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Abstract—With more and more multimedia content made avail-
able on the Internet,music information retrieval is becoming a crit-

ical but challenging research topic, especially for real-time online

search of similar songs from websites. In this paper we study how
to quickly and reliably retrieve relevant songs from a large-scale

dataset of music audio tracks according to melody similarity. Our

contributions are two-fold: (i) Compact and accurate representa-
tion of audio tracks by exploiting music semantics. Chord progres-

sions are recognized from audio signals based on trained music

rules, and the recognition accuracy is improved by multi-probing.

A concise chord progression histogram (CPH) is computed from

each audio track as a mid-level feature, which retains the discrim-

inative capability in describing audio content. (ii) Efficient organ-

ization of audio tracks according to their CPHs by using only one

locality sensitive hash table with a tree-structure. A set of domi-

nant chord progressions of each song is used as the hash key. Av-

erage degradation of ranks is further defined to estimate the simi-

larity of two songs in terms of their dominant chord progressions,

and used to control the number of probing in the retrieval stage.

Experimental results on a large dataset with 74,055 music audio

tracks confirm the scalability of the proposed retrieval algorithm.

Compared to state-of-the-art methods, our algorithm improves the

accuracy of summarization and indexing, andmakes a further step

towards the optimal performance determined by an exhaustive se-

quence comparison.

Index Terms—Audio computing, chord progression histogram,

locality sensitive hashing, music-IR, tree-structure.

I. INTRODUCTION

W ITH an explosive growth of community-contributed

multimedia data, content-based music information

retrieval (CBMIR) on large-scale social websites has become

a timely and critical research topic. For example, many music

movie soundtracks, with the same or similar melody but sung

and recorded by different people, are uploaded to YouTube

every year. A melody is a linear succession of music tones.

CBMIR, in terms of melody similarity, has several novel

applications such as plagiarism analysis, near duplicate audio

detection, relevant song retrieval and recommendation, etc.
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In typical scenarios, a user can find audio tracks similar to

his favorite melody using an audio example, or music compa-

nies can recommend to users new music albums with similar

melodies according to listening records. These applications

need large-scale CBMIR techniques.

Scalable CBMIR is commonly related to two essential as-

pects: (i) Representing audio signals by compact features.Music

signals usually are described by sequences of low-level fea-

tures such as short-time Fourier transform (STFT) [1], pitch [2],

[3], mel-frequency cepstral coefficient (MFCC), and chroma

[4]–[6]. (ii) Organizing audio features in the database using an

indexable format. Locality sensitive hashing (LSH) [1], [5], [7],

[8], tree structure [9]–[11], and hierarchical structure [12] are

typical methods to music audio content indexing. These two

aspects need joint design so as to improve both accuracy and

efficiency of large-scale music retrieval. Unfortunately, music

audio content analyses and summarizations by means of low-

level features in previous works are insufficient for the scal-

able CBMIR task. This is because low-level feature descriptors

of audio signals are highly heterogeneous and do not generate

a robust description for music audio tracks. The performance

of summarizing audio signals without exploiting music knowl-

edge is limited. In contrast, mid-level features (chord [13]–[18],

rhythm, and instrument) represented as musical attributes are

able to better extract music structures from complex audio sig-

nals and retain semantic similarity. A chord sequence contains

rich music information related to tonality and harmony, which

is helpful for effectively distinguishing whether music audio

tracks are similar to each other or not. However, chord recogni-

tion accuracy is still relatively low in previous state-of-the-art

algorithms [13]–[18], which affects the performance of chord-

based music retrieval. Moreover, good scalability requires that

the retrieval complexity should be at most sub-linear with re-

spect to the number of songs in the database. These issues in-

spire us to make use of mid-level feature descriptors and orga-

nize them in an indexable structure affordable for large-scale

music audio content matching and retrieval.

In this paper we study chords—a harmony-related mid-level

feature—for the task of scalable CBMIR and exploit chord pro-

gressions (CPs) to realize accurate summarization of music con-

tent and efficient organization of the database. As for CPs, we

mainly consider transitions between adjacent chords. But it is

easy to extend the idea to longer chord progressions. The pro-

posed algorithm consists of three key components: (i) recog-

nizing CPs from a music audio track based on the trained music

rules, (ii) computing a summary of the track from the recog-

nized CPs, and (iii) organizing the summaries of audio tracks

in the database using an indexing structure. How to improve

CP accuracy was investigated in our previous work [19]. In this

paper we conduct more detailed analyses. Specifically, the CPs
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are divided into two categories. Their recognition accuracy is

investigated by using multiple chroma features and refining the

training set. In addition, summaries computed from CPs are or-

ganized in a refined LSH table in order to accelerate the retrieval

process. The effect of CP recognition on LSH design is also the-

oretically analyzed. Our major contributions are summarized as

follows:

� Compact and accurate representation of audio tracks via

CPs. Recognition accuracy of CPs is greatly improved

by exploiting multi-probing. More specifically, through a

modified Viterbi algorithm, -best CPs are locally probed,

which in terms of their ranks are further summarized into

a compact chord progression histogram (CPH). Combi-

nations of the proposed multi-probing technique with dif-

ferent chroma features and the effect of refining the training

set are also studied.

� Efficient organization of CPHs of audio tracks via LSH.

A satisfactory recall is achieved with only one hash table,

by using dominant CPs of audio tracks as hash keys and

exploiting multi-probing. Organizing songs in the lay-

ered tree-structure helps alleviate the potential imbalance

among buckets. Average degradation of ranks is further

defined to assess the similarity of two songs in terms of

their dominant CPs, and used to control the number of

probings in the retrieval stage.

