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ABSTRACT
Existing music recommendation systems rely on collabora-
tive filtering or content-based technologies to satisfy users’
long-term music playing needs. Given the popularity of mo-
bile music devices with rich sensing and wireless communi-
cation capabilities, we present in this paper a novel approach
to employ contextual information collected with mobile de-
vices for satisfying users’ short-term music playing needs.
We present a probabilistic model to integrate contextual in-
formation with music content analysis to o↵er music recom-
mendation for daily activities, and we present a prototype
implementation of the model. Finally, we present evalua-
tion results demonstrating good accuracy and usability of
the model and prototype.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.5.5 [Sound and Music Computing]: [Mod-
eling, Signal analysis, synthesis and processing]

General Terms
Algorithms, Design, Experimentation

Keywords
activity classification, context awareness, mobile computing,
music recommendation, sensors

1. INTRODUCTION
Music recommendation systems help users find music from

large music databases, and an e↵ective system is one that
consistently matches a user’s preference. Most of the exist-
ing music recommendation systems that model users’ long-
term preferences provide an elegant solution to satisfying
long-term music information needs [1]. However, accord-
ing to some studies of the psychology and sociology of mu-
sic, users’ short-term needs are usually influenced by the
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users’ context, such as their emotional states, activities, or
external environment [2–4]. For instance, a user who is run-
ning generally will prefer loud, energizing music. Existing
commercial music recommendation systems such as Last.fm
and Pandora cannot satisfy these short-term needs very well.
However, the advent of smart mobile phones with rich sens-
ing capabilities makes real-time context information collec-
tion and exploitation a possibility [5–10]. Considerable at-
tention has focused recently on context-aware music recom-

mender systems (CAMRSs) in order to utilize contextual in-
formation and better satisfy users’ short-term needs [11–28].
Existing CAMRSs have explored many kinds of context

information, such as location [13,19,21,24,28], time [12,19,
25,26,29,30], emotional state [4,12,16,18,23,27], physiologi-
cal state [13,17,22,25], running pace [11,14,17], weather [12,
25], and low-level activities [16]. To the best of our knowl-
edge, none of the existing systems can recommend suitable
music explicitly for daily activities such as working, sleep-
ing, running, and studying. It is known that people prefer
di↵erent music for di↵erent daily activities [2, 3]. But with
current technology, people must create playlists manually for
di↵erent activities and then switch to an appropriate playlist
upon changing activities, which is time-consuming and in-
convenient. A music system that can detect users’ daily
activities in real-time and play suitable music automatically
thus could save time and e↵ort.
Most existing collaborative filtering-based systems, con-

tent-based systems and CAMRSs require explicit user rat-
ings or other manual annotations [1]. These systems cannot
handle new users or new songs, because without annotations
and ratings, these systems are not aware of anything about
the particular user or song. This is the so-called cold-start

problem [31]. However, as we demonstrate in this paper,
with automated music audio content analysis (or, simply,
music content analysis), it is possible to judge computation-
ally whether or not a song is suitable for some daily activity.
Moreover, with data from sensors on mobile phones such as
acceleration, ambient noise, time of day, and so on, it is pos-
sible to infer automatically a user’s current activity. There-
fore, we expect that a system that combines activity infer-
ence with music content analysis can outperform existing
systems when no rating or annotation exists, thus providing
a solution to the cold-start problem.
Motivated by these observations, this paper presents a

ubiquitous system built using o↵-the-shelf mobile phones
that infers automatically a user’s activity from low-level,
real-time sensor data and then recommends songs matching



the inferred activity based on music content analysis. More
specifically, we make the following contributions:

• Automated activity classification: We present the first
system we are aware of that recommends songs ex-
plicitly for everyday user activities including working,
studying, running, sleeping, walking and shopping. We
present algorithms for classifying these contexts in real
time from low-level data gathered from the sensors of
users’ mobile phones.

• Automated music content analysis: We present the re-
sults of a feasibility study demonstrating strong agree-
ment among di↵erent people regarding songs that are
suitable for particular daily activities. We then de-
scribe how we use music content analysis to train a
statistical model for predicting the activities for which
a song is suitable. This analysis can operate o✏ine
since the predictions they produce are independent of
individual user activities or listening behaviors.

• Solution to the cold-start problem: We present an e�-
cient probabilistic model for Adaptive Context-Aware

Content Filtering (ACACF) that seamlessly unifies the
activity classification and music content analysis re-
sults. This model can be updated on-the-fly for each
user to adapt to their ongoing listening behavior.

• Implementation and evaluation: We present a proto-
type mobile application that implements all parts of
the ACACF model except music content analysis en-
tirely on a mobile phone, and we present evaluation
results demonstrating its accuracy and usability.

This paper is organized as follows. Section 2 presents an
overview of traditional music recommender systems. Sec-
tion 3 formulates the probabilistic model used to do context-
aware recommendation based on context inference and mu-
sic content analysis. Section 4 describes the system design
and implementation. Section 5 describes evaluations of our
model and system. Section 6 discusses previous research
that is most closely related to our own. Section 7 concludes
the paper with a discussion of plans for future work.

2. BACKGROUND
Traditional music recommender systems can be classified

according to three categories of recommendation methods:
collaborative filtering (CF), content-based methods, and hy-

brid methods [1]. The main idea behind CF is that if user A
and user B have similar music preferences, then songs liked
by A but not yet considered by B will be recommended to B.
CF-based systems su↵er from the cold-start problem since
they cannot recommend songs to new users whose prefer-
ences are unknown (the new-user problem) or recommend
new songs to users (the new-song problem) [31]. In contrast
to CF, content-based systems work as follows: If user A likes
song S, then songs having content (i.e., musical features)
similar to S will be recommended to A. Content-based sys-
tems help solve the new-song problem, but they still su↵er
from the new-user problem. Hybrid methods combine CF
and content-based methods.
Traditional music recommender systems model only users’

long-term preferences. CAMRSs, which take advantage of
users’ short-term context information, have been explored
by some researchers. We next present our own CAMRS so
that we may later discuss related work on CAMRSs.

