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ABSTRACT
Movement disorders such as Parkinson’s disease (PD) will
affect a rapidly growing segment of the population as soci-
ety continues to age. Rhythmic Auditory Cueing (RAC) is
a well-supported evidence-based intervention for the treat-
ment of gait impairments in PD. RAC interventions have not
been widely adopted, however, due to limitations in access
to personnel, technological, and financial resources. To help
“scale up” RAC for wider distribution, we have developed an
iOS-based Rhythmic Auditory Cueing Evaluation (iRACE)
mobile application to deliver RAC and assess motor perfor-
mance in PD patients. The touchscreen of the mobile device
is used to assess motor timing during index finger tapping,
and the device’s built-in tri-axial accelerometer and gyro-
scope to assess step time and step length during walking.
Novel machine learning-based gait analysis algorithms have
been developed for iRACE, including heel strike detection,
step length quantification, and left-versus-right foot identi-
fication. The concurrent validity of iRACE was assessed us-
ing a clinic-standard instrumented walking mat and a pair of
force-sensing resistor sensors. Results from 10 PD patients
reveal that iRACE has low error rates (<±1.0%) across a
set of four clinically relevant outcome measures, indicating
a potentially useful clinical tool.
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1. INTRODUCTION
A 2007 review of published prevalence studies projects

that the number of individuals over the age of 50 with Parkin-
son’s disease (PD) living in 15 of the world’s most populous
nations will double between 2005 (roughly 4.4 million) and
2030 (roughly 9.0 million) [11]. Although administration of
carbidopa/levodopa remains the “gold-standard” treatment
for motor impairments in PD [32], gait parameters such as
cadence, stride length, and velocity remain significantly re-
duced in PD patients relative to age-matched healthy con-
trols, even when patients are tested during the “peak” effect
of medication [25]. Together, these concerns motivate the
search for additional strategies or therapies to help main-
tain motor functions in PD patients.

1.1 Rhythmic Auditory Cueing for PD
The use of physical therapy for the treatment of gait im-

pairments in PD (e.g., bradykinesia, freezing, falling) has
been the subject of systematic reviews and “best practice”
treatment recommendations for therapy delivery [20]. A spe-
cific, evidence-based treatment recommendation was the use
of rhythmic sensory cueing (RSC)—in particular, rhythmic
auditory cueing (RAC) (for reviews, see [22, 36]). RAC
is the use of an auditory pacing stimulus (either a simple
metronome, or music with a steady beat) to which patients
attempt to synchronize while walking.

The beneficial effects of RAC on gait in PD have been
noted for several decades. Single-session RAC leads to im-
provements along multiple gait parameters (e.g., velocity,
stride length, and stepping rate [22]), and a handful of multi-
week interventions have found sustained improvements in
gait parameters during a post-intervention follow-up (e.g.,
[7, 33]). Perhaps most importantly, RAC leads to a re-
duction in motor timing variability (MTV), quantified as
stride-to-stride timing fluctuations during walking (for a de-
tailed discussion, see [15]). PD patients have significantly
higher MTV during gait than healthy controls, even un-
der normal medication regimens [23]. Furthermore, MTV is
both prospectively and retrospectively associated with fall
risk [14]. The incidence of falls in PD is high: an estimated
two-thirds of patients fall at least once a year, and half expe-
rience multiple falls per year [13]. Therefore, reduced MTV
by RAC means less falls (and thus less cost of falls) in PD.

1.2 Assessment of PD Motor Performance
Although the efficacy of RAC for PD (i.e., statistically

significant improvements in gait parameters) is well sup-



ported (e.g., [8, 22, 36]), RAC has not been widely adopted
due to the lack of affordable and convenient clinimetric tools
that would enable a medical professional (e.g., neurologist,
physical therapist) to accurately assess a patient’s motor
performance in the short term, which could provide insight
into whether that patient would respond to RAC in the
longer term [7, 33].

With the rapid growth of mobile devices (e.g., smart-
phones) and the emergence of mobile cloud computing tech-
nology [10], mobile devices are becoming a ubiquitous com-
puting platform in our daily life and healthcare. Compared
to traditional devices in human gait assessment, such as foot-
mounted force sensors [16], sensor-embedded walkways [27]
and motion-capture cameras [30], mobile devices have clear
advantages in portability, convenience, cost efficiency, and
comprehensiveness of platform features (e.g., on-device data
collection, analysis and visualization).

Here, we describe such a tool to facilitate and “scale up”
RAC interventions: an iOS-based Rhythmic Auditory Cue-
ing Evaluation (iRACE) mobile application (“app”). iRACE
operates on an iPhone or iPod touch, and connects to a
cloud-based website. iRACE records activities during walk-
ing (via the on-board accelerometer and gyroscope) and in-
dex finger tapping (via the touchscreen). Motor production
is assessed both with and without RAC, and the auditory
cues can be highly customized by each user. The recorded
walking and tapping data is analyzed to obtain the basic mo-
tor parameters (step time/length, tapping intervals, etc.),
as well as a set of four clinically relevant outcome measures.
These results may then be visualized on the iRACE app as
well as the website.

We have developed novel machine learning-based algo-
rithms for iRACE gait analysis, including heel strike detec-
tion, step length quantification, and left-vs.-right foot iden-
tification. These algorithms were validated against ground
truth measures obtained from a clinic-standard instrumented
walking mat and force-sensing resistor sensors. Results from
10 PD patients revealed that iRACE had less than ±1.0%
error rates (averaged across subjects) across four outcome
measures, indicating a potentially useful clinical tool.

Using iRACE, medical professionals can easily assess whe-
ther RAC is effective to an individual patient, and if so, use
iRACE to deliver long-term RAC-based therapy and moni-
tor the patient’s performance over time, benefiting the pa-
tient physically, mentally, and financially.

The rest of the paper is structured as follows. Section 2
reviews related literature on smartphone-based gait analysis.
Section 3 describes the iRACE system. The clinical validity
study design of iRACE is outlined in Section 4. iRACE-
based gait analysis, clinical outcome measures, and tapping
analysis are detailed in Sections 5, 6 and 7, respectively.
Experiment results are presented in Section 8. Section 9
concludes our work and explores future directions.