By locally probing CPs among adjacent frames according to

their state transition probabilities, the computed CPH is an accu-

rate and powerful feature containing harmonic progression and

tonal structures of audio tracks. In addition, retrieval accuracy

of the LSH-based indexing is improved by multi-probing, and

the implementation of LSH is efficient by requiring only one

hash table. Our experiments, on real-world large-scale datasets

including 74,055 audio tracks, confirm that the proposed algo-

rithm achieves a nice tradeoff between retrieval accuracy and ef-

ficiency and demonstrate the feasibility of using CPs for music

content representation and scalable retrieval. Compared to pre-

vious schemes which address summarization and indexing, the

proposed algorithm makes a further step towards the optimal

performance determined by an exhaustive sequence compar-

ison. As melody is usually embodied in chord progressions, the

proposed CPH feature serves as a signature of an audio melody

and helps to accelerate similarity retrieval in terms of melody.

This work begins with a review of music background and re-

lated work on music representations, LSH, CBMIR, and a com-

parison with our retrieval method in Section II. Section III de-

scribes the proposed retrieval algorithm in detail, focusing on

how to realize multi-probing in recognizing CPs, how to sum-

marize the probed CPs into a CPH, and how to organize CPHs

in the LSH table. In Section IV, we discuss the effect of training

sets on CP recognition, the effect of multi-probing in CP recog-

nition and retrieval, and present overall experiment results. Fi-

nally, we conclude the paper with Section V.

II. BACKGROUND AND RELATEDWORK

Conventionally, music retrieval on the Internet heavily de-

pends on tag information, both in the database and the query.

However, tag information of user-generated audio tracks might

be missing, ambiguous, or even misleading. In contrast, content

analysis and detection of audio tracks help improve retrieval

Fig. 1. Music representation: from signal to chord.

quality. However, scalability becomes a challenging issue as

multimedia music content has become prevalent on user-con-

tributed social websites. To provide real-time online content re-

trieval in a large-scale CBMIR system, approximate search is

usually adopted instead of the time-consuming exhaustive com-

parison and it can be described as follows: input a segment of a

music piece, perform index-based similarity search, and finally

return some relevant songs in a ranked list.

A. Representation of Music Information

An instrument-generated song can be represented at different

levels. At the high level, each song has its own score. At the

mid-level, at any moment, usually multiple notes are played

together which correspond to a chord. At the low level, the

acoustic signal of simultaneously played notes provides a spe-

cific music (spectral) perception to users.

Fig. 1 shows different levels of abstraction of music signals.

A music signal in Fig. 1(a) is a long sequence of samples in the

time domain. Directly comparing music signals is prohibitively

expensive and finding an appropriate representation is the key to

efficient music retrieval. Music signals are perceived by human

beings in terms of spectral components (Fig. 1(b)). In conse-

quence, most CBMIR algorithms rely on extracting spectral fea-

tures (e.g., STFT [1], MFCC) from acoustic signals. However, it

is also time-consuming to determine the similarity of two audio

signals in terms of feature sequences.

The frequency resolution of the human auditory system is

limited and non-linear. It is sufficient to divide the music fre-

quency band into 88 sub-bands in the log-scale, each corre-

sponding to a pitch note [2], [3], as shown in Fig. 1(c), where

adjacent pitches are spaced by a semitone. Due to the harmonic

nature of music instruments, a frequency appearing in the spec-

trum is often accompanied by its octave frequency. In addition,

multiple pitch components are generated simultaneously in a

polyphonic song. Therefore, it is relatively difficult to find the

exact pitches. Harmonic frequency components are perceptu-

ally similar. Accordingly, the energy of 88 pitch sub-bands can

be further grouped into 12 pitch class profiles, or the 12-dimen-

sion chroma feature [13], where energies of pitches in the same

harmonic family are added together.
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Different methods have been suggested to compute chroma

features, e.g., chroma energy normalized statistics (CENS)

in [20] and chroma DCT-reduced log pitch (CRP) in [21],

where chroma is computed, smoothed and down-sampled.

Beat-synchronous chroma based on instantaneous frequency

(BSIF chroma) is suggested in [4], where chroma is computed

per-frame using the instantaneous frequency information.

Adjacent chroma features, corresponding to the same beat, are

aggregated into a single feature by computing their average.

B. Chord Progression Recognition

Mid-level features of music audio tracks are compact de-

scriptors transcribed from low-level features of acoustic sig-

nals by aid of signal processing, musical knowledge, machine

learning and pattern recognition. These features capture musical

attributes (e.g., chord, rhythm, and instrument) and better rep-

resent musical semantics than low-level features. They provide

a brief yet accurate enough representation of audio signals and

can be used as an alternative when high-level semantic features

are not available. They can serve as audio signatures and help

to accelerate music similarity retrieval, structure segmentation,

mood classification and genre recognition.

As a mid-level feature, a chord is a concise representation

of music signals. A chord [22] in music is a combination of

two or more notes initiated simultaneously. Chord progression

represents harmonic content and semantic structure of a music

work, and influences music melody. Hence, chord recognition

has attracted great interest and many efforts have been devoted

to transcribing chords from music signals [13]–[18]. Major

bins of a chroma feature are associated with a chord pattern,

e.g., the chroma in Fig. 1(d) corresponds to major triad C in

Fig. 1(e). The simplest way to chord recognition is template

matching [13], computing the correlation between the chroma

feature (Fig. 1(d)) and a target chord pattern (Fig. 1(e)). This,

however, does not always work well since unexpected com-

ponents sometimes may dominate chroma energy [14]. More

advanced chord recognition involves supervised training using

either a Gaussian model or a support vector machine (SVM).

Instead of simple chroma [4], [20], [21], BSIF chroma, together

with its quad terms, forms a compound feature with

dimensions and is used in chord recognition in [16]. In contrast

to per-frame recognition, a more effective policy is to consider

chord progression and exploit sequence detection by the hidden

Markov model (HMM) [18].

C. Locality Sensitive Hashing

LSH [23] is an index-based data organization structure, used

to quickly and approximately find items relevant to a given

query. Its retrieval speed usually is much faster than that of ex-

haustive search algorithms. Accordingly, LSH-based methods

have shown great impact on multimedia information retrieval

such as music content detection [1], duplicate video mining and

clustering [24], and large-scale image retrieval and searching.

