DAcc” and “+Comp” refer to SaVE
predictors obtained by SaVE/Comp and SaVE/DAcc respectively.

The search window size (SWS) ranges from ±3 to ±32 (denoted as
SWS = 3 to SWS = 32). All encodings were carried on a PC with a
2.66GHz Intel Core 2 Duo processor and 4GB memory.

We next show the superiority of SaVE in terms of video quality
improvement and computational reductions.

6.1 Video Quality Improvement

Peak Signal-to-Noise Ratio (PSNR) is an objective measurement

of video quality. A higher PSNR usually indicates a higher
quality. Figure 6 and Figure 7 present the PSNR gains obtained by
SaVE in comparison to the original H.264/AVC encoder with
UMHS and EPZS. For clips with only vertical movement, we only
present the results obtained by using SaVE/Comp, as both the
SaVE/DAcc and SaVE/Comp use a single accelerometer to
calculate the vertical rotation. For clips containing horizontal
movement, we compare the results obtained by SaVE/DAcc and
SaVE/Comp respectively. For Clip06, Clip07 and Clip12, we
show the results for SWS ranging from 3 to 31. For other clips we
only show SWS = 3 to 20, as our SaVE will not provide gains over
this range.

Still camera: Clip01 and Clip02
Clip01 and Clip02 were captured with the camera held still. While,
none of the SaVE-enhanced algorithms can help in achieving
higher PSNR, as there is no camera rotation. However, we can see
that SaVE does not hurt the performance in such cases.

Vertical Movement: Clip03 to Clip06
Clip03 to Clip06 were captured with the camera moving
vertically. With the same SWS, the PSNRs obtained by
UMHS+Comp and EPZS+Comp are clearly higher than those of
the original UMHS and EPZS, especially for small SWS. For
example, when SWS = 5, the PSNR gains obtained by

UMHS+Comp over UMHS are 1.61dB, 1.40dB, 1.38dB and
1.05dB for Clip03-06 respectively; when SWS = 11, the gains by
EPZS+Comp over EPZS are 0.40dB, 0.25dB, 0.65dB and 0.78dB.
UMHS+Comp and EPZS+Comp can maintain superior PSNR
performance over the original algorithms until SWS 16 for
Clip03 and Clip04, SWS 19 for Clip05 and SWS 28 for
Clip06.

Horizontal Movement: Clip07 to Clip10

Clip07 to Clip10 were captured with the camera moving
horizontally. We evaluated SaVE/Comp and SaVE/DAcc, and
discovered that both the methods can achieve significant
improvement over the original algorithms. For SaVE/Comp on one

hand, the gains by UMHS+Comp over UMHS can be up to 2.59dB
for Clip09. But this gain is achieved only when SWS = 5 is used
According to our results, SaVE can particularly obtain gains when
smaller SWS is used. For larger SWS, e.g. 11, UMHS+Comp still
can achieve more than 1dB improvement for most of the clips. For
SaVE/DAcc on the other hand, the performance of UMHS+DAcc
and EPZS+DAcc can be close to UMHS+Comp and EPZS+Comp
in some cases, e.g. for Clip08. But for clips with faster camera
movement, such as Clip09 and Clip10, it appeared that the
benefits of using UMHS+Comp and EPZS+Comp are quite
obvious, especially at a small SWS.

Irregular Movement: Clip11 and Clip12

Figure 7. PSNR comparisons for UMHS, EPZS and SaVE-enhanced UMHS and EPZS (clips contains horizontal movement)

Clip11 and Clip12 were captured with irregular and random
movements (real-world video capturing scenario). The figure
shows that the SaVE-enhanced algorithms can achieve
considerable PSNR gains over the original algorithms when SWS

 24 (for Clip11) or SWS 18 (for Clip12). When medium SWSs
are used, the PSNR gains are usually from 1.0dB to 1.5dB for
Clip11 and 0.4dB to 1.6dB for Clip12.

The above results show that, with the current prototype, SaVE can

provide reasonable PSNR gains when SWS 20 for most clips.
When larger SWS (e.g. 24 to 32) is used, SaVE only shows a
reduced improvement for Clip06, Clip07 and Clip11. However,
these results only show the potential of our SaVE scheme. We
expect the performance of SaVE will be further improved with an
industrial implementation.

Figure 8 shows an example (frame 76 of Clip11) of decoded
pictures by EPZS (27.01dB) and EPZS+Comp (31.42dB) with
same SWS = 11. Due to the camera movement, the picture
decoded by EPZS is highly blurred. It is obvious that the picture
offered by EPZS+Comp has much better quality.

