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Abstract
As the literature on heart rate variability (HRV) continues to burgeon, so 
too do the challenges faced with comparing results across studies conducted 
under different recording conditions and analysis options. Two important 
methodological considerations are (1) what sampling frequency (SF) to use 
when digitizing the electrocardiogram (ECG), and (2) whether to interpolate 
an ECG to enhance the accuracy of R-peak detection. Although specific 
recommendations have been offered on both points, the evidence used to 
support them can be seen to possess a number of methodological limitations. 
The present study takes a new and careful look at how SF influences 24 
widely used time- and frequency-domain measures of HRV through the use 
of a Monte Carlo–based analysis of false positive rates (FPRs) associated 
with two-sample tests on independent sets of healthy subjects. HRV values 
from the first sample were calculated at 1000 Hz, and HRV values from 
the second sample were calculated at progressively lower SFs (and either 
with or without R-peak interpolation). When R-peak interpolation was 
applied prior to HRV calculation, FPRs for all HRV measures remained 
very close to 0.05 (i.e. the theoretically expected value), even when the 
second sample had an SF well below 100 Hz. Without R-peak interpolation, 
all HRV measures held their expected FPR down to 125 Hz (and far lower, 
in the case of some measures). These results provide concrete insights into 
the statistical validity of comparing datasets obtained at (potentially) very 
different SFs; comparisons which are particularly relevant for the domains 
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of meta-analysis and mobile health.
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1. Introduction

Quantitative analysis of heart rate variability (HRV)—fluctuations in the time interval between 
successive heart beats, associated with the intimate interplay of the sympathetic and para-
sympathetic branches of the autonomic nervous system—remains a growing area of interest 
within psychophysiology. The combined advantages of easy and robust electrocardiogram 
(ECG) recording, affordable and valid ambulatory monitoring devices (e.g. Vanderlei et al 
2008), and intuitive and comprehensive open-source analysis software (e.g. Tarvainen et al 
2009) suggest that this growth will continue well into the future.

Two of the many important choices faced in designing and analyzing HRV are (1) the 
sampling frequency (SF) at which the ECG is digitized during recording, and (2) whether 
mathematical interpolation of the digitized signal is performed to enhance or ‘refine’ 
the R-wave fiducial point. The importance of these choices was acknowledged in a sem-
inal consensus paper published in 1996 by the Task Force of the European Society of 
Cardiology and the North American Society of Pacing Electrophysiology, published simul-
taneously in the flagship journals of the American Heart Association (Task Force 1996a) 
and the European Society of Cardiology (Task Force 1996b). Specifically (Task Force 
1996a, p 1047–1048):

‘The sampling rate must be properly chosen. A low sampling rate may produce a jitter 
in the estimation of the R-wave fiducial point, which alters the [HRV power] spectrum 
considerably. The optimal range is 250 to 500 Hz or perhaps even higher ... while a lower 
sampling rate (in any case  ⩾  100 Hz) may behave satisfactorily only if an algorithm of 
interpolation ([e.g.] parabolic) is used to refine the R-wave fiducial point.’

Another contemporary review paper (Berntson et al 1997, p 630) suggests a somewhat 
more conservative approach, advising that ‘an optimal and generally applicable digitization 
rate would be 500–1000 Hz’ and that ‘some type of template matching or interpolation algo-
rithm’ should be used ‘especially with digitization rates below 250 Hz’.

Several sources of experimental evidence were used to support these statements, and a 
number of subsequent investigations exploring how SF and R-peak interpolation influence 
HRV measures have also been performed; all are summarized in table 1. In reviewing all this 
evidence, however, a number of methodological issues become apparent.

1.1. SF, R-peak interpolation, and HRV: prior work

A first issue pertains to sample size. Several studies investigated samples of fewer than five 
(Merri et al 1990, Pinna et al 1994, Riniolo and Porges 1997, Hejjel and Roth 2004, Bragge 
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et al 2005) or ten (Abboud and Barnea 1995, Chellakumar et al 2005) subjects from the same 
population (i.e. either healthy control or a patient type), making it challenging to infer whether 
the effects of the experimental manipulation (i.e. ECG decimation and/or R-peak interpola-
tion) hold in larger, more representative samples of subjects.