Conceptually, the general idea behind LSH is very simple as

follows: if items are similar to each other in the original vector

space, after projecting these items into a new vector space by a

family of locality sensitive hashing functions, they remain sim-

ilar to each other with a high probability. In a LSH-based re-

trieval, at first buckets associated with the hash key determined

by the query are located. Then, with a post comparison, rele-

vant items are found and ranked according to their similarity to

the query. Distribution of features in buckets tend to be uneven.

This can be solved by splitting big buckets into sub-buckets [7].

Typically, many parallel LSH tables are required to achieve high

retrieval accuracy, which occupies a large space. The number of

hash tables can be greatly reduced by exploiting multi-probing

[25], [26].

D. Related CBMIR Systems

A quick search in a large-scale music database needs a careful

tradeoff between accuracy and efficiency, where retrieval effi-

ciency can be greatly improved by summarization and LSH.

Efforts in Summarizing Audio Signals: In [27], principal

component analysis (PCA) is used to compute a summary

representation from typical audio features (timbre, rhythm and

pitch). With annotated class information, a multi-layer neural

network is trained. The activation value of each feature inside

the neural network is regarded as the most discriminative infor-

mation. This method is more suitable for music classification

than content-based retrieval. The most-frequently-used spectral

features (e.g., MFCC, chroma, and pitch) are combined into

a federated feature [28] by aid of assigning a set of weights

trained from a regression model. The disadvantage of these

methods is that such a global feature descriptor has difficulty

in retaining the local temporal information. In [29], modulated

complex lapped transform (MCLT) coefficients are computed

from audio samples and pass two-layer oriented PCA to gen-

erate summaries for audio segments. In [5], a multi-probe

histogram (MPH) is computed from the sequence of chroma

features. A histogram, over a set of predefined music concepts

represented by audio words, is suggested in [30]. Local tem-

poral information is retained in the summarization in these

methods, but music knowledge is not exploited.

Organizing Music Database via LSH: The first LSH-based

CBMIR system was MACSIS proposed by Yang [1]. STFT is

calculated from each signal and used as the basic feature, from

which hash keys are computed. Hough transform, after the in-

dexing procedure, is performed to rank matched results in terms

of sequence detection. In [31], log frequency cepstral coeffi-

cients (LFCCs) and pitch class profiles are used to represent

music signals. Audio shingles, concatenating adjacent features

into a high-dimensional vector, are arranged in a LSH table to

support a fast, approximate nearest neighbor search. Similar re-

sults, applying random linear functions in realizing LSH, were

studied in [28], [29], [32]. A sequence of consecutive pitch notes

is used as a hash index in [33]. Potential errors in pitch recogni-

tion are taken into account. But this technique cannot be directly

used to retrieve polyphonic songs. In [5], a two-stage LSH al-

gorithm is exploited to improve the reliability and scalability of

CBMIR systems. Besides exploiting LSH in summarizing audio

signals in the first stage, MPHs are organized in the LSH table

in the second stage, based on the order-statistics information.

E. Key Differences to State-of-the-Art Work

In this paper we apply musical knowledge to refine music

content representation, aiming to improve both reliability and
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TABLE I

TABLE OF NOTATIONS

scalability of searching relevant songs in a large data set. In

comparison with previous work, the overall benefits of our al-

gorithm are described as follows:

� Exploiting CPs in summarizing audio signals. This heavily

depends on CP recognition. But state-of-the-art algorithms

[13]–[18] cannot ensure a high recognition accuracy. We

solve this problem by introducing multi-probing in the

SVM recognition, and further compute a robust

mid-level feature—chord progression histogram (CPH).

In this way, the summary computed by the proposed

method is more accurate compared with previous works

on music summarization [5], [27]–[29].

� Organizing songs in the tree-structure LSH table by using

dominant CPs as hash keys. Although previous schemes

[1], [7], [28], [29], [31] usually require multiple parallel

hash instances, our LSH scheme only requires one hash

table. Satisfactory retrieval performance is achieved by

multi-probing in the search stage. We further define av-

erage degradation of ranks to refine this probing.

Multi-probing is performed in the CP recognition so as to

compensate for otherwise inaccurate CPs due to the low recog-

nition accuracy. The computed CPH is strongly associated with

musical knowledge and capturesmost-frequent CPs, where like-

lihood information of each probed CP is associated with its

own rank. In addition, organizing CPHs in the tree-structure

LSH table according to their dominant CPs ensures that fea-

tures in the same bucket are highly similar, which facilitates

multi-probing in the search stage.

III. CHORD PROGRESSION-BASED RETRIEVAL ALGORITHM

In this section, we present the main retrieval algorithm.

First, we describe the CBMIR framework in Section III-A,

introducing the main components of the retrieval system. Di-

rectly computing the similarity between sequences of low-level

features is computationally prohibitive in a large database.

Therefore, we exploit CPs to compute a mid-level feature. The

model used for recognizing CPs from chroma sequences and the

multi-probing procedure for improving recognition accuracy

are discussed in Section III-B. To avoid directly comparing two

chord sequences while retaining chord progressions, we further

explain how to compute a chord progression histogram (CPH)

in Section III-C, focusing on how to probe CPs. Based on a

similarity analysis in terms of CPs, dominant CPs are used as

hash keys to design a tree-structure LSH table in Section III-D.

Finally, the effect of CP recognition on LSH performance is

theoretically analyzed in Section III-E. Some frequently used

symbols are listed in Table I.

Fig. 2. Framework for a scalable CBMIR system.

A. Framework Overview

Fig. 2 shows our framework for a scalable CBMIR system. It

consists of four main parts: chord model training, CP recogni-

tion, CPH computation, and hash table organization. Different

classification methods are compared in [34] and SVMs showed

mostly good performances. Therefore, for the training part, we

use the SVM model [35], which considers both the spectral

structure in each feature and CP embedded in adjacent features.

With the trainedmodel, CP recognition is performed for all songs

in the database. Their CPHs are computed and organized in the

hash table, where the set of dominant CPs of each song is used

as its hash key. With a query as input, its CPs are recognized and

its CPH is computed.With its hash key, relevant songs are found

from the associated buckets. Finally, relevant songs are returned

to the user in a ranked list as the retrieval results.