3. UNIFIED PROBABILISTIC MODEL
In this section we present our Adaptive Context-Aware

Content Filtering model, ACACF. The model uses a Bayesian
framework to seamlessly integrate context-aware activity clas-

sification and music content analysis.

3.1 Problem Formulation
Let S be a set of songs and C a set of context cate-

gories.1 For our model, the contexts are daily activities, with
C ={running, walking, sleeping, studying, working, shop-

ping}, but we can extend the model to other activities. A
user is assumed to be in exactly one context category c 2 C
at any time. We also assume the user always carries his/her
mobile phone, and that a sensor data stream can be recorded
continuously from the phone. For our model, the sensor data
includes time of day, accelerometer data, and audio from a
microphone. The sensor data stream is divided into a se-
quence of frames, possibly with overlap between adjacent
frames. For each frame, a vector f of features of the sensed
data is extracted. The recommendation problem is then for-
mulated as a two-step process: (1) infer the user’s current
context category c 2 C from f , and (2) find a song s 2 S
matching c the best. We call the first step context inference

and the second step music content analysis.

3.2 Probability Models
Inferring a user’s current context category c from the fea-

ture vector f is not an easy task. In our early experience
we found it di�cult sometimes to di↵erentiate working and
studying by a mobile phone; as sensed activities they ap-
pear to be similar, but they need to be di↵erentiated be-
cause people have di↵erent music preferences when working
versus studying. In order to capture such uncertainty, in-
stead of obtaining exactly one context category from f , we
obtain a probability distribution p(ci|f) over all categories.
For instance, if there is complete uncertainty about whether
a user is working or studying, then we can assign the proba-
bility 0.5 to both working and studying. Using Bayes’s rule,
p(c|f) can be as in Equation (1):2

p(c|f) = p(f |c)p(c)
p(f)

/ p(f |c)p(c) (1)

We call this part of our model the sensor-context model, and
we elaborate it further in Section 3.4.
To model whether a song s is suitable for a context cate-

gory c, we introduce a random variable R 2 {0, 1}. R = 1
means s is suitable for c, and R = 0 otherwise. Then we
use the probability p(R = 1|c, s) to indicate the user satis-
faction degree of song s when he/she is in context c. We
call this part of our model the music-context model, and we
elaborate it further in Section 3.3.
Combining p(f |c)p(c) with p(R = 1|c, s), we obtain the

joint probability shown in Equation (2):

p(c, f , R, s) / p(f |c)p(R|c, s)p(c) (2)

1In the notation we present, bold letters represent vectors,
calligraphic upper case letters represent sets, and random
variables and their values are indicated by italicized upper-
case and lower-case letters respectively.
2In this and subsequent formulas, we indicate proportional
equivalents where normalizing constants can be omitted,
thereby improving computation e�ciency.
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Figure 1: Graphical representation of the ACACF

Model. Shaded and unshaded nodes represent ob-

served and unobserved variables, respectively.

We assume that all songs share the same prior probabil-
ity, so p(s) can be omitted. The combined model can be
represented by the graph depicted in Figure 1. The com-
bined model is our ACACF model. Random variable ⇥ is
a probability prior and will be explained in Section 3.3.1.
The model is adaptive in that the component probabilities
are updated dynamically as a result of evolving user be-
havior; the adaptive features of ACACF are presented in
Sections 3.3.1 and 3.4.

With this model, the recommendation task is defined as
follows: Given the feature vector f calculated from sensor
data, find a song s that maximizes the user satisfaction
p(R = 1|s, f), which is calculated in Equation (3) as the sum
of the joint probabilities for all possible context categories:

p(R = 1|s, f) / p(R = 1, s, f)

=

|C|X

i=1

p(R = 1, s, f , ci) (3)

To calculate the joint probabilities of Equation (2), we
compute estimates for the probabilities of the music-context
model and the sensor-context model, as explained in Sec-
tions 3.3 and 3.4, respectively.

3.3 Music-Context Model

3.3.1 Modeling and Adaptation

As described later in Section 5.2, we have found that users
agree on the features of music they prefer when they are do-
ing a particular activity. However, in general, di↵erent users
like di↵erent songs. Thus, to provide a more personalized
recommendation, ACACF incorporates implicit user feed-
back. For example, if a user listened to a song completely,
the user probably likes the song; we call this positive feed-

back. If the user skipped a song after listening for only a few
seconds, then the user probably dislikes the song; we call
this negative feedback. Implicit feedback has been exploited
by some researchers [32], and we integrate it seamlessly and
e�ciently in our own ACACF model.

To model implicit feedback, for each user we assign a prob-

ability prior (or simply a prior) ⇥c,s ⇠ beta(✓c,s; ac,s, bc,s) to
p(R|c, s) for every pair (c, s). beta(✓, a, b) indicates the beta
distribution with shape parameters a, b. Here a, b can be in-
terpreted as the total number of occurrences of negative and
positive feedback, respectively, when the user is in context
c and is recommended song s. Therefore, the prior captures
the personal history of preferences of the user. The proba-
bility p(R = 1|c, s) can be expressed as in Equation (4):

p(R = 1|c, s) = b

a+ b

(4)

User feedback can be described as a triple x = (f , s, r),
where f is a feature vector extracted from mobile phone
sensors during the play of a recommended song, s is the
recommended song, and r is the observed value of R, which
is the user feedback. The value r = 0 indicates negative
feedback, while r = 1 indicates positive feedback.
The user’s true context category is unknown, and thus c is

a latent variable during adaptation. In this situation, updat-
ing the beta prior by exact Bayesian learning is computation-
intensive, and thus not suitable for mobile phones. Here
approximate inference is used to reduce the computation.
First the MAP estimation ĉ of c is given by Equation (5):