2. RELATED WORK
A number of recent studies have investigated the viability

of smartphone’s built-in inertial measurement unit (IMU;
accelerometer and/or gyroscope) to measure and quantify
human gait [6, 18, 21, 26, 31, 34, 42, 43], with key details
summarized in Table 1. A careful reading of this group of
studies, however, reveals several concerns.

First, in some cases [6, 18, 21], only a single healthy sub-
ject’s data was examined, precluding the ability to infer

Table 1: Smartphone-based gait investigations
Ref. Subject N Device Location Fs
[6] HC 1 iOS Left pocket 100
[18] HC 1 Android Front waist 60
[21] HC 1 iOS Left ankle 100
[26] HC 49 Android L3 50
[31] HC 30 Android L3 33
[34] HC 49 Android L3 50
[42] HC/RA 20/39 Android L3 33
[43] HC 13 Android L3 100

Notes: N is the number of healthy controls (HC) or patients

with rheumatoid arthritis (RA) tested. “L3” indicates device

placed in the vicinity of the third lumbar vertebrae on the lower

back. Fs is the sampling frequency of the device’s IMU in Hz.

whether the specific algorithms or analyses that were used
would generalize across individuals.

Second, in some cases [21, 42], no concurrent ground-truth
gait analysis was utilized, precluding any assessment of the
sensitivity, specificity, and temporal precision of smartphone-
derived calculations. In other cases [26, 31, 43], larger sam-
ples of healthy adults were studied, and a conventional waist-
mounted tri-axial accelerometer was employed as ground
truth. Such a design, however, is suboptimal, in that it
would reveal only whether the smartphone’s accelerometer
functions as well as a conventional accelerometer, rather
than whether the smartphone actually (and accurately) cap-
tures the spatio-temporal dynamics of human gait, as mea-
sured by“gold standard”devices: foot-mounted force-sensing
resistors [16], sensor-embedded walkways [27], ground reac-
tion force plates [39], or motion-capture cameras [30].

Third, some studies [21, 31, 42, 43] did not utilize tradi-
tional step-level spatio-temporal analysis (i.e., heel strike de-
tection and step time/length quantification), which is stan-
dard in classic IMU-based gait analysis [46, 47]. Instead,
these studies used statistics which quantify properties of the
raw accelerometer waveform, such as its peak frequency after
a fast Fourier transform, or the period at which successive
peaks appear in the waveform’s autocorrelation. Although
such statistics are mathematically valid, they lack clinical
utility, as there are no large-scale studies which provide nor-
mative or relative (e.g., PD patients versus age-matched con-
trols) values for these statistics, unlike traditional outcome
measures (for reviews, see [17, 24]; cf. Section 6 below).

Finally—and most relevant to the current project—no
previous study has evaluated the validity of smartphone-
based gait analysis in PD patients.

3. SYSTEM DESCRIPTION
iRACE consists of three main components: an iOS-based

mobile device such as an iPhone or iPod touch (the “iRACE
device”), a mobile application (the “iRACE app”), and a
back-end cloud computing service (the “iRACE website”).
An iPhone or iPod touch is equipped with an inertial mea-
surement unit (IMU) comprising a microelectromechanical
tri-axial linear accelerometer and Coriolis vibratory gyro-
scope, each with a maximum nominal sampling frequency
of 100 Hz. The device’s capacitive touchscreen has a maxi-
mum refresh rate of 60 Hz. The IMU data and touchscreen
tap events are recorded during walking and tapping, respec-
tively, which are then uploaded to the iRACE website.
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Figure 1: iRACE app screenshots. (a.) Home screen. (b.) Settings for evaluation parameters and playlists.
(c.) RAC bimanual tapping. (d.) Rapid tapping. (e.) Tapping analysis and visualization.

3.1 iRACE App
3.1.1 Overview

iRACE administers three widely used tests of motor per-
formance of both walking and finger tapping movements:
(1) self-paced bilateral performance, (2) synchronization–
continuation bilateral performance, and (3) rapid unilateral
and bilateral performance. Launching iRACE (Figure 1a)
provides the option to conduct a Walking Evaluation (using
tests 1–2) or a Tapping Evaluation (using tests 1–3).

iRACE has a number of flexible settings (Figure 1b), in-
cluding the number of iterations of each test and the desired
playlist of RAC stimuli. The playlist can be pre-defined and
fixed across subjects, or dynamically generated such that its
range of tempos can automatically “bracket” each subject’s
self-paced walking/tapping tempo.

iRACE guides the user through all tests in succession. In a
self-paced test, no RAC is provided; the subject will walk or
tap at a rate deemed most comfortable. In a synchronization–
continuation test, the RAC stimulus is delivered during the
first part of the test (synchronization), during which the sub-
ject attempts to walk or tap with the stimulus beat. After a
pre-specified number of events (steps or taps), the stimulus
fades to silence over a few seconds, whereupon the subject
attempts to continue the same pattern of movement at the
same rate (continuation).

3.1.2 Walking and Tapping Evaluations
Quantitative evaluations of self-paced [23] and RAC-based

synchronization (for reviews, see [22, 36]) walking are widely
reported in the PD literature. During an iRACE Walking
Evaluation, the iRACE device is secured to the ventral sur-
face of the lower trunk (at the navel) using an elastic sleeve
and waist band (Figure 2a). Although several previous stud-
ies have positioned the accelerometer on the dorsal surface
of the body (e.g., over the third lumbar vertebrae; cf. Ta-
ble 1), securing the device at the navel enables the user to
more easily interact with the iRACE device (with an eye
towards eventual home-based use). Both self-paced walk-
ing and synchronization–continuation walking tests are per-
formed in this manner.