A sequence of -dimensional chroma-related features

is extracted from audio signal and is to be transcribed to a

chord sequence. We will apply the proposed method together

with several state-of-the-art features: CENS (Muller et al.

[20], ), CRP (Muller et al. [21], ), BSIF

chroma (Ellis et al. [4], ), and CompFeat (Ellis et

al. [16], ). Distinguishing all possible chords is

quite complicated. For many applications, e.g., retrieval in this

paper, it is enough to use a subset of chords as the vocabulary.

Similar to previous work, we mainly consider the most frequent

chords: 12 major triads and 12 minor

triads . All other types of chords are re-

garded as one type . Altogether there are possible

chords, where are mapped to the numbers

respectively, so as to uniquely identify each chord.

B. -Best Chord Progression Recognition

Each chroma feature corresponds to a chord. In addition, the

composition rule of a song also places some constraints on ad-

jacent chords, which determines CP and is reflected in adjacent

features. We adopt the SVM model [35], SVM for per-fea-

ture chord recognition, and HMM for CP recognition.

The SVM model is described by (1) and explained as

follows: is a matrix used to convert a

feature to a vector of chord scores which correspond to

the likelihood of chords computed from the feature (the effect of

SVM). is a matrix describing the score of transiting

from one chord to another between adjacent features (the effect

of HMM). is a indicator vector that exactly has
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only one entry set to 1 corresponding to a chord .

is a indicator matrix that only has one entry set to 1

corresponding to chord progression from to . With a fea-

ture sequence and a chord sequence

is the score (likelihood) that is matched

to chord . is the score that the local chord

sequence progresses from to . Consequently, the sum in

(1) represents the total score that the feature sequence is

matched to the chord sequence . In the end, the chord

sequence with the maximal total score is found.

(1)

Parameters and of the SVM model can be obtained

by training, using the public dataset “Beatles” which has been

manually annotated by Harte [36].

1) Chord Progression Recognition With Multi-Probing:

Chord progression recognition by (1) only returns the

chord sequence with the highest score. However, even with

state-of-the-art algorithms, the chord recognition accuracy is

still relatively low, which leads to a lower recognition accuracy

of CPs. This is partially due to the difficulty in detecting the

exact chord transition positions in music signals. When the

recognized chord sequence is used for retrieval, we argue that

besides the chord sequence with the highest score, other CPs

should also be probed as well, in order to improve the relia-

bility. Although new features may be suggested for improving

performance of CP recognition, the multi-probing method

suggested here will still work well.

The well-known Viterbi algorithm is usually used in optimal

sequence detection. It simplifies sequence detection by only

keeping track of one optimal path from starting point to each

state at time . It is also used in the SVM algorithm [35]

for chord progression recognition. We modified the Viterbi

algorithm shown in Algorithm 1 to realize local multi-probing,

not only probing chords per feature but also probing

CPs per transition. Actually the latter is more important in

computing CPH.

Algorithm 1 Chord progression recognition

1: procedure CHORDPROGRECOG

2:

3:

4: for do

5:

6:

7:

8: end for

9: top chords of

10: for do

11:

12: top chords of

13:

14: top CPs of

15: end for

16: return and

17: end procedure

Fig. 3. Chord progression recognition with multi-probing.

This modified Viterbi algorithm takes the feature sequence

as input, and outputs chord set and CP set . The

procedure is divided into two parts. The first part is a forward

process, where scores of all paths are computed.

is a vector which contains scores of all chords when

matched against . is a vector, each of which corre-

sponds to the optimal path from the beginning to a chord at .

At equals . When , scores of the paths

from the beginning to chord at are composed of three parts:

(1) , scores of the optimal paths to all chords at ,

(2) , scores of transiting from all chords at to chord

at , and, (3) , the score of chord when matched against

. Scores of these paths leading to the same chord at are

recorded in and scores of the optimal paths to chords

at are stored in .

The second part is the reverse process, where potential chords

and CPs are probed. At , the top chords of are

regarded as potential chords corresponding to the last feature.

When , there is a path from each chord

at to each of the chords in at . Scores of these

paths sharing the same chord at are added together and

saved in , from which the top chords are found as . The

CPs from chords at to chords in at

form a set , from which the top are probed. These CPs,

together with their ranks, are saved in .

Fig. 3 shows an example with 5 features. At the stage, the

feature is statistically classified to possible chords, where

the chord has a score of . The score of pro-

gressing from chord to equals to . Be-

sides the optimal chord sequence (3, 4, 5, 4, 4) with the maximal

score, there are other paths that may partly overlap with the op-

timal path, but with different chords and CPs somewhere. With

errors occurring in chord recognition, probing sub-optimal paths

becomes necessary. In Fig. 3, at each stage, chords and

CPs are probed.

2) An Example of Chords/Chord Progressions: Fig. 4 shows

some results of chord recognition with multi-probing, where

chords and CPs are probed per stage. The

beat-synchronous CompFeat feature [16] is used. The horizontal

https://www.researchgate.net/publication/200806167_Automatic_Chord_Identification_Using_a_Quantised_Chromagram?el=1_x_8&enrichId=rgreq-71f03349-eaf5-4124-9fc1-091e77ad239b&enrichSource=Y292ZXJQYWdlOzI2MDM0OTk0MztBUzoxMDM3NzYwODE5NDA0ODJAMTQwMTc1MzU1NDg3Nw==
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Fig. 4. Effect of chord progression recognition (“A Hard Day’s Night” of the

album “A Hard Day’s Night” performed by “The Beatles” band).

axis is time and the vertical axis is the chord label. Solid points

are true chords by manual annotation, circle and square points

are recognized chords, and short lines are recognized CPs. Of

the eight CPs

, by recognition, one appears in

the 1 rank and five

appear in the 2 rank. From 50 sec to 53 sec, is recognized

as , and is recognized as because they have two out

of three tones in common. Correctly detecting the two chords

requires more probings.