ĉ = argmax
c

p(c|f) (5)

Then the corresponding beta prior ✓̂ for pair (ĉ, s) is updated
as in Equation (6):

p(✓̂|x) ⇡
(
beta(✓̂; a+ 1, b) if r = 0

beta(✓̂; a, b+ 1) if r = 1
(6)

Finally, the corresponding p(R = 1|ĉ, s,x) representing the
user’s preference is updated as in Equation (7):

p(R = 1|ĉ, s,x) ⇡
(

b
a+b+1 if r = 0
b+1

a+b+1 if r = 1
(7)

Comparing Equation (7) with Equation (4), we can see
that when a user skips song s in context ĉ, r = 0 and the
probability of that song p(R = 1|ĉ, s) decreases. Thus, s

will have a smaller chance of being recommended next time.
Otherwise, if the user listened completely (r = 1), then the
probability p(R = 1|ĉ, s) increases, and thus s will be more
likely to be recommended next time.
The whole updating process is very e�cient: We first ob-

tain the MAP estimation ĉ, and then the counters a,b and
p(R = 1|ĉ, s) are updated. The adaptation can be done di-
rectly on a mobile phone without the use of backend servers.
We next describe the use of music content analysis results

to initialize the beta priors.

3.3.2 Initialization

We model the relationship between music and context by
examining the music audio content. There are many ex-
isting works on music content classification, such as genre
classification, mood classification, and so on. Classification
usually assumes that the classes are mutually exclusive. The
problem here is di↵erent, since one song can be suitable for
many context categories. Thus, our problem is similar to
the tagging problem: Given a song, we want to know the
probability that a tag is suitable for the song. Therefore, we
use a state-of-the-art music tagging method called Autotag-
ger [33].
Autotagger estimates the probability ⇡c,s that a song s is

suitable for context c for all users. We use ⇡c,s in our model
to initialize the prior beta(✓; a, b) described in Section 3.3.1.
First, the ratio of a and b is determined by Equation (8):

p(R = 1|c, s) = b

a+ b

= ⇡c,s (8)

To further determine a and b, the equivalent sample size �

is needed:

a+ b = �



Prediction Incremental training

AdaBoost Fast Slow and Non-trivial
C4.5 Fast Slow and Non-trivial
LR Fast Not supported
NB Fast Fast
SVM Fast Slow and Non-trivial
KNN Slow Fast

Table 1: Comparison of Classifiers

� is a free parameter of the system, balancing user feed-
back against music content analysis results. A large � in-
dicates a belief that music content analysis results are good
enough to provide a good recommendation, and that the
adaptation (Equation (7)) will change p(R = 1|c, s) very
slowly. On the other hand, a small � indicates that music
content analysis is relatively inaccurate, requiring more re-
liance on user feedback to perform recommendation. From
our subjects’ experiences, � = 5 is a reasonable setting.

After initialization, p(R = 1|c, s) is adapted dynamically
to the particular user according to Equation (7).

3.4 Sensor-Context Model
There are many ways to infer context categories from sen-

sor data. Choosing a proper model is very important and
requires careful consideration. First, since much of the com-
putation is to be done on a mobile phone, energy consump-
tion is critically important. Second, the model needs be ac-
curate. Third, in order to adapt the model to a user on the
fly as he/she is using the system, the model should support
e�cient incremental training.

We considered six popular methods used in activity rec-
ognition—AdaBoost, C4.5 decision trees, logistic regression
(LR), Naive Bayes (NB), support vector machine (SVM)
and K-nearest neighbors (KNN). We compared them from
three perspectives: prediction accuracy, overhead of predic-
tion computation, and incremental training. Table 1 com-
pares the methods qualitatively in terms of prediction over-
head and incremental training, and we present results on
prediction accuracy in Section 5.3.3. We chose Naive Bayes
because it o↵ers very good incremental training and predic-
tion overhead with just a small relative loss in accuracy.

Feature vectors extracted from sensor data are usually
real-valued vectors. Since Naive Bayes cannot handle real-
valued feature attributes directly, we first discretize the at-
tributes using the well known equal frequency discretization

method. As a result, every feature vector f becomes a vec-
tor of integers: (f1, f2, . . . , fv), and 1  fl  dl, where
dl is the number of bins of the l-th attribute. Using the
Naive Bayes assumption (that the features are condition-
ally independent), the sensor-context model p(f |c)p(c) can
be decomposed as follows:

p(f |c)p(c) =
vY

l=1

p(fl|c)p(c) (9)

To estimate the parameters p(c) and p(fl|c) in Equation
(9), training samples need to be collected, which are tuples
of the form (fk, ck), where f

k is the k-th observed feature
vector, and c

k is the corresponding context category. Then,
based on Maximum Likelihood Estimation, parameters are
learned using Equations (10) and (11), where n(c) indicates
the number of times that category c occurs in the training

samples, and n(Fl = f, c) indicates the number of times that
the l-th attribute of f is f and the context category is c:

p(c) =
n(c)

P|C|
i=1 n(ci)

(10)

p(fl|c) =
n(Fl = fl, c)Pdl
f=1 n(Fl = f, c)

(11)

An alternative to incremental training for adaptation is
to store all old training data in the mobile phone, and then
newly arriving training data is combined with the old data
and a new model trained again on the combined dataset.
We argue that this is not suitable for a mobile application.
First, storing all the training data in the mobile phone is
too expensive due to the limited storage space. Second, re-
training the model on the complete data after each update
would be too expensive computationally.
For these reasons we opt for incremental training. First, it

trains a model on some training data and then discards that
training data. When new data arrives, instead of training
a completely new model, it uses the new training data to
update the model incrementally and then again discards the
new training data. In this way, no training data needs to be
stored, and the model can be updated e�ciently.
Incremental training in Naive Bayes is straightforward.