To sum up, since the estimated global motion is well-utilized, the
SaVE predictor is often closer to the real predictor than others.
Hence, in rate-distortion optimized motion estimation, SaVE is
able to produce smaller block SAD, reduce the MCOST (which is
the block SAD plus the motion vector encoding cost), and
therefore to obtain a higher PSNR at a given SWS.

6.2 Speedup

We now present the results regarding the computation reduction
realized by SaVE. We measure the computation load of encoding
with the motion estimation time. The motion estimation time of
UMHS and EPZS increases as SWS increases. Since the SaVE-
enhanced algorithms using a small SWS, usually can achieve the
same PSNR of the original algorithms using a much larger SWS,
we can practically save the motion estimation time by reducing the
SWS while maintaining the same video quality.

Vertical Movement: Clip03 to Clip06

Table 2 shows, for clips with only vertical movement, the speedup
achieved by UMHS+Comp and EPZS+Comp over the original
algorithms while obtaining the same or even higher PSNR. We
have selected a very small SWS = 3 and a relatively large SWS =
11 for the SaVE-enhanced algorithms. The “CSWS” in Table 2
denotes the Corresponding SWS used in the original UMHS
(EPZS) that is able to obtain the similar PSNR to UMHS+Comp
(EPZS+Comp) using SWS = 3 or SWS = 11. It is important to
note that UMHS+Comp with SWS = 3, usually can obtain higher

PSNR than original UMHS with SWS = 7 to 9. This results in up
to 26.59% motion estimation time being saved.

Horizontal / Irregular Movement: Clip07 to Clip12

In Table 3, we present and compare the results of UMHS+DAcc,
UMHS+Comp, EPZS+DAcc and EPZS+Comp for clips that
contain horizontal movement. We discovered that SaVE-enhanced
UMHS and EPZS achieve speedups by up to 24.60% and 17.96%
respectively. It is also discovered that using the digital compass is
more stable and efficient than dual accelerometers in reducing the
motion estimation time overall.

In summary, SaVE achieves significant speedups for the tested
video clips, which represent a wide variety of combinations of
global and local motions. Our SaVE scheme takes the advantage
of traditional GME for predictive motion estimation, but it
estimates the global motion with a novel approach. With very

simple calculations, SaVE is able to remove a great amount of
redundant computations from H.264/AVC motion estimation.

6.3 Extensive Local Motion
While we have showed the benefits of SaVE for various natural
video clips, we have also considered one extreme circumstance

when the video clip contains very complicated and extensive local

Table 2. CSWS, PSNR Gains, and Speedup achieved by

SaVE-enhanced UMHS and EPZS when SWS = 3 and SWS =

11 for clips with vertical movement

SaVE-enhanced UMHS
SWS = 3 SWS = 11

Clip
CSWS

PSNR

Gains (dB)

Speedup

(%)
CSWS

PSNR

Gains (dB)

Speedup

(%)

03 8 +0.16 +23.61 14 +0.01 +7.98

04 7 +0.30 +14.70 14 +0.03 +7.28

05 8 +0.12 +23.71 15 +0.10 +8.00

06 9 +0.08 +26.59 16 +0.09 +8.94

SaVE-enhanced EPZS

SWS = 3 SWS = 11

Clip
CSWS

PSNR

Gains (dB)

Speedup

(%)
CSWS

PSNR

Gains (dB)

Speedup

(%)

03 8 0.00 +12.32 13 +0.04 +3.47

04 6 +0.54 +7.58 13 +0.01 +3.21

05 8 +0.14 +11.76 14 +0.09 +3.01

06 9 +0.02 +13.51 15 +0.08 +5.08

Table 3. CSWS, PSNR Gains, and Speedup achieved by UMHS+DAcc and UMHS+Comp when SWS = 3 and SWS = 11 for clips

that contain horizontal movement
SaVE-enhanced UMHS

UMHS+DAcc (SWS = 3) UMHS+Comp (SWS = 3) UMHS+DAcc (SWS = 11) UMHS+Comp (SWS = 11)

Clip
CSWS

PSNR

Gains

(dB)

Speedup

(%)
CSWS

PSNR

Gains (dB)

Speedup

(%)
CSWS

PSNR

Gains

(dB)

Speedup

(%)
CSWS

PSNR

Gains (dB)

Speedup

(%)