The 15 sec audio signal in Fig. 4 contains 9 chords, or 8 CPs

according to annotation information. But there are many more

features than chords due to the following factor: In the feature

extraction stage, an audio signal is divided into short, overlap-

ping frames. Adjacent frames corresponding to the same beat

are aggregated to generate one beat-synchronous feature [16]

and used for chord progression recognition. But chord bound-

aries cannot always be accurately detected in this stage. As a

result, the same chord may span several adjacent features, e.g.,

spans 8 features. Then, CPs recognized from audio sig-

nals can be divided to two categories, inter-chord CPs (e.g.,

) where chords actually change, and intra-chord

CPs (e.g., ) where the chord is the same but divided

into multiple features. Only inter-chord CPs are associated with

melody information.

C. Chord Progression Histogram

The chord sequence recognized from the feature sequence is a

mid-level representation of an audio signal. Directly comparing

two chord sequences is faster than comparing two chroma se-

quences. But it still requires time-consuming dynamic program-

ming (DP), in order to account for potential mis-alignment. To

expedite the retrieval process with a more compact representa-

tion, the chord sequence can be further summarized into a chord

progression histogram.

Among CPs provided by Algorithm 1, each probed CP

is a triple. The progression from chord

to chord is mapped to a CPH bin . From the rank , a

weight is computed in a heuristic way so that a larger weight

is used for a higher rank. More specifically, weights

are used for ranks , respectively. Different

weight policies are tried and by experiments we find this simple

weight policy works well. The whole process is shown in (2).

(2)

In the ideal case, CPH should only include inter-chord CPs

to accurately reflect the melody information. But intra-chord

CPs do exist. Consider the case where two adjacent features

correspond to the same chord . By probing

chords probed from the former feature are while

chords probed from the latter feature are . The probed

CPs are (the ground truth intra-chord CP), ( is

probed from the latter feature) and ( is probed from the

former feature). Fig. 4 shows an example around 60 sec:

and (true chord is ). In addition, there are

more intra-chord CPs than inter-chord CPs, e.g., in Fig. 4 only

8 CPs are inter-chord CPs and the other 25 are intra-chord CPs.

It is hard to distinguish inter-chord CPs from intra-chord CPs

without knowing chord annotation. Therefore, CPs are

removed, but CPs and remain. As a result, a CPH

is somewhat symmetric.

D. Tree-Structure LSH

Each song has its own CPs and two similar songs share many

CPs in common. Therefore, it is possible to use CPs in the hash

design. But it is necessary to first investigate to what extent two

relevantsongsaresimilar in termsof theirdominantCPs.Because

CPH is somewhat symmetric, we only consider CPs from to

where in the hash design in order to get more unique hash

keys. Altogether there are possible CPs.

Let the top CPsof two relevant songs and be and ,

respectively. The top CPs of song appear in ’s CP list with

ranks . Due to errors in CP recognition,

someofthe top CPsofsong mightnotappear in the top CPsof

song . Instead, their rankswillbedegraded.Fig.5showsasimple

example, where the top 5 CPs (ranks ) of song

appear in the CP list of song with ranks .

To evaluate how much two songs are similar to each other in

terms of their dominant CPs, we define the average degradation

of ranks (ADR) between two songs as follows:

(3)

In the ideal case, , and equals 0. When

the top CPs of appear in the CP list of with ranks being

, ADR equals to . Therefore, ADR is an

average degradation of ranks of CPs.

ADR can be used to assess the similarity of two songs in

terms of their dominant CPs. We investigated ADR for relevant

songs over a small testset. The CDF (cumulative distribution

function) of ADR with are shown in Fig. 6.

ADR is relatively small in most cases. In the above analysis, a

CP of a song may be in any rank of its relevant songs. Usually

it is only necessary to consider ranks in the top CP list. By

experiment, we find that setting provides good

performance. This can be used to design hash tables. If a song
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Fig. 5. Rank relationship between dominant CPs of similar songs.

Fig. 6. Distribution of average degradation of ranks among similar songs.

Fig. 7. Tree-structure LSH, using dominant CPs as variable-length hash keys.

has its top CPs in the top CP list of , they are regarded as

being roughly similar to each other. To further ensure a degree

of similarity, must be less than a pre-determined

threshold, which is decided by ensuring that CDF is greater than

a value, e.g., 0.98.

In the database, of a song is used as its hash key and

is stored in the associated bucket. But an investigation

shows that the top CPs are not evenly distributed. Most items

are located in just a few buckets, which degrade the hashing

efficiency. In this design, a large bucket is further divided into

sub-buckets by using more CPs as the hash keys. For example,

for a bucket with the key length being , the key length of its

sub-bucket will be extended to . Sub-buckets belonging to the

same bucket share the same prefix composed of CPs, and are

distinguished by the remaining CPs. In this way, the hash

table is divided into levels, and the lengths of hash keys equal

to , respectively. Fig. 7 shows an example where

. Dashed boxes are internal nodes representing buckets

that are further divided into sub-buckets. CPHs are stored in

solid boxes which correspond to leaf buckets. The longer the

hash key of a leaf bucket is, the more similar songs in the same

bucket will be.

The tree-structure is a little similar to the LSH forest scheme

in [7]. However, the hash functions are quite different. General

randomhashfunctions, , areused in [7],without

exploiting statistical properties of features. We investigated the

energydistributionofCPHand found that energy isdominatedby

atmost20majorbins.Usinggeneral randomhash functions,most

coefficients of will not work. Therefore, many parallel hash ta-

bles are required to achieve a satisfactory recall. In our scheme,

CPs are used to construct hash keys. Songs in the same bucket

share the same dominant CPs. Organizing CPHs in this way en-

sures high similarity of songs in the same bucket. Therefore, sat-

isfactory retrieval performance can be achieved with only one

hash table, by using multi-probing [26] in the search stage.