According to Equation (10) and (11), the parameters are
estimated using counters n(c) and n(Fl = f, c), which are
the su�cient statistics of the sensor-context model. When
new training data arrives, these counters are updated, and
then parameters p(c), p(Fl = f |c) are updated via Equa-
tions (10) and (11). In this way, the sensor-context model
can be e�ciently updated to adapt to the user.

4. SYSTEM IMPLEMENTATION
We have implemented the ACACF model in a prototype

system, which comprises two components: (1) music audio
content analysis on a remote server, and (2) a context-aware
music recommender application on a mobile phone.
Music content analysis is done on a server since it is com-

pute-intensive and needs to be performed just once per song.
Doing it on a mobile phone would quickly drain the battery.
The mobile application is implemented on the Android

SDK, and its interface is depicted in Figure 2. To stream
music, the application connects to the server via a wire-
less connection (3G or WiFi). The application also can run
without connecting to the server, but then songs and music
content analysis results must be cached beforehand.
At the top of the user interface is a list of activities. Users

can let the system infer his/her current activity automati-
cally, which is called the auto mode and is shown as Fig-
ure 2a. The background intensity of the activity labels is
adjusted according to the inferred probabilities. The whiter
the background is, the higher the activity’s probability is.
Users also can select a single category manually, which is
called manual mode and is shown as Figure 2b. When an
activity is selected manually, its background becomes yel-
low. To switch back to auto mode from manual model, the
user just needs to tap the yellow label once.
When the application is in manual mode, the selected ac-

tivity and sensor data are used to update the sensor-context
model described in Section 3.4, which makes context infer-
ence increasingly accurate. Ideally, manual mode will not



(a) auto mode (b) manual mode
Figure 2: Context-aware mobile music recom-

mender.

be needed after several days since auto mode should be ac-
curate enough by then.

The list in the middle of the user interface contains the
recommended songs ranked by the probabilities described in
Equation (3); logarithms of these probabilities are shown on
the left side of the songs. At the bottom of the user interface
are play/pause and skip buttons.

The adaptation described in Section 3.3.1 is performed
whenever the user finishes listening to a song or skips a song.
After adaptation, the probability of the song just listened to
or skipped will be updated, and all songs will be re-ranked.
This makes the list of recommended songs increasingly ac-
curate, thereby adapting to the user’s personal preferences.

5. EXPERIMENTS
In this section we describe results from our evaluation of

the ACACF model and its prototype implementation. We
have conducted extensive experimental evaluations of both
model accuracy and system usability, and the results demon-
strate significant promise from both perspectives.

5.1 Datasets

5.1.1 Playlists Crawled from the Web

To build and evaluate the music-context model, we require
a large number of songs with context labels, which we use as
ground truth for activity prediction. One dataset we consid-
ered is the publicly available CAL500 dataset, which incor-
porates some usage annotations such as driving and sleep-

ing [34]. However, those annotations only partially cover our
six categories. Furthermore, although the annotations were
made by a large number of subjects (66 undergraduates),
each subject annotated only a small portion of the dataset,
and each song was annotated only by around three subjects,
which is too few to obtain reliable results.

For these reasons, we constructed a new, larger dataset
of 24224 songs crawled from Grooveshark3 and YouTube4.
Grooveshark has numerous playlists created by users , titled
with context information such as Studying, running songs,
etc. From Grooveshark we therefore collected playlists that

3
http://grooveshark.com

4
http://www.youtube.com

Context Playlists Distinct Songs Observations

Running 393 3430 7810
Walking 197 3601 4123
Sleeping 195 3941 5318
Working 194 4533 4988
Studying 195 3405 4363
Shopping 77 3786 3847
Total 1251 22108 30449

Table 2: Summary of the Grooveshark Dataset. Dis-
tinct Songs indicates the number of distinct songs

from the playlists for the specified context, while

Observations indicates the total number of songs in-

cluding duplicates.

match our context categories. The audio tracks for the songs
were then crawled from YouTube through YouTube’s open
data API. Details of the dataset are presented in Table 2;
the total number of 22108 distinct songs shown in the table
is less than 24224, since latter number includes songs not
associated with any of our six context categories.

5.1.2 Context Annotation of 1200 Songs

From the 22108 distinct songs shown in Table 2, we se-
lected 1200 for annotation. It was necessary to consider
fewer songs for two reasons. First, data crawled from the
Web is inevitably noisy, since some users may be careless in
their creation of playlists. Second, in order to verify agree-
ment between di↵erent users, we require songs labeled by
multiple users. In the Grooveshark dataset, most songs exist
in only a single playlist. For these reasons, it was necessary
to carry out an additional phase of annotation in which all

songs were annotated by multiple subjects to produce the
ground truth classification for our study. 1200 songs pro-
vides a large sample size but not so large as to make the
annotation e↵ort unreasonable for our subjects. We ran-
domly chose the 1200 songs so that there would be roughly
an equal number of songs from each context category (as
classified by the Grooveshark playlist titles).
We recruited 10 students to annotate all 1200 songs. There

were equal numbers of males and females. All of them lis-
ten to music at least one hour a day, and exercise regularly
(at least 3 hour-long sessions per week). They have di↵er-
ent culture background and are from India, Malaysia, Sin-
gapore, Indonesia, China, and Vietnam. Every participant
was rewarded with a small token payment for their time and
e↵ort. Participants were chosen with the requirement that
they listen to music regularly for at least one hour per day.
Annotation was performed through a Web site we set up
that simply required clicking checkboxes. Because di↵erent
parts of the same song can have very di↵erent styles, we
required the subjects to listen to each song for at least 45
seconds. Subjects were allowed to advance or rewind the
music playback. For each song, each subject selected one or
more suitable context categories.
The resulting dataset thus contains 1200 songs, with each

song annotated by all 10 subjects, and with each subject
having selected one or more context categories per song.