07 4 +0.16 +13.88 6 +0.24 +16.41 16 +0.19 +5.92 18 +0.03 +12.93

08 5 +0.24 +17.31 6 +0.29 +15.16 19 +0.06 +8.47 17 +0.06 +11.45

09 6 +0.22 +17.84 10 +0.26 +24.25 18 0.00 +7.99 17 +0.04 +11.61

10 5 +0.24 +16.71 9 0.00 +23.58 17 +0.03 +7.53 16 +0.05 +10.82

11 5 +0.06 +16.21 7 +0.01 +17.99 20 +0.05 +11.20 17 +0.02 +13.20

12 4 +0.02 +13.79 8 +0.02 +24.60 17 +0.03 +6.07 14 +0.15 +7.98

SaVE-enhanced EPZS

EPZS+DAcc (SWS = 3) EPZS+Comp (SWS = 3) EPZS+DAcc (SWS = 11) EPZS+Comp (SWS = 11)

Clip
CSWS

PSNR

Gains

(dB)

Speedup

(%)
CSWS

PSNR

Gains (dB)

Speedup

(%)
CSWS

PSNR

Gains

(dB)

Speedup

(%)
CSWS

PSNR

Gains (dB)

Speedup

(%)

07 5 +0.09 + 7.01 6 +0.25 +11.61 18 +0.07 +3.95 19 +0.03 +9.34

08 5 +0.42 +9.94 6 +0.28 +10.79 20 +0.04 +7.03 18 +0.07 +7.65

09 6 +0.06 +12.51 10 +0.12 +13.91 18 +0.04 +6.03 17 +0.05 +6.75

10 5 +0.34 + 8.70 9 +0.06 +13.68 18 +0.03 +5.28 17 +0.02 +6.70

11 5 +0.13 +6.09 6 +0.29 +10.94 20 +0.15 +17.96 17 +0.06 +7.93

12 4 +0.07 +5.10 8 +0.02 +13.64 19 0.00 +5.29 15 +0.08 +6.52

motion. We have taken a video clip in a busy crossroad with
numerous local motion introduced by fast moving vehicles and
slow moving pedestrians, at various distances to the camera. As
shown in Figure 9, SaVE/Comp can still outperform the original
algorithms but with reduced improvement (compared to Clip03-12
in Section 6.1). The improvement is further reduced in
SaVE/DAcc because it partially relies on the motion vectors in the
previous frame [2]. The reduction in improvement is expected
because SaVE only provides extra information about the global
motion.

7. DISCUSSIONS
While we show that SaVE can reduce video encoding complexity,
we acknowledge that our work is limited in the following aspects
due to limitations in the space, scope, and available hardware.
Nevertheless, we believe our work has demonstrated the potential
of the sensor-assisted multimedia processing and paved the way
for further investigations.

7.1 Compass vs. Accelerometers

As apparent from Section 6, the digital compass-based SaVE
implementation (SaVE/Comp) provides more improvement than
the accelerometer-only implementation (SaVE/DAcc), in
particular when horizontal camera rotation dominates. This is
because the digital compass directly provides the absolute
horizontal angle with much higher accuracy. In contrast, as shown
in Equation 4, the accelerometer-only implementation calculates
camera rotation during the current frame with the help from that
during the previous frame, which leads to reduced accuracy.

The accelerometer-only implementation does enjoy a few practical
advantages. First, accelerometers are cheaper and lower-power
than digital compasses because of advancement in

microelectromechanical system (MEMS) technologies. For
example, the digital compass used in our experiments costs over
$300 and consumes about 66mW while the board with two
accelerometers used costs about $40 and consumes about 15mW.
More importantly, accelerometers are more immune to external
interference than digital compasses, which rely on the Earth’s
magnetic field. As Figure 10 shows, the reading of the compass
used in this work can be affected when it is closely placed with a
mobile phone in use. This problem will be addressed in our future
work.

7.2 Limitations on Global Motion Estimation

Firstly, we have only considered rotational camera movement.
Though the linear movement is less common in video clips taken
by handheld devices, SaVE cannot handle it adequately at this
moment. The reasons are multiple: 1) it is well-known that

accelerometers are unreliable to detect linear movement, even over
modest distances [28], and compasses cannot determine location
change; 2) knowing the linear movement of the camera without
knowing the distance between the object and the camera is
inadequate for global motion estimation because the object
movement in the frame will be proportional to the inverse distance.
Secondly, we have not tackled another source of motion: zooming.
However, we believe zooming data can be easily captured from
the camera itself and be utilized in improving SaVE. Moreover,
we have only used a simple translational model for global motion
estimation, and this only shows the potential of SaVE. In our
future work, we may attempt to use an affine or perspective model
to estimate the global motion.