Index finger tapping is a widely used motor timing as-
sessment in PD, both as a “fast-as-possible” test [12] and
as a synchronization–continuation test [40]. To our knowl-
edge, there exist no smartphone-implemented evaluations of

finger tapping in either healthy controls or patients with
movement disorders. During all tapping tests (self-paced,
synchronization-continuation, and rapid; cf. Figure 1c–d),
the iRACE device is positioned on a desk or table such that
the subject’s arms and wrists are comfortably supported,
permitting smooth index finger movements. iRACE can pro-
cess and visualize the tapping data in-app immediately after
a test (Figure 1e). (In-app gait analysis will be implemented
in a future version of iRACE.)

3.2 iRACE Website
A cloud-based service has been established to facilitate

iRACE data management and visualization. Each iRACE
user can create an account to login the iRACE app and
website. The website has the following main features: (1) To
build user profiles and manage user roles and relationships
(patients, therapists, etc.); (2) To receive and analyze data
files uploaded from iRACE app; (3) To visualize walking and
tapping analysis results in tables and graphs; (4) To review
evaluation history and track user progress over time.

4. CLINICAL STUDY DESIGN
This section describes the novel fusing of clinic-standard

ground truth measures with iRACE, and the testing protocol
into which they were incorporated.

4.1 Ground Truth Gait Measures
As noted in Section 2, no previous investigation has val-

idated smartphone-based gait analysis using ground truth
data that directly samples heel strikes in the temporal and/or
spatial dimensions. In our study, we utilized both: a GAIT-
Rite electronic walkway1, and a force-sensing resistor assem-
bly2 and telemetry unit (DataLOG3).

GAITRite is a 61 cm × 610 cm roll-up mat embedded
with pressure sensors arranged with 1.27-cm spacing, with
a maximum sampling frequency of 240 Hz. GAITRite com-
putes various spatio-temporal gait parameters for each walk
across the mat, such as cadence, step time and step length.
Its accuracy has been validated by concurrent analyses us-
ing insole footswitch sensors [2] and motion-capture cam-
eras [41]. GAITRite has been the primary data collection

1http://www.gaitrite.com
2http://www.biometricsltd.com/forcesensors.htm
3http://www.biometricsltd.com/datalog.htm
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Figure 2: Clinical study settings. (a.) iRACE de-
vice and DataLOG secured to a belt on patient’s
lower trunk. (b.) Straight line walking segment on
GAITRite. (c.) Illustration of the walking path.

device in numerous gait investigations in the elderly, includ-
ing PD patients (e.g., [8, 24]).

In the present study, a force-sensing resistor (FSR) sen-
sor was attached to the heel pad of each foot to record the
moment of each heel strike. Both FSR sensors were wired
to a telemetry unit (DataLOG) and sampled at 1000 Hz as
binary values (0 if the pressure on FSR exceeds a certain
threshold, and 1 otherwise). FSR sensors are widely used
in gait analysis, including gait analysis in PD (for reviews,
see [14, 15]). When a heel strikes the ground, the pressure
placed on the FSR toggles its reading from 1 to 0; that tog-
gling timestamp was used as the “ground truth” heel strike
time. DataLOG also received an analog audio signal directly
from the iRACE app, which was used to synchronize iRACE
and DataLOG clocks (detailed in Section 5.2).

As DataLOG has a higher sampling frequency (i.e., with
millisecond-level temporal resolution) than GAITRite, FSR
and DataLOG recorded heel strike timestamps were used
as the ground truth to validate the temporal precision of
iRACE (cf. Section 5.3), and GAITRite was used to evaluate
the step length algorithm of iRACE (cf. Section 5.5).

4.2 Subjects and Testing Protocol
Ten patients (4 female) diagnosed with idiopathic Parkin-

son’s disease were recruited from Singapore General Hospi-
tal. The average age of the patients was 66.3 (range: 58
to 81), and average duration of PD was 5.7 years (range:
2 to 14). The patients had a Hoehn and Yahr stage of 2.0
(N = 1), 2.5 (N = 5), 3.0 (N = 3) and 4.0 (N = 1), where
N is the number of patients. None of the patients had a
coexisting dementia (Mini-Mental State Examination score
> 24 points) or other diagnosed neurological impairments.
All patients were under stable medication regimens for the
preceding four weeks, and were tested at least 30 minutes
after taking morning medications.

All testing procedures were approved by the institutional
review board (IRB) at Singapore General Hospital. The
iRACE “belt” and FSR sensors (Figure 2a) were attached
as described above (cf. Section 3.1.2 and 4.1). The experi-
menter then demonstrated the target walking path (Figure
2c), including a 3-meter acceleration/deceleration phase to
allow for steady-state walking while on the GAITRite mat.

Each subject then completed four or more walking tri-
als (i.e., enough to record at least 40 steps on GAITRite)
in each of three sequential RAC conditions: (1) self-paced

(no RAC), (2) RAC with metronome tempo set to 100% of
mean self-paced cadence, (3) RAC with metronome tempo
set to 110% of mean self-paced cadence; these two tempos
are common in RAC [36]. (The mean self-paced cadence was
computed using GAITRite, as the data was collected before
the algorithms detailed in Section 5 were developed.)

The iRACE Tapping Evaluation (cf. Section 3.1.2) was
conducted after the completion of the Walking Evaluation.

5. WALKING ANALYSIS
This section describes the processing pipeline used to trans-

form the raw IMU data recorded by iRACE into temporal
and spatial gait parameters (step time, step length, etc.).

5.1 Preprocessing
During a Walking Evaluation, the iRACE device was ori-

ented with its screen facing forward and its “home” button
facing up. iRACE simultaneously records 6 channels of IMU
data in the iOS device xyz coordinate system: tri-axial ac-
celeration (ax, ay and az) and tri-axial rotation rate (ωx, ωy

and ωz). For simplicity, from the subject’s perspective, we
define anterior–posterior (A–P) acceleration as aAP = −ax
(positive values for anterior acceleration), up–down (U–D)
acceleration as aUD = −ay (positive values for upward ac-
celeration), and left–right (L–R) acceleration as aLR = az
(positive values for leftward acceleration). Similarly, we de-
fine the rotation rate around the A–P axis (i.e., roll) as
ωAP = −ωx, around the U–D axis (i.e., yaw) as ωUD = −ωy,
and around the L–R axis (i.e., pitch) as ωLR = −ωz.