5.1.3 Sensor Data Collection

To build and evaluate the sensor-context model, we had
the same 10 subjects collect data from onboard sensors on



Activity Kappa Agreement Percent Agreement

Running 0.27 0.35
Working 0.03 0.02
Sleeping 0.29 0.28
Walking 0.03 0.03
Shopping 0.07 0.17
Studying 0.09 0.11

Table 3: Inter-Subject Agreement on Music Prefer-

ences for Di↵erent Activities

their mobile phones. The sensors we used were gyroscopes,
accelerometers, GPS receivers, microphones and ambient
light sensors.

Sensor data was collected by a mobile application we de-
signed, which will be o↵ered to other interested researchers
in the future. All the mobile phones used are based on An-
droid OS. To make the trained model robust to di↵erent
phone models, we provided our subjects with five di↵erent
phone models we purchased from Samsung and HTC. The
quality of these phones is also di↵erent. Some are expensive
and have all the sensors mentioned above, while some are
cheaper models having only accelerometer, a GPS receiver
and a microphone. We imposed no restrictions on how the
subjects held or carried or used their phones. To record a
data session, a subject first selected their current context
category from the application interface and then recorded
30 minutes of data. Each subject was required to record
one session for every context category. The recorded sen-
sor data and selected context category were stored together
in a SQLite database on the mobile phone’s SD card. The
resulting 30-hour dataset contains 6 context categories, and
every category has 0.5 hour sensor data collected by every
of the 10 subjects.

5.2 Music-Context Model Evaluation
Demonstrating agreement on suitable songs for an activ-

ity is a very important foundation for music content anal-
ysis, because if there is no agreement among people, then
a trained music-context model will work only for the users
in the training set but will not reliably generalize to other
users. Therefore, we first studied inter-subject agreement.
Fleiss’s Kappa [35] and percent agreement were calculated
among the 10 subjects for every context category, and the
results are presented as Table 3. We observe that all Kappa
values are significantly higher than 0 (p-value < 0.0001) and
are and especially high for running and sleeping. The results
therefore indicate that subjects have statistically significant
agreement on context categories, indicating the feasibility of
training generalizable statistical models.

Next, the music-context model was trained. The videos
we crawled from YouTube were first converted by ↵mpeg

5

into mono channel WAV files with a 16KHz sampling rate.
Then feature vectors were extracted using a program we de-
veloped based on the MARSYAS library6, in which a window
size of 512 was used without overlapping. The features we
used and their dimensionalities are ZeroCrossing (1), Cen-
troid (1), Rollo↵ (1), Flux (1), MFCC (13), Chroma (14),
SCF (24) and SFM (24). To reduce the training set size,
we used the mean and standard deviation of feature vec-
tors computed from every 30-second period. Finally, the we

5
http://ffmpeg.org

6
http://marsyas.sourceforge.net
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Figure 3: Retrieval performance of the music-

context model.

added the 1-dimensional feature tempo to the summarized
feature vectors. So the resulting combined feature vector is
79⇥ 2 + 1 = 159-dimensional.
We split the Grooveshark dataset into three disjoint sub-

sets: a training set of 16281 songs, a large test set of 6943
songs, and our annotated dataset of 1200 songs, which we
also used as a test set. We used the Autotagger method for
the training: Using the training set, one binary AdaBoost
classifier was trained for every context category. The classi-
fier for context ci estimates the probability that a song sj is
suitable for context ci, which is p(R = 1|ci, sj).
To measure the accuracy of these classifiers, we simulated

the following retrieval process: Given context c as the query,
we use its corresponding classifier to compute the probabil-
ity p(R = 1|c, sj) for every song sj and then rank all songs
in descending order according to the estimated probabili-
ties. Then the top-K songs are returned. Suppose there are
only L songs of the top-K are labeled with context c in our
dataset. Then L/K is the Precision@K for context c. The
final Precision@K is the average of all Precision@K for the
six categories.
We tested the classifiers on the three datasets. For our

dataset of 1200 annotated songs, we used majority voting to
determine the context for every song. For instance, if at least
six of the 10 subjects annotated a song as being suitable for
context c, then the song was labeled with c. The retrieval
performance measured by Precision@K depends on the test
set size, because the more songs we have, the more likely that
we can find good songs for a context category, and thus the
Precision@K will be higher. Therefore, in order to produce
results that are comparable between our annotated song set
and the large test set of 6943 songs, a set of 1200 songs was
randomly sampled from the large test set; we refer to this
as the small test set below.
We used a random estimator as our baseline, which ranks

all songs randomly. The random estimator was also tested
on the annotated dataset (baseline 1), the large test set
(baseline 2) and the small test set (baseline 3). All results
are presented in Figure 3. We observe that our trained mod-
els significantly outperformed the random estimator. There-
fore, the models are able to associate a song accurately with
daily activities by examining the song’s audio content.