Algorithm 2 Store CPH features in the LSH table

1: procedure STORECPH

2: Find top CPs

3: Find the bucket with longest key that matches

4: if bucket is found at level then

5: if does not contain any sub-bucket then

6: Put in bucket

7: if #items in a threshold then

8: DivideBucket

9: end if

10: else

11: Create a new sub-bucket with the key

12: Put in the sub-bucket

13: end if

14: else is not found

15: Create a new bucket with the key

16: Put in the new bucket

17: end if

18: end procedure

19: Procedure DIVIDEBUCKET

20: for Each in bucket do

21: Compute top CPs

22: Put in sub-bucket associated with

23: end for

24: end procedure

The organization of a LSH table is described by Algorithm 2.

To store in the hash table, at first its top CPs

are found. Then, the bucket which has the longest key matching

the one determined by is found. Fast algorithms for

searching network addresses with the longest prefix [37] can be

exploited here. There are three cases: (i) This bucket exists and

does not contain any sub-buckets. is stored in the bucket.

If the number of items in the bucket gets greater than a pre-deter-

mined threshold, this bucket is divided into sub-buckets using

longer hash keys. (ii) A bucket is found, which is further com-

posed of sub-buckets. But the target sub-bucket does not exist

yet. A new sub-bucket is created and is stored there. (iii)

The bucket is not found. Then a new bucket is created at the first

level and is stored there.

Retrieval with the tree-structure LSH is described by Algo-

rithm 3, for searching songs relevant to a query , whose CPH is

computed as . Initially, the candidate set is cleared to

be empty. Starting from the hash level with longest hash keys,

at a hash level , from all possible out of the top CPs

of the query, the ones with less than a threshold are
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kept, and used as hash keys for probing. CPHs in the associ-

ated buckets are found and added to . Then, the similarity

between and CPHs in is computed, and the set of

relevant songs is returned as .

Algorithm 3 Retrieve items relevant to by LSH

1: procedure QUERYWITHCPH

2: is cleared to be empty

3:

4: for Search each LSH level

5: for all CPs of top CPs of query do

6: if ADR of CPs a threshold then

7: Use CPs as hash key to probe buckets

8: Clear if buckets are found

9: Get CPHs from buckets and add to

10: end if

11: end for

12: if is false then

13: Stop searching other hash levels

14: end if

15: end for

16: Comp. similarity between and CPHs in

17: return the set of songs as whose similarity degree

18: with is greater than a threshold.

19: end procedure

1) Computation Cost of the Retrieval: Music composition

rules constrain the possible CPs and their combinations. As-

sume, without loss of generality, that there are typical

CPs, , with probabilities . Of the

songs in the database, are stored in a -level

bucket with the hash key . The max-

imal number of songs in a bucket is limited to a threshold ,

i.e., . To this end, a large bucket is split into

sub-buckets which are assigned longer hash keys (more CPs) so

that the probability product, , is no more than .

With a song as a query, the CPs used as the hash key of

a -level bucket appear in the query’s CP list with ranks

, where are the de-

graded ranks. According to (3), this bucket is probed under the

following condition where is the ADR threshold.

(4)

The number of possible combinations of , deter-

mines the maximal number of probing in the level. On the

other hand, the maximal number of buckets in the level

is . Therefore, the retrieval cost under LSH, normalized

by the cost of exhaustive search, is limited to be no more than

.

E. Performance Analysis

In this section, we give an analysis of the effect of CP recogni-

tion on the LSH design. To get a closed-form, we only consider

the simple case without using different weights. Assume the

false negative probability of CP recognition is , with which

a CP is falsely recognized as other CPs. A false recognition

of CP also causes a false positive event, with a probability

under the assumption that a false CP is

uniformly distributed among the other CPs. Consider

a song with CPs. Assume without loss of generality that the

countsof under theground truthequal

in thedecreasingorder.Their actual

counts by recognition equal . As for ,

(5)

where is the number of falsely recognized as other

CPs and is the number of other CPs falsely recognized

as . can be modeled by a binomial distribution [38]

and approximated by a normal distribution

. Similarly, can be modeled by

a binomial distribution and approximated by a

normal distribution

.

Therefore, approximately follows a normal distribution in

(6) where and are operations of expectation and vari-

ance respectively.

(6)

In a similar way, we can find the distribution of . Then,

also follows a normal distribution

(7)

In the LSH design, assume top CPs are used as hash keys.

Without probing, two similar songs should have their hash keys

exactly the same. Then, the recognition result of their top

CPs should also be correct. In other words, all top CPs of

the ground truth results should remain top after recognition.

This can be approximated by requiring (

will be greater than with a higher probability), and ex-

pressed in a simple form by the often-used function

as follows,

(8)

A simple probing policy is to require that top CPs of a song

appear in the top CPs of its relevant audio tracks,

(9)

and

. Then, because is a decreasing func-

tion. In other words, probing improves the retrieval recall of

LSH when using dominant CPs as the hash keys.
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The above simple probing policy can be further refined by

setting a threshold for the ADR metric so as to only probe the

most likely buckets.

IV. EVALUATION

In this section we evaluate the retrieval algorithm suggested

in Section III with extensive simulation evaluations. We first

investigate how to select the training set for CP recognition.

Then, with a small database, we examine the effects of probing

on both CP recognition and retrieval, and determine the optimal

parameters. Finally, we present the overall evaluation results.

A. Selecting a Training Set

State-of-the-art chord recognition algorithms, evaluated in

MIREX [39], all are trained and tested on the Beatles sets [36].

About 3/4 of the 180 songs are used for training and the other

1/4 for testing. With such a policy, the trained model may be

over fitted to the training set and does not generalize well to

other databases.

Different from a Gaussian model which heavily depends on

the size of the training set, the power of SVM comes from the

support vectors themselves. The training set would work well

if all typical support vectors are included. Instead of chords,

we are more interested in CPs. We use the MRR1 metric to

measure the performance of CP recognition.MRR1 is defined as

the mean reciprocal rank of the correct CP in the probed CP list,

which identifies both the recognition accuracy and the quality of

CPs in times of probing. To avoid over-fitting and remove some

features specific to training songs, we select a small training set

from Beatles and use others as the testing set. We wish to find a

small training set that contains most typical support vectors and

maximizes MRR1 on the testing set with more songs so that the

trained model can be better generalized to other datasets.