Four preprocessing steps were applied: (1) IMU waveform
interpolation; (2) straight-line walking identification; (3) de-
vice tilt compensation; and (4) low-pass filtering.

First, since the time interval between successive IMU sam-
ples varies stochastically, raw IMU data is usually interpo-
lated and resampled at a fixed frequency [18, 26, 31]. In
the present study, all IMU data was cubic-spline interpo-
lated and resampled at 1000 Hz, which as a result could
refine the peak and trough locations (i.e., improve temporal
resolution) in the IMU waveforms (e.g., Figure 3a).

Second, an algorithm was implemented to isolate straight-
line walking segments from turn segments (cf. Figure 2c),
stationary segments, or other non-walking segments (e.g.,
freezing). This was achieved by analyzing the acceleration
amplitude of aAP (to identify actual walking) and rotation
rate ωUD (to identify turning). For simplicity, only straight-
line segments will be analyzed further.

Third, because the iRACE device usually pitches (around
the L–R axis) as the subject walks (thus affecting IMU wave-
forms and the accuracy of subsequent heel strike detection),
the A–P and U–D waveforms were adjusted (using a trigono-
metric algorithm) according to the estimated device tilt an-
gle (based on rotation rate ωLR and average gravity in A–P
and U–D axes; derived from [29]).

Fourth, all IMU data was low-pass filtered with a 4th-
order zero-lag Butterworth filter with a cut-off frequency of
20 Hz, as suggested by [46, 47].

5.2 iRACE & Ground Truth Synchronization
Since the internal clocks in the iOS device and DataLOG

are independent and not synchronized, a novel synchroniza-
tion method was developed via an acoustic signal. Specif-
ically, iRACE generated a 2-second square-wave audio (us-
ing the iOS Audio Units API). iRACE toggled the volume



6 6.2 6.4 6.6 6.8 7

−0.2

−0.1

0

0.1

0.2

Time (second)
A

cc
e

le
ra

tio
n

 (
g
)

 

 

left HS right HS peak trough

6 6.2 6.4 6.6 6.8 7

−0.2

−0.1

0

0.1

0.2

Time (second)
A

cc
e
le

ra
tio

n
 (

g
)

A−P zero HS peak HS trough

6 6.2 6.4 6.6 6.8 7

−0.2

−0.1

0

0.1

0.2

Time (second)

A
cc

e
le

ra
tio

n
 (

g
)

left HS right HS peak trough

5.4 5.45 5.5

0.1

0.2

0.3

Time (second)

Ac
ce

le
ra

tio
n 

(g
)

A−P 100Hz
1000Hz

 

Figure 3. (a) Interpolation and resampling of acceleration waveform. (b) Annotated waveform points compared with DataLOG HS
timestamps. (c) Mean delay (d) std delay

Figure 5. tapping results

Figure 6. Step time outcome measure

a.

100 Hz
1000 Hz

Time (s)

A
cc

el
er

at
io

n 
(g

)

-_O_5

_O__

_O_5

_O3_

_O35

_O4_

_O__

_O_4

_O_4

_O_6

_O_8
A-P

U-D

-_O_5

_O__

_O_5

_O3_

_O35

_O4_

_O__

_O_4

_O_4

_O_6

_O_8

S
D

 o
f t
�

M
ea

n 
of

 t �

tP tT tP tT

. d.

A
cc

el
er

at
io

n 
vg

y
Time vsy

_O_

-_O3

-_O4

_O3

_O_
A-P zero | left HS | right HS   

peak trough HS peak HS trough
b.

IE
S

_s
T

IE
S

_s
T

Cumulative time _sT

Cumulative time _sT _iRACE 6 AudioT / 2

iR
A

C
E

- A
ud

io

Events per second

iB
la

nd
-A

ltm
an

 d
iff

er
en

ce

a.

b. c. d.

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0.4 0.6 0.8
-3

-2

-1

0

1

2

3
× 10

-3

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0 5 10 15
-4

-3

-2

-1

0

1

2

3

4

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0 3 6 9 12
-4

-3

-2

-1

0

1

2

3

4

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0 2 4 6 8
-2

-1

0

1

2

3

4

2xSD = 2.604 2xSD = 3.028 2xSD = 1.623

IESCV �M �CVIESM
a. b. c. d.

2xSD = .0015

���

Figure 3. (a) Interpolation and resampling of acceleration waveform. (b) Annotated waveform points compared with DataLOG HS
timestamps. (c) Mean delay (d) std delay

Figure 5. tapping results

Figure 6. Step time outcome measure

a.

100 Hz
1000 Hz

Time (s)

A
cc

el
er

at
io

n 
(g

)

_O__

_O_4

_O_4

_O_6

_O_8
A-P

U-D

_O__

_O_4

_O_4

_O_6

_O_8

S
D

 o
f t
�

M
ea

n 
of
t �

tP tT tP tT

c. d.

A
cc

el
er

at
io

n 
vg

y

Time vsy

_O_

-_O3

-_O4

_O3

_O_
A-P zero | left HS | right HS

peak trough HS peak HS trough
b.

IE
S

_s
T

IE
S

_s
T

Cumulative time _sT

Cumulative time _sT _iRACE 6 AudioT / 2

iR
A

C
E

- A
ud

io

Events per second

iB
la

nd
-A

ltm
an

 d
iff

er
en

ce

a.

b. c. d.

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0.4 0.6 0.8
-3

-2

-1

0

1

2

3
× 10

-3

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0 5 10 15
-4

-3

-2

-1

0

1

2

3

4

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0 3 6 9 12
-4

-3

-2

-1

0

1

2

3

4

(iRACE + FSR) / 2

iR
A

C
E

- F
S

R

0 2 4 6 8
-2

-1

0

1

2

3

4

2xSD = 2.604 2xSD = 3.028 2xSD = 1.623

IESCV �M �CVIESM
a. b. c. d.

2xSD = .0015

���

���������

� �

-0.05 

0.00 

0.05 

0.10 

0.15 

0.20 

M
ea

n 
of

  t ε
 (s

)

tε,P     tε,T!