AdaBoost C4.5 LR NB SVM KNN

Running 0.974 0.976 0.975 0.841 0.974 0.97

Working 0.933 0.932 0.921 0.876 0.929 0.922

Sleeping 0.999 0.999 0.999 0.994 0.999 0.993

Walking 0.961 0.960 0.955 0.909 0.960 0.953

Shopping 0.972 0.972 0.948 0.953 0.965 0.955

Studying 0.854 0.867 0.835 0.694 0.860 0.855

overall 0.951 0.952 0.941 0.893 0.950 0.943

Table 4: Activity Classification Accuracy

5.3 Sensor-Context Model Evaluation

5.3.1 Sensor Selection

Time data were used with data from accelerometers and
microphones in our sensor-context model. Although GPS
data are used by much of the previous work in human activ-
ity recognition, we did not use it for our own work because
our activity set is di↵erent from other work, plus GPS ap-
pears not to increase classification accuracy even though it
consumes a great deal of power. Additionally, we did not use
the ambient light sensors and gyroscopes, for two reasons:
First, gyroscopes do not improve accuracy very much since
accelerometers already provide good motion data. Second,
both kinds of sensors reside only in a small number of rela-
tively expensive phones, while our aim is to build a model
suitable for most available Android phones.

5.3.2 Feature Extraction from Sensor Data

Performing feature extraction from sensor data involves
computing feature vectors from the sensor data stream.

Human daily activities have very strong time regularity.
Most of us sleep at night and work during the day. There-
fore, time is a very important feature for daily activity recog-
nition, and we use the hour of the day in our feature set.

Window size in feature extraction is important. Generally,
a larger window size can make inference more accurate be-
cause it captures more information. However, a larger win-
dow size also reduces system responsiveness, thus degrading
the user experience. From our experience, a window size of
five seconds appears to be a reasonable setting.

Each accelerometer data sample has three axes, x, y and z.
From this data we use the magnitude m =

p
x

2 + y

2 + z

2,
which is robust to the direction of the phone. Then the
mean, standard deviation, minimum and maximum of all
five-second samples ofm are used in the final feature vectors.

For audio data from a microphone, we calculate the av-
erage amplitude of all samples as a measure of how noisy
the environment of the phone is is. The final feature vector
therefore has 1 + 4 + 1 = 6 dimensions.

5.3.3 Context Classification Accuracy

We evaluated AdaBoost, C4.5, LR, NB, SVM and KNN
for context classification, and we used 10-fold cross-validation
to compare their accuracy. The results are presented in Ta-
ble 4, with a value of 1.0 representing perfect accuracy. We
observe that while NB is not as accurate as other methods,
it still produces very good results. The categories studying

and working are not distinguished well by any of the meth-
ods, because the context information sensed during those
two activities is very similar. In fact, sometimes even hu-
man beings cannot distinguish the two.

Questions Mean Stdev

Q1 I prefer di↵erent music (di↵erent genre,

tempo, pitch, dynamics etc.) when I’m

in di↵erent context (In di↵erent

contexts means doing di↵erent things

e.g. running, sleeping, or at di↵erent

places e.g. school, home).

3.7 0.95

Q2 I usually listen to di↵erent sets of music

when I’m in di↵erent context .

3.5 1.18

Q3 It is time consuming to create di↵erent

lists of songs for di↵erent contexts with

existing technologies.

4.4 0.97

Q4 It is not convenient to change music

when I’m doing other things with

existing technologies.

4.0 0.94

Q5 I want to have a mobile application

that can accurately play suitable music

to me according to my context

automatically.

4.4 0.52

Table 5: Questionnaire 1

5.4 User Study

5.4.1 User Needs Study

To understand user needs for music recommendation, we
conducted a survey (Questionnaire 1) with our 10 subjects.
The questionnaire and survey results are presented in Ta-
ble 5. All questions were answered on a 5-point Likert scale
from“strongly disagree”(1) to“strongly agree”(5). Q1 helps
in understanding user needs for a context-aware music expe-
rience; the results demonstrate that subjects generally prefer
di↵erent music in di↵erent contexts. The results for Q2, Q3
and Q4 demonstrate that their requirements cannot be sat-
isfied very well with the existing technologies. Finally, the
results for Q5 demonstrate that a context-aware mobile mu-
sic recommender potentially can satisfy their needs better.

5.4.2 Evaluation of Recommendation Quality

Most existing music recommender systems, including con-
text-aware ones, require user ratings or annotations. During
the cold-start stage, these systems are able only to recom-
mend songs randomly. Comparison with existing CAMRSs
is impossible, for three reasons: First, we focus on daily ac-
tivities, and none of the reported literature has used these
before. Second, most existing CAMRSs do not infer con-
text categories from mobile phone sensor data. Third, most
existing CAMRSs do not use music content analysis. There-
fore, for our evaluation we undertook a comparison between
the following three kinds of recommendations:

(R1) recommending songs completely randomly. This simu-
lates traditional recommender systems during the cold-
start stage.

(R2) recommending songs with context category inferred by
the system automatically. This is the auto mode of our
application.

(R3) recommending songs with context category selected by
subjects manually. This is the manual mode of our
application.
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Figure 4: Average recommendation ratings. The er-

ror bars show the standard deviation of the ratings.

The same 10 subjects participated in this evaluation. The
subjects were divided into an experimental group and a con-
trol group of five subjects each. The experimental group
tested R2 and R3, and the control group tested R1. The
subjects did not know which group they were in. All phones
were supplied with the music content analysis results and
with an identical set of 800 songs chosen randomly from the
large test set of 6943 songs described in Section 5.2. Dur-
ing evaluation, each subject did each of the six activities for
about 20 minutes while listening to the activity’s top rec-
ommended songs. Each song was played for about a minute
and then rated with the above 5-point Likert scale. Thus,
the higher the rating for a song, the more the subject liked
the song. Adaptation of both the music-context model and
sensor-context model was turned o↵ during this evaluation.

The average and standard deviation of the resulting rat-
ings are presented in Figure 4. We observe that R2 per-
forms significantly better than R1 (p-value = 0.0478), and
R3 is much better than R1 (p-value = 0.0001). These results
indicate that context-awareness combined with music con-
tent analysis can produce significantly better results than
random recommendation. Therefore, our system provides
a promising solution to the cold-start problem. R3 is bet-
ter than R2 but not significantly better (p-value=0.1374),
demonstrating that auto mode is almost as good as manual
mode, and further demonstrating the accuracy of automated
context inference.