Algorithm 4 Find the optimal training set

1: procedure FINDTRAINSET

2: Equally divide into groups ,

each with songs

3: for do

4: Use as the training set and train a model

5: Test the model with , compute

6: end for

7: Sort , in the decreasing

order, accordingly becomes

8: Use the last groups as the common testing set .

9: and train a model

10: Test it with and set its to

11: for do

12: Use as a temporary training set

13: Train a model and test it with

14: Compute its as

15: if then

16:

17:

18: end if

19: end for

20: return as the selected training set.

21: end procedure

Fig. 8. Effect of multi-probing in chord-progression recognition (inter-chord

CPs).

Fig. 9. Effect of multi-probing in chord-progression recognition (intra-chord

CPs).

The heuristic algorithm for selecting a training set is shown

in Algorithm 4, which takes as input all 180 Beatles songs

with chord annotations, and outputs a training set . At first,

is divided into groups, , each with

songs. should be small enough so that there will be

some groups that do not contain support vectors specific to the

training set. should also be large enough so that a SVM

model can be trained. Using each group as the training set

and the other songs in as the testing set, is

computed. The obtained , is sorted in

decreasing order, and accordingly is re-arranged to .

Then, starting with and , a

new set of songs is used as a temporary training set

and its is evaluated on the common testing set , and

computed as . The set will be used as the

new training set if is greater than . For this

process, we used , and

the final training set contains 45 songs.

B. Effect of Probing

We investigated MRR1 of chord and CPs over a common

testing set, using four features referred to as Muller05 (CENS

[20]), Ellis07 (BSIF chroma [4]), Muller09 (CRP [21]),

and Ellis10 (CompFeat [16]). We applied the proposed

multi-probing method together with all features. The recog-

nition accuracy is usually referring to all chords. Here, we

distinguish inter-chord CPs from intra-chord CPs.

MRR1 results of inter-chord CPs and intra-chord CPs are

shown in Fig. 8 and Fig. 9, respectively. The two figures reveal

three points: (i) The proposed multi-probing method improves
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Fig. 10. Effect of multi-probing in the CP recognition on the recall perfor-

mance of CBMIR.

CP recognition accuracy of all features. (ii) Intra-chord CPs are

recognized with a much higher accuracy than inter-chord CPs.

This is due to following factors: Spectrum within a chord is

stable and the recognition accuracy of intra-chord CPs is rel-

atively high. In contrast, spectrum near chord boundaries is not

stable, which leads to a low accuracy of inter-chord CPs. Under

almost all cases, the CompFeat (Ellis10) feature outperforms

other features in terms of inter-chord CP accuracy. (iii) Recog-

nition accuracy is improved by refining the training set. To-

gether with CompFeat, we further refined the training set and

another curve “RefineTS” is added to both figures, but the ef-

fect is different. For intra-chord CPs, the effect is limited be-

cause state-of-the-art algorithms already have a high perfor-

mance. However, its effect on inter-chord CP accuracy is ob-

vious. This justifies the necessity of refining the training set. The

CompFeat feature with the refined model (RefineTS) is used

hereafter. Further improvement of inter-chord CP recognition

accuracy is left as future work.

We tried different probing policies ( and ) in com-

puting CPHs and tested them on a small database by the

( -nearest neighbor) retrieval. The result of the often-used re-

call metric is shown in Fig. 10. This figure reveals three points:

(i) Under a fixed , recall first increases with and then

decreases, which indicates that a suitable can lead to a local

maximal recall. (ii) Increasing usually leads to a higher peak

recall. (iii) The effect of probing is large when and are

small. When there is no probing, and , recall

is only 0.665. Simply probing one more CP by using ,

the recall increases to 0.746. When probing chords,

the max recall reaches 0.806 at . This figure confirms

that multi-probing in the recognition is necessary in order to get

accurate music representations to improve the retrieval recall.

Hereafter, and are used.

C. Overall Results of Retrieval Experiment

In this section, we present the overall experimental results.

We use the 3 datasets shown in Table II, with a total of 74,055

audio tracks. Dataset I, Covers79, is the same as in [5] and con-

sists of 1072 audio variants of 79 songs.More specifically, audio

tracks in Covers79 are recordings of the same song sung by

different people over similar music accompaniments. The pro-

posed method can also be applied to search audio tracks with

similar melodies if only they share dominant CPs in common.

TABLE II

DATASET DESCRIPTION

Datasets II and III are used as background music. Since there

are no large databases publicly available for simulating scala-

bility of audio content retrieval, we collected audio tracks from

MIREX, Lastfm.com, and the music channel of YouTube.

In the experiments, each track is 30 s long in mono-channel

mp3 format and the sampling rate is 22.05 KHz. From thesemp3

files, CompFeat [16] is calculated. Then, CPs are recognized and

CPH is further computed.

We compare the proposed scheme—CPH with tree-structure

LSH , to CPH with ,

pitch histogram with , MPH with order-sta-

tistics LSH [5], and CPH with LSH forest

[7] . The LSH forest scheme is imple-

mented with 10 parallel hash tables, each hash table using at

most 20 hash functions. Its parameters (number of hash tables)

are tuned so that its retrieval accuracy almost equals that of

. We also perform a comparison with a method

based on the direct comparison of BSIF chroma sequences, de-

noted as . The task is to detect and retrieve mul-

tiple items relevant to a query and rank them in an ordered list.

In such tasks, recall, precision and F-measure are effective met-

rics. Here, relevance is assessed in terms of melody, or in other

words, chord progressions.

In the following, we evaluate the precision-recall relation-

ship, the effect of the query length and scalability with respect

to the database size. Unless stated otherwise, in the evaluation,

we use the following default setting: each of the 1072 tracks

in Covers79 is used as the query to retrieve its relevant tracks

from the datasets , which have 11,113 tracks; the excep-

tion is in the third experiment where dataset III is also used for

evaluating the effect of the database size. The query has the full

length as their relevant tracks, except in the second experiment

where the effect of the query length is evaluated. The number

of ranked results equals to that of relevant items determined by

the ground truth, except in the evaluation of the precision-recall

relationship.