A–P 

U–D 

0.00 

0.02 

0.04 

0.06 

0.08 

S
D

 o
f  
t ε 

(s
) �

tε,P     tε,T�

A–P 

U–D 

a.� b.� c.� d. 

Figure 3: (a.) Interpolation and resampling of iRACE acceleration data. (b.) Annotation of heel strike points
(HS peak and HS trough) in the A–P waveform. (c.) and (d.) Group mean and standard deviation (SD) of
the temporal error (tε) between HS timestamps and annotated waveform peaks (tε,P ) and troughs (tε,T ).

of this audio repeatedly (approximately every 30 ms) be-
tween silence and normal volume, and saved the toggling
timestamps (in iRACE’s clock). DataLOG recorded this
audio (at 2 kHz), which was then analyzed to locate these
volume toggling timestamps (in DataLOG’s clock), i.e., the
rising and falling edges of the audio volume contour. The
temporal offset between the two clocks was found by linearly
regressing the DataLOG timestamps onto the iRACE times-
tamps; the y-axis intercept was the“best fitting”offset in the
least-squares sense, with sub-millisecond level accuracy.

GAITRite records the session start time to the millisecond
level, so that the steps measured by GAITRite can be cor-
rectly matched to those measured by DataLOG and iRACE.

5.3 Waveform Annotation & Timing Analysis
Previous accelerometry-based gait analysis methods have

used waveform peaks (i.e., local maxima) in the A–P chan-
nel [26, 47] and/or U–D channel [28] as analogues of physical
heel strike (HS) events (for a review, see [19]). As noted in
Section 2 (cf. Table 1), however, the above papers were pri-
marily focused on gait analysis in healthy individuals, and
have not been extended to gait analysis in PD patients. Even
a brief glance at the waveform excerpt from a PD patient in
Figure 3b reveals that the widely used convention of “an A–
P peak preceding a zero-crossing” as a HS analogue [44, 46,
47] is problematic, as multiple zero-crossings may be present
between successive ground truth HS events (i.e., as recorded
by DataLOG and FSR sensors).

To find out which accelerometry waveform event was the
most temporally stable analogue of a true HS event, a more
systematic approach was taken in the present study. For
each ground truth HS timestamp (tHS), the timestamps of
a peak (tP ) and its subsequent trough (tT , i.e., local mini-
mum) that were most likely to correspond to tHS were man-
ually annotated on the A–P and U–D accelerometry wave-
forms. In general, tP (or tT ) was closest to tHS among all
peaks (or troughs), but exceptions existed due to irregular
waveform fluctuations (i.e., irregular gait). For convenience,
manually annotated peaks and troughs will be referred to as
“HS peaks” and “HS troughs”, respectively (cf. Figure 3b).

After annotation, the signed temporal errors (tε) of four
waveform event timestamps (i.e., tP,AP , tP,UD, tT,AP , tT,UD)
relative to the corresponding tHS were calculated for each
tHS , and the mean (Mtε) and standard deviation (SDtε) of
tε were computed for each subject. Figure 3c–d present the

group-level mean and standard deviation (as error bars) of
Mtε and SDtε across all subjects, respectively. Logically,
temporal variability (i.e., SDtε) rather than temporal de-
lay (i.e., Mtε) is the more critical statistic, as a physical
delay is inherent between a HS event and the correspond-
ing waveform peak/trough recorded in a waist-mounted ac-
celerometer. A 2 (Channel : A–P or U–D) × 2 (Event :
SD of tε,P or tε,T ) repeated-measures analysis of variance
(ANOVA) was performed, revealing a significant effect for
Channel (F1,9 = 26.86, p = .0006; i.e., A–P had lower
SDs than U–D), Event (F1,9 = 32.16, p = .0003; i.e., HS
troughs had lower SDs than HS peaks), and their interac-
tion (F1,9 = 15.96, p = .003). Because A–P troughs (tT,AP )
had the smallest group-level mean and variance of SDtε (cf.
Figure 3d), they may be considered the most temporally
stable analogue of HS events.

5.4 Heel Strike Detection
As highlighted in Figure 3b, conventional rule-based al-

gorithms using hand-crafted rules or hard-coded thresholds
(e.g., a simple zero-crossing rule to identify HS analogues)
may be imprecise in PD patients, due to individual differ-
ences in disease staging, bradykinesia, freezing, and so forth.

To address this limitation, a machine learning-based HS
detection algorithm was proposed, which formulates HS de-
tection as a binary classification problem: whether a given
accelerometry A–P trough was a HS analogue (i.e., a HS
trough) or not. (A–P troughs are the most temporally stable
waveform events relative to true HS events; cf. Section 5.3.)

Firstly, two sets of features were extracted for each A–P
trough: (1) Features from the A–P trough (including the
trough amplitude, the difference in time or amplitude be-
tween a trough and its adjacent peaks, etc.); and (2) Fea-
tures from all accelerometer and gyroscope waveforms. The
average step time (Ts; i.e., the duration of a step) was previ-
ously derived from the A–P waveform autocorrelation [43].
A segment (about 0.2×Ts) centered on the trough timepoint
was selected in each waveform, and features (mean, standard
deviation, etc.) from these segments were extracted and
concatenated. These two sets of features together formed a
feature vector, denoted as fi for the i-th trough.

Next, a set of features based on a trough sequence (i.e.,
combinations of adjacent troughs) was constructed for the
i-th trough, including fi−fi−1, fi−fi+1, fi+0.5fi−1−0.5fi+1,
etc. After that, a set of the most statistically significant fea-



tures are selected among all the extracted features using the
rankfeatures4 function in MATLAB (with a two-sample
t-test used as the class separability criteria).

A two-layer neural network classifier [3] then took the
selected features as input. The ground truth of whether
each trough was a HS trough was derived from the wave-
form annotation. Different numbers of selected features and
units in the hidden layer of the classifier were iterated and
tested; the optimal parameter combination was obtained,
which yielded the highest classification accuracy based on
10-fold cross-validation (for more details about parameter
selection, see [3]). In the present study, 100 selected fea-
tures and 20 units in the hidden layer were used.