A second issue pertains to the SF of the original records (hereafter, ‘SFOr’) relative to the 
SF values induced experimentally (hereafter, ‘SFEx’). In some cases, SFOr itself was itself 
relatively low (e.g. 300 Hz in Merri et al 1990 and Bianchi et al 1993) and was compared to 
further-downsampled SFEx values. If systematic errors in HRV estimation were already be 
present at 300 Hz, however, it may confound the ability to accurately quantify additional error 
that is accrued at lower SFEx values (or accurately quantify the magnitude of error reduction 
as a result of R-peak refinement).

A third issue pertains to the range of SFEx values examined. Several studies in table  1 
examined numerous SFEx (e.g. Castiglioni et al 2003, Ward et al 2004, McSharry and Clifford 
2006). Other studies, however, examined only one (Bragge et al 2005, Chellakumar et al 
2005) or two (Pinna et al 1994, Daskalov and Christov 1997) SFEx values, often at a great 
distance from SFOr. For example, Pinna et al (1994) compared HRV measures derived from 
Holter-recorded ECGs at 128 Hz and 125 Hz with HRV measures derived from an ECG at 
2000 Hz—with no intermediate SF values for reference.

A fourth issue pertains to the downsampling procedure used to achieve SFEx. Only a few 
studies have performed a true decimation of the ECG digitized at SFOr (Daskalov and Christov 
1997, Castiglioni et al 2003, Bragge et al 2005, Bhatia et al 2010). Other studies induced dif-
ferent SFEx values using various techniques. Some studies added stochastic temporal error to 
the location of R-peaks detected at SFOr (Garcia-Gonzalez et al 2004, Hejjel and Roth 2004). 
In a few further cases, a separate device was used to record the ECG at one or more SFEx 
(Bianchi et al 1993, Pinna et al 1994, Chellakumar et al 2005), introducing a possible con-
found (i.e. if device-induced measurement artifacts were present). In one final case (García-
González et al 2009), the addition of temporal noise to detected R-peak locations was used to 
simulate an infinite-resolution SF (i.e. the added noise was used as a surrogate for increased 
temporal precision for R-peaks).

A fifth issue pertains to the presumed benefits of R-wave interpolation. Figure 1 illustrates 
the rationale behind cubic spline interpolation, widely used in the literature and in several 
studies cited in table 1. In figure 1(a), two seconds of an ECG at a high (1000 Hz) sampling 
rate. If, however, the ECG were sampled only at 100 Hz, the resultant waveform would be 
coarser (figure 1(b); black points and dashed line) than the true ECG (figure 1(b); gray line). 
By interpolating through points and resampling at 1000 Hz (figure 1(b); solid black line), the 
resultant R-wave fiducial point is presumed to be closer in time to the true fiducial point than 
that of the noninterpolated waveform. Although this operation is mathematically straightfor-
ward, it nevertheless raises questions. For example, at what SFs does R-wave interpolation 
yield a meaningful improvement in HRV measure accuracy (i.e. compared to measures calcu-
lated at a high SF), and at what SFs is it unnecessary?

A sixth issue pertains to the degree in which statements about minimum SFs and the ben-
efits of R-peak interpolation generalize across different HRV measures. Most prior work on 
this topic has focused on a particular class of measure (e.g. time-domain only or frequency-
domain only). No prior investigation has performed a systematic evaluation of whether SF 
might affect different HRV measures in unique ways.

Taken together, these methodological issues suggest that widely cited recommendations 
concerning minimum SFs and the benefits of R-peak interpolation (e.g. Task Force 1996a, 
Berntson et al 1997) may be due for a careful re-evaluation. A minimum SF of 250–500 Hz 
might be unnecessarily high—or it might not be high enough.

R J Ellis et alPhysiol. Meas. 36 (2015) 1827
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1.2. Implications for the HRV literature

The above issues are further compounded when turning to the broader HRV literature, in 
which a highly heterogeneous set of SF values may be observed—a decade or more after 
the recommendations of Task Force (1996a, 1996b) and Berntson et al (1997) were pub-
lished (table 2). With so much SF diversity, a question emerges: Can HRV measures derived 
from different SFs (e.g. across different studies) be directly compared without introducing 
systematic errors? The answer to this question has implications for at least two research 
methodologies.