In spite of these limitations, we believe our SaVE scheme does
provide obvious advantages. To our knowledge, the existing
global motion estimation algorithms may require complicated

(a)

(b)

Figure 8. Example of decoded pictures: (a) Picture decoded by EPZS with SWS = 11 (27.01dB) (b) Picture decoded by

EPZS+Comp with SWS = 11 (31.42dB)

Figure 9. Performance of SaVE under extensive local motion Figure 10. Compass readings affected by mobile phone signals

272.0

272.4

272.8

273.2

273.6

274.0

0 20 40 60 80 100

O
ri

e
n

ti
o

n
 (

d
e
g

re
e
)

Time (1/7 second)

Clean With phone interference

computations. The global motion used in SaVE, however, is
obtained from sensors (through very simple calculations), which
are already available on mobile devices. We have also shown that
the power consumption of sensors of SaVE is ignorable. Indeed,
we could consider SaVE as a “free lunch” for video capturing on
mobile devices.

8. CONCLUSIONS
We reported the first attempt, SaVE, to utilize sensors to simplify
motion estimation in H.264/AVC. We showed that a digital
compass with a tri-axis accelerometer or two tri-axis
accelerometers can accurately estimate global motion vector
predictors. With SaVE, a fair PSNR performance can be
maintained even with a much smaller search window for motion

estimation, which leads to significantly reduced computation and
therefore reduced hardware requirement and longer battery
lifetime for handheld video recording devices.

SaVE improves global motion estimation, i.e. motion due to a

moving camera. Although a stable camera is essential for
capturing high-quality professional video, the increasingly popular
handheld camcorders, intended for user-created, amateur video,
inherently experience significant motion, including panning,
tilting and zooming. Due to the explosive growth in video-enabled
small devices such as video phones, the creation of video by
amateur users is increasingly popular. The phenomenal success of
portals such as YouTube has demonstrated such a social trend. It
was one of the motivations to our research and also attests the
practical significance and broader impact of our work.

An emerging trend in the mobile device industry is the integration
of the multiple components and functionalities. Conventional
wisdom would expect the computational complexity and thus the
energy consumption increase monotonously with the number of
integrated components and functionalities. Our work has shown,

for the first time, that the system-level computational complexity
thus energy consumption can be effectively reduced by leveraging
the synergy between different modalities, acceleration, angular
rotation and vision in our case. We believe that there is plenty of
redundant computation in a multi-component multimedia device
such as a video phone, which could be removed by exploiting a
similar methodology presented in this paper.

9. ACKNOWLEDGEMENT
The work by NUS team was supported by Singaporean MOE
grant R-252-000-236-112. The work by Rice team was supported
in part by NSF awards CNS/CSR-EHS 0720825 and IIS/HCC
0713249 and equipment donation from Texas Instruments. We
thank Mr. Guangming Hong for helpful discussions. Moreover, we
thank our anonymous reviewers and shepherd, Prof. Pascal
Frossard, for their help in improving the final version of the paper.

10. REFERENCES
[1] M. Tourapis, “Fast ME in the JM reference software,” JVT

Document JVT-P026, 16th Meeting, pp. 24-29, 2005.
[2] G. Hong, Y. Wang, A. Rahmati et al., “SenseCoding:

Accelerometer-Assisted Motion Estimation for Efficient Video
Encoding,” ACM Multimedia Conference, Oct. 26-31, 2008.

[3] Z. Chen, J. Xu, Y. He et al., “Fast integer-pel and fractional-pel
motion estimation for H.264/AVC,” Journal of Visual

Communication and Image Representation, vol. 17, no. 2, pp. 264-
290, 2006.

[4] Z. Chen, P. Zhou, and Y. He, “Fast Motion Estimation for JVT,”

JVT Document JVT-G016, pp. 7-14, 2003.

[5] A. M. Tourapis, “Enhanced Predictive Zonal Search for Single and
Multiple Frame Motion Estimation,” Proc. SPIE Conf. Visual

Communications and Image Processing, vol. 4671, pp. 1069-1079,
Jan., 2002.

[6] T. Koga, K. Iinuma, A. Hirano et al., “Motion compensated

interframe coding for video conferencing,” Proc. IEEE National

Telecommunication Conference, pp. G5.3.1-5.3.5, Nov. 29 - Dec. 3,
1981.