For each trough, a number (continuously valued from 0
to 1) was output by the classifier, indicating the probability
of that trough being a HS trough. This number was then
thresholded at 0.5, giving an initial prediction of the iden-
tify of a HS trough or a non-HS trough. Next, this initial
prediction was refined, as follows. Based on the previously
derived average step time (Ts), a pair of rules was applied:
(1) If any two adjacent HS troughs were separated by less
than 0.7×Ts, the one with the lower probability was ad-
justed to a non-HS trough; (2) If no HS trough existed in
the window [0.7×Ts, 1.3×Ts] before or after the timestamp
of a given HS trough, the trough with highest probability in
that window was selected as a HS trough.

5.5 Step Length Calculation
After HS detection, the spatial displacement (i.e., step

length) between successive HS troughs was calculated. Algo-
rithms for IMU-based step length calculation can be gener-
ally grouped into two categories: double integration of accel-
eration [5, 45], and machine learning-based regression meth-
ods [37]. For trunk-mounted smartphones, the main difficul-
ties of the double integration method lie in the integration
drift over time and the estimation of initial velocity at the
beginning of a step (i.e., the HS trough time), since the trunk
velocity at that time is typically non-zero. For example, in
the present PD patients’ data, if the initial velocity were set
to zero (as assumed in [5]), the resultant step length based
on double integration usually drifted to a negative value.

To overcome these difficulties, a hybrid machine learning
algorithm was proposed, which took the double integration
results together with other low-level waveform features as
the input, and uses neural network regression [3] to calcu-
late step length. Specifically, for each step, features were ex-
tracted from segments of tri-axial acceleration and the “en-
ergy waveform” (i.e.,

√
a2AP + a2LR + (aUD + 1)2; e.g., [6])

including single and double integration, time duration, stan-
dard deviation, and so on. These segments include the exact
step segment (between successive HS troughs) and its shifted
versions (by half a step duration before or after it). Similar
features were also extracted from tri-axial gyroscope wave-
forms. Next, Principal Component Analysis [3] was used to
select the most significant features, which were then input
to a two-layer neural network regression model [3]. Model
parameters were trained using 10-fold cross-validation.

5.6 Left-versus-Right Foot Identification
Left versus right foot identification is important for clin-

ical gait measures, but presents some challenges when the
measurement device is attached centrally at the trunk. Some

4
http://www.mathworks.com/help/bioinfo/ref/rankfeatures.html

studies use L–R acceleration to distinguish left and right
foot, based on the sign of L–R acceleration, or the sign of its
single or double integration [5, 46, 47]. These methods as-
sume that the direction of trunk displacement is different for
different feet. However, the validity of these assumptions has
not been tested using smartphones, or in PD patients. We
tested these methods in our PD patient data, and confirmed
that they worked for a majority of patients, but some failure
cases still existed due to weak and irregular L–R accelera-
tion. At the same time, we observed that the gyroscope
data (especially rotation rate around U–D axis) usually also
showed different patterns for different feet, which relates to
the different rotation directions of the trunk.

To fully utilize all accelerometer and gyroscope data, a
machine learning-based method was proposed for left-versus-
right foot classification. For each step between successive
HS troughs, two sets of features were extracted. First, step-
based features (single/double integration, maximum, min-
imum, etc.) from segments of all accelerometer and gyro-
scope waveforms. The durations of these segments include
the exact step duration (between successive HS troughs) and
its shifted versions (by half a step duration before or after it).
These features are denoted as a vector fi for the i-th step.
Second, features from a step sequence, including fi − fi−1,
fi− fi+1, fi−0.5fi−1−0.5fi+1, etc. The ground truth of left-
vs.-right foot was obtained from DataLOG left and right
foot sensors. As in the HS detection method (cf. Section
5.4), feature selection was performed, and the neural net-
work classifier was evaluated using 10-fold cross-validation.

6. CLINICAL OUTCOME MEASURES
iRACE calculates four clinically relevant outcome mea-

sures that quantify specific statistical properties of an event
series (ES) {e1, e2, . . . , eN} of N successive finger tap or
heel strike timestamps (in elapsed seconds, relative to an ar-
bitrary “0” timepoint) or N successive heel strike displace-
ments (in meters, relative to an arbitrary starting position).
An inter-event series (IES) refers to the first-order difference
(i.e., intervals) of an event series, with N − 1 elements.

6.1 Outlier Flagging
Outliers in an ES come in two forms: false positives (i.e.,

a “double tap” of the same button during bimanual tapping,
or a “double trough” in an A–P acceleration waveform; cf.
Figure 3b), or false negatives (i.e., “missing” events due to
inadequate heel strike pressure or touchscreen contact, or by
a priori exclusion of turns during a walk; cf. Section 5.1).

For all walking and tapping trials other than Rapid Tap-
ping, a simple “successive percentage change” (SSPC) trans-
formation was used to flag outliers in the original ES. For
all adjacent elements of an IES, SSPC,i is defined as:

SSPC,i = 100
|IESi+1 − IESi|

IESi
. (1)

SSPC will have N − 2 elements relative to the original ES.
A single threshold percentage value (P ) was then set; here,

P = 75. For any SSPC,i ≥ P , the associated ES element
ei+2 was flagged as an outlier. Additionally, any repeated
event on the same side of the body (i.e., the second of two
successive left or successive right taps or heel strikes) was
flagged as an outlier. The first-order difference of a series of
≥ 6 consecutive ES elements without an outlier flag will be



labeled a “∆ES”. (For rapid tapping trials, a simpler logic
was applied: an outlier was identified as any IESi+1 which
followed IESi by less than 50 ms. This threshold was es-
tablished to eliminate moments of near-synchronous tapping
that are more likely to occur during alternate bimanual tap-
ping, particularly at fast rates.)