5.4.3 Adaptation Evaluation

Two of our 10 subjects participated in a one-week adapta-
tion evaluation. The subjects used the application continu-
ously every day for a week. Most of the time the application
was used in auto mode. If a subject found that the recom-
mended songs did not match his/her activity, he/she could
switch the application to manual mode or skip the recom-
mended song. The whole system was updated continuously
and became more and more accurate over the one-week pe-
riod with respect to the subject’s preferences. We compared
the accuracy of both context inference and recommendation
quality, both before the one-week adaptation period and af-
ter the one-week adaptation period.

Context inference: The trained Naive Bayes model de-
scribed in Section 5.3.3 was used as the initial sensor-context
model. Before and after adaptation, each subject’s sensor-
context model was evaluated on sensor data collected by
that subject. The average classification accuracy for the
two subjects is presented in Table 6.

Before Adaptation After Adaptation

Context Inference 0.87 0.96
Recommendation 0.68 0.93

Table 6: Context Inference and Recommendation

Accuracy Before and After Adaptation

Questions Mean Stdev

Q6 I can fully understand the

functionalities of the mobile application

and it’s easy to use.

4.6 0.51

Q7 I’m willing to use the application if I

have a copy.

4.4 0.84

Table 7: Questionnaire 2

Recommendation: Each subject rated the top-20 rec-
ommended songs with “like”, and “dislike” for every context
category, both before and after adaptation. Recommenda-
tion accuracy is defined as the proportion of liked songs.
The results are presented as Table 6.
We observe that the accuracy of both context inference

and recommendation increased significantly after one week
of adaptation. Therefore, our model is able to adapt accu-
rately to individual user preferences.

5.4.4 User Experience

All 10 subjects completed a second survey at the end of
the study (Questionnaire 2). Two of the questions and the
survey results are presented in Table 7. All questions were
answered with a 5-point Likert scale as before. We ob-
serve that most of the subjects agree that the application
is easy to use and are willing to use it. One subject com-
mented, “I really like the idea, hope you can improve on it
and sell it”. However, some of the subjects thought that
more context categories should be added, such as: enter-

taining (playing games, surfing the Web), cooking, traveling
(bicycle/bus/subway), partying and just relaxing and enjoy-

ing music (no work, no study). Two of the subjects thought
the interface could be made more appealing.

6. RELATED WORK

6.1 Existing CAMRSs
XPod is a mobile music player that selects songs matching

a users’ emotional and activity states [16]. The player uses
an external physiological data collection device called Body-
Media SensorWear. Compared to the activities we consider,
the activities considered in XPod are very coarse-grained,
namely resting, passive and active. User ratings and meta-
data are used to associate songs with these activities, but
recommendation quality is not evaluated.
In addition to XPod, many other CAMRs exploit user

emotional states as a context factor. Park et al. were prob-
ably the first to propose the concept of context-aware music
recommendation [12]. They used a fuzzy Bayesian network
to infer a user’s mood (depressed, content, exuberant, or anx-
ious/frantic) from context information including weather,
noise, time, gender and age. Music is then recommended to
match the inferred mood using mood labels manually anno-
tated on each available song. In the work of Cunningham et

al., user emotional states are deduced from user movements,



temperature, weather and lighting of the surroundings based
on reasoning with a manually built knowledge base [18]. Rho
et al. built an ontology to infer a user’s mood from con-
text information including time, location, event, and demo-
graphic information, and then the inferred mood is matched
with the mood of songs predicted from music content [23,27].
However, we believe that with current mobile phones, it is
too di�cult to infer a user’s mood automatically.

Some work tries to incorporate context information into
CF. Lee et al. proposed a context-aware music recommen-
dation system based on case-based reasoning [21]. In this
work, in order to recommend music to a target user, other
users who have similar context as the target user are se-
lected, and then CF is performed among the selected users
and the target user. This work considers time, region and
weather as the context information. Similarly, Su et al.

use context information that includes physiological signal,
weather, noise, light condition, motion, time and location
to pre-filter users and items [25]. Both context and con-
tent information are used to calculate similarities and are
incorporated into CF.

SuperMusic [19], developed at Nokia, is a streaming con-
text-aware mobile service. Location (GPS and cell ID) and
time are considered as the context information. Since that
application cannot show a user’s current context categories
explicitly, many users get confused about the application’s
“situation” concept: “If I’m being honest, I didn’t under-
stand the concept of situation. . . . I don’t know if there
is music for my situation at all?” [19]. This inspired us to
design our system recommending music explicitly for under-
standable context categories such as working, sleeping, etc.

Resa et al. studied the relationship between temporal in-
formation (e.g., day of week, hour of day) and music lis-
tening preferences such as genre and artist [26]. Baltrunas
et al. described similar work that aims to predict a user’s
music preference based on the current time [30]. Several
other works exploit physiological signals to generate music
playlists automatically for exercising [11, 14, 17]. Only the
tempo attribute of music was considered in those works,
whereas in our work, several music audio features including
timbre, pitch and tempo are considered. Kaminskas et al.

recommend music for places of interest by matching tags of
places with tags on songs [28]. In other work by Baltrunas
et al., a song’s most suitable context is predicted from user
ratings [36], and a CAMRS was built specifically for the
context of riding in a car [37].
Reddy et al. proposed a context-aware mobile music player

but did not describe how they infer context categories from
sensor data or how they combine context information with
music recommendation [15]. In addition, they provide no
evaluation of their system. Seppänen et al. argue that mo-
bile music experiences in the future should be both person-
alized and situationalized (i.e., context-aware) [20]. In this
work, no CAMRS is implemented. Bostrom et al. also tried
to build a context-aware mobile music recommender system,
but the recommendation part was not implemented, and no
evaluation is presented [38].