[7] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm

for block motion estimation,” IEEE Trans. Circuits and Systems for

Video Technology, vol. 4, no. 4, pp. 438-442, 1994.
[8] L. M. Po, and W. C. Ma, “A novel four-step search algorithm for

fast block motion estimation,” IEEE Trans. Circuits and Systems for

Video Technology, vol. 6, no. 3, pp. 313-317, 1996.
[9] Z. Shan, and M. Kai-Kuang, “A new diamond search algorithm for

fast block-matching motion estimation,” Image Processing, IEEE

Transactions on, vol. 9, no. 2, pp. 287-290, 2000.
[10] C. H. Cheung, and L. M. Po, “A novel cross-diamond search

algorithm for fast block motion estimation,” IEEE Trans. Circuits

and Systems for Video Technology, vol. 12, no. 12, pp. 1168-1177,
2002.

[11] C. W. Lam, L. M. Po, and C. H. Cheung, “A novel kite-cross-

diamond search algorithm for fast block matching motion
estimation,” Proc. Int. Symp. Circuits and Systems (ISCAS), vol. 3,
pp. 729-32, 2004.

[12] S. Eckart, and C. Fogg, “ISO/IEC MPEG-2 software video codec,”
Proc. SPIE Conf. Visual Communications and Image Processing,
vol. 2419, pp. 100-118, 1995.

[13] B. Liu, and A. Zaccarin, “New fast algorithms for the estimation of

block motion vectors,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 3, no. 2, pp. 148-157, 1993.
[14] C. K. Cheung, and L. M. Po, “Normalized partial distortion search

algorithm for block motion estimation,” IEEE Trans. Circuits and

Systems for Video Technology, vol. 10, no. 3, pp. 417-422, 2000.
[15] C. H. Cheung, and L. M. Po, “Adjustable partial distortion search

algorithm for fast block motion estimation,” IEEE Trans. Circuits

and Systems for Video Technology, vol. 13, no. 1, pp. 100-110,
2003.

[16] L. W. Lee, J. F. Wang, J. Y. Lee et al., “Dynamic search-window

adjustment and interlaced search for block-matching algorithm,”
IEEE Trans. Circuits and Systems for Video Technology, vol. 3, no.
1, pp. 85-87, 1993.

[17] K. K. Ma, and P. I. Hosur, “Performance Report of Motion Vector
Field Adaptive Search Technique (MVFAST),” ISO/IEC

JTC1/SC29/WG11 MPEG99/m5851, March, 2000.

[18] A. M. Tourapis, O. C. Au, and M. L. Liou, “Predictive motion
vector field adaptive search technique (PMVFAST) enhancing
block-based motion estimation,” Proc. SPIE Conf. Visual

Communication and Image Processing, pp. 883-892, Jan., 2001.

[19] K.-y. Yoo, and J.-k. Kim, “A new fast local motion estimation
algorithm using global motion,” Signal Processing, vol. 68, no. 2,
pp. 219-224, 1998.

[20] H. Jozawa, K. Kamikura, A. Sagata et al., “Two-stage motion
compensation using adaptive global MC and local affine MC,”
Circuits and Systems for Video Technology, IEEE Transactions on,

vol. 7, no. 1, pp. 75-85, 1997.
[21] D. Adolph, and R. Buschmann, “1.15 Mbit/s coding of video signals

including global motion compensation,” Signal Processing: Image

Communication, vol. 3, no. 2-3, pp. 259-274, 1991.

[22] M. Ulrich, and S. Martin, "Sensor Assited Video Compression",
2008 CA2605320 (A1)

[23] "Texas Instruments DM6446 H.264 media processor,

http://focus.ti.com.cn/cn/lit/an/spraad6a/spraad6a.pdf."

[24] J. Heikkila, and O. Silven, “A four-step camera calibration
procedure with implicit image correction,” Proc. IEEE Conf.

Computer Vision and Pattern Recognition, pp. 1106-1112, 1997.

[25] Z. Zhang, “Flexible camera calibration by viewing a plane from
unknown orientations,” Proc. IEEE Int. Conf. Computer Vision, vol.
1, pp. 666-673, 1999.

[26] "Camera Calibration Toolbox for Matlab,

http://www.vision.caltech.edu/bouguetj/calib_doc/."

[27] "OS5000-S and OS5000 -US digital compass, product of

OceanServer Technology, Inc., http://www.ocean-
server.com/download/OS5000_Compass_Manual.pdf."

[28] "AN013: Position determination using Accelerometers,

http://www.kionix.com/sensors/application-notes.html."

	Revised_paper_v6(SaVE)3.pdf
	Revised_paper_v6(SaVE)2