6.2 Outcome Measures
Two statistics were calculated from a ∆ES. First, the

mean of a ∆ES (∆M ) is straightforward, and can be taken
for either a timestamp ∆ES (∆M,T ) or a displacement ∆ES
(∆M,D). Two transformations yield the commonly reported
statistics of cadence (= 60/∆M,T , in steps-per-minute) and
velocity (= ∆M,D/∆M,T , in meters-per-second). Second,
the coefficient of variation of a ∆ES (∆CV ) is widely used
in analyses of motor timing in PD [15]:

∆CV = 100
std(∆ES)

mean(∆ES)
, (2)

where std(·) is the sample standard deviation.
Two other statistics were derived from a transformation of

an outlier-free ES proposed by [35] to quantify motor timing
during walking. For each string of N (N ≥ 3) right (eR) and
N left (eL) events without an outlier flag, {eR,1, eL,1, eR,2,
eL,2, . . . , eR,N , eL,N}, two relative phase series were defined
using the right (ΦR) or left (ΦL) foot as the “reference” foot
(the following formulas assume the first R event precedes
the first L event):

ΦR,i = 360
eL,i − eR,i

eR,i+1 − eR,i
, ΦL,i = 360

eR,i+1 − eL,i

eL,i+1 − eL,i
. (3)

For example, a ΦR,i = 180 indicates that the left event eL,i

precisely bisects the time (or displacement) between succes-
sive right events eR,i and eR,i+1.

The mean absolute percentage deviation from 180 (ΦM )
indicates the presence of an overall phase asymmetry (e.g.,
right steps do not evenly divide left strides, or vice versa):

ΦM,R = 100
mean(|ΦR − 180|)

180
, (4)

ΦM,L = 100
mean(|ΦL − 180|)

180
. (5)

The coefficient of variation of Φ (ΦCV ) was calculated in
an analogous fashion to ∆CV :

ΦCV,R = 100
std(ΦR)

mean(ΦR)
, ΦCV,L = 100

std(ΦL)

mean(ΦL)
. (6)

The nature of the Φ transform means that ΦCV reflects
local (i.e., event-to-event) variability relative to the mean,
while ∆CV reflects global variability relative to the mean.

For parsimony, the maximum of ΦM,R and ΦM,L (referred
to simply as ΦM ), and the maximum of ΦCV,R and ΦCV,L

(referred to as ΦCV ) will be retained for a given test. Thus,
any reduction in the magnitude of ∆CV , ΦM , or ΦCV would
reflect an improvement on that particular aspect of gait sta-
bility, which may be caused by the positive facilitation of
RAC (relative to without RAC).

7. TAPPING ANALYSIS
Two limitations that occur when recording iOS touch-

screen events have the potential to affect the outcome mea-
sures of iRACE tapping. First, this touchscreen has a rela-
tively slow maximum sampling frequency (60 Hz) compared

to the iOS IMU (100 Hz). Second, the touchscreen datas-
tream is effectively binary (0 = no contact; 1 = contact)
rather than continuously valued like the IMU, precluding it
from interpolation (and the resulting refinement of temporal
resolution; cf. Figure 3a). Together, these limitations sug-
gest that iRACE estimates of inter-tap interval variability
(i.e., ∆CV and ΦCV ) may be inflated.

For example, as an IES becomes faster (i.e., with a smaller
∆M ) or more temporally stable (i.e., a smaller ∆CV , ΦM ,
or ΦCV ), the impact of 60-Hz sampling error becomes more
prominent; the potential error in each timestamp is a larger
proportion of the underlying period. This is highlighted in
Figure 4a, which visualizes an inter-tap interval series with
a true ∆M = 0.25 s and ∆CV = 2.0% (blue trace). However,
after downsampling this series at 60 Hz (by advancing each
timestamp in the original series forward to the next possible
60-Hz sample point, yielding the red trace), the observed
∆M is accurate (= 0.25 s) but the observed ∆CV is inflated
(= 3.8%). By contrast, in Figure 4b, a series with a true ∆M

= 1.0 s and ∆CV = 8.0% has both an accurate observed ∆M

(= 1.0 s) and ∆CV (= 8.1%) after downsampling.
To systematically quantify the error induced by 60-Hz

sampling on the four temporal outcome measures (∆M , ∆CV ,
ΦM , and ΦCV ), the following simulation was conducted. A
random “pull” of 30 values (which forms an IES) was drawn
from the normal distribution (µ = 0, σ = 1), and shifted
to have a mean of M (where M = 0.125 to 1.0 in ten ge-
ometric steps). The corresponding ES series was generated
by taking the cumulative sum of the IES. Next, the value
of ∆CV , ΦM , or ΦCV was rescaled (over separate manipu-
lations) to have a value of exactly P% (where P = 2.0, 4.0,
or 8.0). The rescaled ES was then downsampled to 60 Hz.
Finally, the four outcome measures were calculated from the
downsampled timestamps. In total 10 (M) × 3 (P ) × 2000
iterations were performed.

The simulation results are presented in Figure 4c–f, plot-
ting the error induced by 60-Hz sampling (y-axis) at different
values of M (x-axis) and P (different colors) for each out-
come measure (separate panels). The median (heavy line)
and central 95% (lighter lines) of all iterations are shown
for each P value. Several conclusions can be made. First,
∆M is accurately captured at all levels of P ; this finding is
perhaps expected, as even with a fast M (e.g., Figure 4a),
the numerous underestimated and overestimated elements
(relative to the simulated ground truth) tend to cancel each
other out. Second, as predicted, the accuracy of all outcome
measures increases (i.e., the y-axis width between each pair
of 95% lines decreases) as M increases. Most importantly,
for the range of “plausible” walking and tapping rates (i.e.,
∆M ≥ 0.5 s, or 120 events-per-minute or slower), outcome
measures differ from ground truth by less than ±1.0%.

8. RESULTS
This section presents the concurrent validation results, in-

cluding the accuracy of iRACE-quantified gait parameters,
outcome measures, and measures of RAC facilitation.