First, for meta-analysis. In the face of heightened attention paid towards the prevalence of 
publication bias (e.g. Ioannidis 2005), meta-analysis—a set of statistical methods designed 
to illuminate patterns of similarity across studies—has now reached a favored position in 
many disciplines (e.g. Cumming 2012). One key assumption of meta-analysis, however, is 
that the conditions under which data from the individual studies was obtained is equivalent; 
or, perhaps more accurately, treated as a random source of error. As such, meta-analysis can-
not directly compensate for differences in SF among the constituent studies (as it can for dif-
ferences in sample size). Whether differences in SF among studies may impact the results of 
the meta-analysis is thus an open question, but one that has not been addressed by any of the 
several recent meta-analyses examining HRV (Maser et al 2003, Sandercock et al 2005, Tak  
et al 2009, Kemp et al 2010, Nunan et al 2010, Lotufo et al 2012, Thayer et al 2012, Chalmers 
et al 2014).

Second, for the telemedicine domain of mobile health (or mHealth). With an increas-
ing focus on ‘pervasive monitoring’ applications through the use of components  

Figure 1. R-peak refinement using cubic spline interpolation. From an original ECG 
trace at 1000 Hz (a), a single R-wave (b) is isolated to better illustrate the poorer 
temporal resolution (with respect to tshe accuracy of the R-wave fiducial point) at 
100 Hz (black points and dashed black line), and the improved temporal resolution after 
spline interpolation is applied and the waveform is resampled to 1000 Hz (solid black 
line).

R J Ellis et alPhysiol. Meas. 36 (2015) 1827
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(e.g. low-profile external sensors; Patel et al 2012) that interface directly with the smart-
phone already in a patient’s pocket (e.g. Boulos et al 2011, Kay 2011, Free et al 2013) comes 
important considerations about system resources (e.g. Tarkoma et al 2014). Specifically, 
lower sampling frequencies can translate into lower power consumption of the processor, 
thus prolonging battery life for continuous physiological monitoring applications (e.g. 24 h 
recordings). However, although halving the sampling frequency (clock rate) of a transistor 
cuts its power consumption in half (e.g. Dieter et al 2005), it may also decrease the qual-
ity recorded physiological signal, thereby adding a source of error during HRV outcome 
measure calculation.

1.3. Quantifying the influence of SF on HRV: within- versus between-subjects analyses

To determine whether HRV measures obtained at different SFs can be meaningfully compared, 
the definition of ‘meaningfully compared’ must first be established. Most previous investiga-
tions into this topic have used various forms of within-subjects analysis (see table 1): compar-
ing HRV values obtained at SFOr and one or more SFEx in the same set of subjects. Examples 
of within-subjects analysis include repeated-measures analysis of variance (ANOVA; Pinna 
et al 1994, Chellakumar et al 2005, Bhatia et al 2010); Bland–Altman plots (Ziemssen et al 
2008); and signed error (either in original units or as a percentage; Abboud and Barnea 1995, 
Daskalov and Christov 1997, Dinh et al 2001, Hejjel and Roth 2004, García-González et al 
2009) or normalized bias (Garcia-Gonzalez et al 2004).

Although a within-subjects analysis has increased statistical power to detect a differ-
ence between experimental conditions, it may yield a test that is too sensitive with respect 
to quantifying systematic error induced at different SFs. To illustrate this point, consider 
the following example.4 A 2 min ECG, digitized at SFOr = 1000 Hz, was recorded from 47 

Table 2.  A tally of SFs used in the HRV literature, divided into four-year segments. 
For each SF value h (Hz), a Google Scholar search (scholar.google.com) was performed 
(31 December 2014) for works containing the phrase ‘heart rate variability’ in the main 
text (not the cited works list), and at least one of the following phrases: ‘sampled at  
h Hz’, ‘sampling frequency of h Hz’, ‘sampling rate of h Hz’, ‘h samples per second’, 
‘h samples/sec’, or ‘h samples/s’.