6.2 Content Analysis in CAMRSs
Only a relatively small number of CAMRSs described in

the literature use music content information. To associate
songs with context categories such as emotional states, most
of them use manually supplied metadata or annotation la-

bels or ratings [12,16–19,21,28,36], or implicit feedback [16].
In other cases, content is not directly associated with con-
text, but is used instead to measure the similarity between
two songs in order to support content-based recommenda-
tion [19,25].
The method of Rho, Han et al. is similar to ours [23, 27]:

Emotion classifiers are first trained, and then every song is
classified into a single emotional state. But there are also
di↵erences: First, we associate music content with daily ac-
tivities instead of mood. Second, in our models, a song can
belong to multiple categories simultaneously. The method
that we use to associate music content with daily activi-
ties is called Autotagger [33]. Similar methods have been
proposed by others [34], but Autotagger is the only one
evaluated on a large dataset. All these methods were used
originally to annotate songs with multiple semantic tags, in-
cluding genre, mood and usage. Although their tags include
some of our context categories such as sleeping, the training
dataset used in these studies (the CAL500 dataset discussed
in Section 5.1.1) is too small (500 songs with around 3 anno-
tations per song), and evaluations were done together with
other tags. From their reported results, it is di�cult to know
whether or not the trained models capture the relationship
between daily activities and music content.

6.3 Context Inference in CAMRSs
None of the existing CAMRSs tries to infer user activi-

ties using a mobile phone. XPod uses an external device
for classification—the classified activities are very low-level,
and classification is performed on a laptop [16]. While ac-
tivity recognition using mobile phones is itself not a new
idea, none of the systems that have been studied can be up-
dated incrementally to adapt to a particular user [5–10]. In
one remarkable work, Berchtold et al. proposed an activity
recognition service supporting online personalized optimiza-
tion [7]. However, their model needs to search in a large
space using a genetic algorithm, which requires significant
computation. And to update the model to adapt to a par-
ticular user, all of that user’s sensor data history is needed,
thus requiring significant storage.

7. CONCLUSION
In this paper we have described a novel probabilistic model

for music recommendation that combines automated activ-
ity classification with automated music content analysis, with
support for a rich set of activities and music content fea-
tures. We collected three datasets—a set of playlists from
the Web, a set of 1200 cleanly annotated songs, and a set of
sensor data recorded from daily activities. These datasets
will be o↵ered eventually to researchers who want to carry
out related research on context-aware music recommenda-
tion. Based on the set of 1200 annotated songs, we found
that although context annotation can be subjective, peo-
ple nevertheless often do agree on their annotations. Us-
ing the datasets, both the sensor-context model and the
music-context model were evaluated, and the results are
very promising. Based on the probabilistic model, we im-
plemented a CAMRS for o↵-the-shelf mobile phones. The
results from our user study demonstrate that the system is
easy to use and can provide good recommendations even
in the absence of pre-existing user ratings or annotations,
a situation in which traditional systems only can recom-
mend songs randomly. Therefore, our system satisfies users’



short-term needs better because of context-awareness, and
also provides a solution to the cold-start problem. Evalua-
tion results demonstrate that our system can update itself
in real-time to adapt to a particular user.

We are currently improving the user experience of the sys-
tem and will eventually publish it in the Google Android
Market. We also are exploring the integration of context-
awareness with collaborative filtering to provide even more
accurate recommendations.
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V. Välimäki, and J. Seppanen, “User-Centric
Context-Aware Mobile Applications for Embodied Music
Listening User Centric Media,” in LNICST, pp. 21–30,
2010.

[25] J.-H. Su, H.-H. Yeh, P. S. Yu, and V. S. Tseng, “Music
Recommendation Using Content and Context Information
Mining,” Intelligent Systems, IEEE, vol. 25, pp. 16–26,
Jan. 2010.

[26] Z. Resa, “Towards Time-aware Contextual Music
Recommendation: An Exploration of Temporal Patterns of
Music Listening Using Circular Statistics,” Master’s thesis,
2010.

[27] B. J. Han, S. Rho, S. Jun, and E. Hwang, “Music emotion
classification and context-based music recommendation,”
Multimedia Tools Appl., vol. 47, pp. 433–460, May 2010.

[28] M. Kaminskas and F. Ricci, “Location-Adapted Music
Recommendation Using Tags.,” in UMAP, 2011.

[29] D. Leake, A. Maguitman, and T. Reichherzer, “Cases,
Context, and Comfort: Opportunities for Case-Based
Reasoning in Smart Homes,” in Designing Smart Homes,
LNCS, 2006.

[30] L. Baltrunas and X. Amatriain, “Towards Time-Dependant
Recommendation based on Implicit Feedback,” in CARS,
2009.

[31] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock,
“Methods and metrics for cold-start recommendations,” in
SIGIR, 2002.

[32] Y. Hu and M. Ogihara, “Nextone player: A music
recommendation system based on user behavior,” in
ISMIR, 2011.

[33] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere,
“Autotagger: A Model for Predicting Social Tags from
Acoustic Features on Large Music Databases,” JNMR,
vol. 37, pp. 115–135, June 2008.

[34] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet,
“Towards musical query-by-semantic-description using the
CAL500 data set,” in SIGIR, 2007.

[35] J. R. Landis and G. G. Koch, “The measurement of
observer agreement for categorical data.,” Biometrics,
vol. 33, pp. 159–174, Mar. 1977.

[36] L. Baltrunas, M. Kaminskas, F. Ricci, L. Rokach,
B. Shapira, and K. H. Luke, “Best Usage Context
Prediction for Music Tracks,” in CARS, Sept. 2010.

[37] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling,
F. Ricci, A. Aydin, K.-H. Lüke, and R. Schwaiger,
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