8.1 Gait Measurement Accuracy
A heel strike dataset of 3898 HS events was combined

across all Walking Evaluations of all ten subjects. Each HS
event has both a ground truth HS timestamp from the Data-
LOG FSR sensor, and an annotated HS trough in iRACE
A–P waveform. A total of 16295 A–P troughs (including
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Figure 4: Tapping simulation. (a.) and (b.) 60-Hz
downsampled inter-event interval (IES) series with a
mean of 0.25 s and 1.0 s. (c.–f.) Outcome measures.

HS troughs and non-HS troughs) were identified. Based
on 10-fold cross-validation, our HS detection algorithm (cf.
Section 5.4) achieved 100% precision and recall. If the bi-
nary output was directly obtained from the classifier using
a decision boundary of 0.5 (i.e., no further rule-based refine-
ment was applied), the precision and recall were 99.98% and
99.87%, respectively (F1 score = 99.93%).

On the same HS dataset, our left-vs.-right foot identifica-
tion algorithm (cf. Section 5.6) also achieved 100% accuracy.

A step length dataset of 1668 steps was combined across
all walks of all subjects with ground truth step lengths col-
lected from GAITRite. The root mean square error (RMSE)
of our step length calculation algorithm was 3.22 cm based
on 10-fold cross-validation, or 6.95% when expressed as a
CV value (i.e., RMSE divided by mean step length).

8.2 Outcome Measure Accuracy
A repeated-measures Bland–Altman (B–A) analysis [4] is

presented for Step Time (Figure 5) and Step Length (Fig-
ure 6). As used here, a B–A analysis summarizes the accu-
racy of an experimental device (iRACE) against a control
device (ground truth device; DataLOG or GAITRite). Out-
come measures from individual trials (blue points) are aver-
aged to create a single value per subject (red points). The
key statistics in a B–A plot are the y-axis mean (dashed red
line) and 2×SD error bars (solid red lines), which indicate
the expected mismatch between the two devices at the pop-
ulation level (with the error term adjusted for multiple trials
per subject, per [4]). Similar to the tapping simulation (cf.
Figure 4c), ∆M was very accurately estimated for both Step
Time (Figure 5a) and Step Length (Figure 6a). Although
the amount of y-axis error in iRACE-quantified variability
measures (∆CV , ΦM , ΦCV ) was greater than that of ∆M ,
this error was less than ±1.0% in most subjects (i.e., aver-
aged across individual walks). This indicates that iRACE
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Figure 6: Bland–Altman step length analysis.

would be able to distinguish parkinsonian gait from normal
gait based on their percentage-based variability measures,
which can differ by as much as 5% for stride time variabil-
ity [9] and 2.5% for stride length variability [1].

8.3 Accuracy of RAC Facilitation
Finally, to quantify whether any effect of RAC facilita-

tion was significantly different between iRACE and the rel-
evant ground truth, a 2 (Device: iRACE vs. ground truth)
× 3 (RAC conditions: Self-paced, 100%, 110%; cf. Fig-
ure 7) repeated-measures ANOVA was performed separately
on each outcome measure. A significant effect for RAC was
found for Step Time ∆M (F2,16 = 7.17, p = .006), Step
Time ∆CV (F2,16 = 4.05, p = .038), and Step Length ∆M

(F2,16 = 8.43, p = .003), indicating the expected influence of
RAC: decreasing inter-step durations and increasing inter-
step lengths as tempo increased. Importantly, no signifi-
cant Device × RAC interactions were present in any of the
ANOVAs (each p > .10, as shown in Figure 7), indicating
no systematic difference between iRACE and ground truth
outcome measures in the ability to detect RAC facilitation
when it actually occurred.

9. DISCUSSION AND CONCLUSION
The current paper presents the first-ever systematic ground

truth validation of the accuracy of smartphone-based gait
analysis in PD, and describes an iOS-based Rhythmic Audi-
tory Cueing Evaluation (iRACE) mobile application to fa-
cilitate RAC efficacy diagnosis, via an assessment of upper
motor (finger tapping) and lower motor (walking) perfor-
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Figure 7: Outcome measures of step time and step
length under 3 RAC conditions: self-paced (“S”),
and cued with metronomes set to 100% (“100”) and
110% (“110”) of self-paced walking cadence.

mance. Novel machine learning-based gait analysis algo-
rithms have been developed for iRACE, and the present pi-
lot study reveals that iRACE has low error rates relative to
clinic-standard ground truth measures, indicating a poten-
tially useful clinical tool.

It is important to note that the present paper is concerned
with evaluating the accuracy of smartphone-based gait mea-
surement, not the efficacy of RAC (which has been the focus
of prior studies [22, 23, 36, 38]). RAC has been widely noted
for its facilitative effects on gait [12, 40]. iRACE enables
medical professionals to quickly and accurately quantify the
degree of RAC facilitation (cf. Section 8.3), enabling a deci-
sion of whether RAC might be useful as a “neurophysiolog-
ical adjuvant” for individual PD patients.

The flexibility, portability, and validity of iRACE suggest
both prognostic and analytic applications. First, because it
is smartphone implemented, an entire world of RAC stimuli
can be made available, ranging from the user’s own music
collection to commercially available streaming music (e.g.,
Deezer5, Google Play6, Spotify7), matched to the user’s mu-
sic preference and the requirements of RAC therapy (e.g.,
steady tempo and strong beats). Second, iRACE could be
used to track the improvement of motor performance over
time (e.g., in a longitudinal clinical trial) or in conjunction
with a behavioral, pharmacological, or neurostimulatory in-
tervention. Third, iRACE would enable clinicians to eval-
uate correlations between (1) upper motor and lower mo-
tor timing variability, and (2) step time and step length
variability during gait, both of which remain largely unex-
plored in the clinical literature. Fourth, the portability of
iRACE would enable it to be used by neurologists and phys-
ical therapists around the globe. The resultant surge in col-
lected data (archived and managed on the iRACE website;
cf. Section 3.2) could then be used to explore large-sample
correlations with other disease-relevant variables, revealing
potentially novel insights into how PD affects the motor sys-
tem. Together, this future work may lead to an improved
ability to characterize—and, ultimately, treat—motor dys-
function in Parkinson’s disease.

5http://www.deezer.com
6https://play.google.com/music
7https://www.spotify.com
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