1) Precision-Recall Curves: A retrieval algorithm should

make a good tradeoff between recall and precision. In this sub-

section we investigate this tradeoff by the classical precision-re-

call curves.

The number of output is changed and the pairs of recall

and precision achieved by different schemes are obtained and

plotted in Fig. 11. With more outputs, recall of all schemes

increases because the chance that relevant songs appear in the

ranked list gets larger. In contrast, precision decreases due

to more non-relevant tracks. lies between

and , and is much better than

. is better than

mainly because music knowledge via CP recognition is

exploited in CPH but not in MPH. also out-

performs . This is because the number of

hash tables in LSHForest is limited to 10. Improving recall
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Fig. 11. Precision-recall curves of different schemes. A query audio track is

used to search its relevant tracks based on melody similarity. The number of

searched results is varied to get different recall-precision pairs.

Fig. 12. F-measure of different schemes. A query audio track is used to search

its relevant tracks based on melody similarity. The number of searched results

is varied to get different recall-precision pairs.

of LSHForest requires more hash tables. When precision

equals 0.6, recall, achieved by

, and

equal 0.5115, 0.6754, 0.7150, 0.7373, 0.7569

0.8143, respectively. Recall achieved by is

0.077 less than that of , but is 0.0223 greater

than that of and 0.062 greater than that of

.

Recall of is satisfactory, considering that

the retrieval speed is accelerated by both the summarization

and indexing. shortens the gap between

, previous efforts on global summarization

and indexing technique, and , which determines

the upper-bound via the exhaustive sequence comparison.

The performance of TSLSH is also superior to LSHForest by

exploiting the non-even distribution of CPs, not to mention its

much fewer hash tables. The performance difference between

and is due to three factors: (i)

errors in CP recognition, (ii) information loss when computing

CPH from a chord sequence, and, (iii) performance loss due to

approximate search by LSH. The first one is the main factor

and can be alleviated by exploring more advanced features in

CP recognition.

The tradeoff between precision and recall is better reflected

by the F-measure metric, which combines recall and precision

with the best value being 1. Fig. 12 clearly shows that the F-mea-

sure curve of lies between those of

and .

Fig. 13. Recall under different query lengths. A query audio track with a vari-

able length is used to search its relevant tracks based on melody similarity.

Fig. 14. Recall under different database sizes. A query audio track is used to

find its relevant tracks based on melody similarity. All audio tracks have the

same length. The database size is adjusted.

2) Effect of Query Lengths: In the last subsection, it is as-

sumed that each query has the same length as its references in

the database. However, due to various reasons, the query may be

shorter. In this section, we evaluate the effect of query lengths

on retrieval performance. The recall results are shown in Fig. 13,

with respect to normalized query lengths.

Recall decreases with query length in all schemes. The per-

formance is greatly degraded when the query length becomes

less than 0.5. For CPH, when the query length is greater than

0.5, the recall is still satisfactory (no less than 0.5). And it is

reasonable to require that the query length be no less than half

of the target song in order to reliably search the relevant songs.

3) Effect of Database Sizes: LSH usually applies to large

databases. By varying the database size from 11,113 to 74,055,

we evaluate recall, average precision and computation cost of

.

Recall decreases in all schemes with the increase of the data-

base size, as shown in Fig. 14. The recall difference between

and increases from 0.0546

(database ) to 0.0748 (database ),

indicating that CPH is more scalable with database sizes. The

average precision in Fig. 15 shows a similar trend, which con-

firms that CPH is more accurate in representing an audio se-

quence than MPH. When the database size equals 74,055, re-

call and average precision of equal to 0.681 and

0.878, respectively. The difference between and

is almost irrelevant of database sizes. This

is because both schemes use the same CPH feature.
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Fig. 15. Average precision under different database sizes. A query audio track

is used to find its relevant tracks based on melody similarity. All audio tracks

have the same length. The database size is adjusted.

Fig. 16. Normalized computation cost in the retrieval. A query audio track is

used to find its relevant tracks based on melody similarity. All audio tracks have

the same length.

For the largest database size, the normalized computation, the

ratio of computation cost of to that of

, equals 0.091 when one-level LSH is used, it decreases

to 0.03 when two-level TSLSH is used, and further decreases to

0.026 when three-level TSLSH is used, as shown in Fig. 16. The

biggest gain of the tree-structure is reached when changing the

LSH table from one-level to two-level. Further dividing the LSH

table into three-level has little gain. This is because low-rank

CPs will be used as hash keys, but their accuracy is still limited

by the CP recognition algorithm. The normalized computation

cost of and is a little less

than that of . But achieves a

better tradeoff among retrieval accuracy (recall and precision),

computation cost and storage (number of hash tables).

V. CONCLUSIONS AND FUTUREWORK

This paper proposes a novel method that improves accuracy

and scalability of CBMIR. We have designed our retrieval al-

gorithm by exploiting musical knowledge in training a chord

model. In particular, we exploited multi-probing in CP recogni-

tion via the modified Viterbi algorithm, which outputs multiple

likely CPs and increases the probability of finding the correct

one. A chord progression histogram is put forward to summa-

rize the probed CPs in a concise form, which is both efficient and

also retains local chord progressions. Average degradation of

ranks is suggested as a metric to assess similarity of two songs in

terms of their CPs. Hash keys are also based on CPs. By setting

an ADR threshold, it is possible to only probe buckets in which

songs are highly similar to the query, and the number of prob-

ings is controlled. In addition, the tree structure LSH enables

a more efficient organization of the database. After conducting

extensive experiments looking at recall/precision curves, effect

of query lengths, and scalability of database sizes, we confirmed

that is superior to previous work in terms of the

tradeoff between accuracy and efficiency over a large-scale real

web audio dataset.

Currently, the retrieval performance of is still

limited by the CP recognition accuracy. This could be solved

by improving the accuracy of inter-chord CPs and reducing the

negative effects of intra-chord CPs. This is left as future work.
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