SF

Tally

1999–2002 2003–2006 2007–2010 2011–2014

64 3 8 12 22
100 46 75 116 169
125 10 21 26 63
128 57 78 110 163
200 75 116 181 222
250 69 84 133 281
256 43 69 125 177
360 14 29 79 97
500 117 179 220 359
512 11 34 48 142
1000 136 242 374 658
1024 9 31 56 110
2000 17 22 37 76

R J Ellis et alPhysiol. Meas. 36 (2015) 1827



1834

healthy adults. For each subject, R-peaks were extracted (using the classic algorithm by 
Pan and Tompkins 1985), and the standard deviation of the RR interval series (SDNN) was 
calculated. Next, each ECG was decimated to four different experimental SFs: SFEx = {500, 
333, 250} by taking every second, third, or fourth data point from the original signal. Again, 
R-peaks were extracted (without any R-peak interpolation) and SDNN calculated. Figure 2 
plots natural log transformed SDNN data points, group means, and group standard devia-
tions. A Shaprio–Wilk test on each set of values confirmed the absence of non-normality 
(all ps  >  0.05). Next, a paired t-test (i.e. a within-subjects analysis) was performed between 
SDNN values at each SFEx relative to SFOr. Compared to SFOr, SDNN values at 500 Hz were 
not statistically different (two-tailed p = 0.269), but were statistically different at 333 Hz (p = 
0.0002) and 250 Hz (p = 0.000 02). Such findings would seem to support the hypothesis that 
SF can influence SDNN.

Upon closer inspection, however, these results reveal an illustration of the difference 
between statistical significance and practical significance (a distinction which has been 

4 The data for this example comes directly from the set of 47 subjects from the PTBDB database used for the 
main set of experiments in this paper; thus, all processing steps (SF downsampling, R-peak extraction, HRV mea-
sure calculation) are identical to the steps outlined in section 2.2–2.5.

Figure 2. Illustrating a within-subjects approach to SF-induced error in SDNN values. 
A conventional paired-samples t-test reveals statistically significant inflation of SDNN 
values 250 Hz, 100 Hz, and 50 Hz relative to 1000 Hz. By contrast, the proposed Monte 
Carlo (M.C.) false positive rate (FPR) analysis (see section 2.6.2) suggests that only the 
50 Hz SF resulted in a meaningful inflation of the expected FPR of the t-test.
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advocated across numerous scientific domains; e.g. Kirk 1996, Wilkinson 1999). For example, 
when derived from ECGs at 333 Hz versus 1000 Hz, SDNN values were slightly larger in 34 
out of 47 subjects: a group average increase of 0.001 in log units. Although this consistency 
yielded a ‘highly’ significant result (p = 0.0002), the actual amount of inflation is negligible 
in the context of the wide range of SDNN values observed across subjects. Within-subjects 
tests, however, either ignore inter-subject differences entirely (as in a paired t-test), or treat it 
as a separate error term (as in ANOVA); in both cases, inter-subject differences do not impact 
the significance of the actual within-subject test statistic. In other words, a within-subjects 
analysis to quantify how SF influences HRV may yield a result that is too sensitive: a result 
having a ‘bark’ that is worse than its ‘bite’.

As an alternative, we propose that a more informative perspective is gained from a between-
subjects analysis of the relationship between SF and the false positive rate (FPR). The FPR 
(also termed the Type I error rate, false alarm rate, and fall-out rate) is a fundamental com-
ponent of any binary classification test, illustrated in figure 3, and is relevant in numerous 
domains: for example, disease diagnosis in clinical medicine (e.g. ‘test result positive’ versus 
‘test result negative’); detection theory in psychology (e.g. ‘stimulus was perceived’ versus 
‘stimulus was not perceived’); machine learning in computer science (e.g. ‘pattern is type 
A’ versus ‘pattern is type B’); and frequentist statistical inference, used widely in the behav-
ioral and biological sciences (e.g. ‘significant, p  <  0.05’ versus ‘not significant, p  ⩾  0.05’). 
Mathematically, FPR is defined as the number of false positives divided by the sum of false 
positives and true negatives: FP / (FP + TN). It is the expected probability associated with 
falsely declaring a test result as significant/positive/successful when in fact no ‘true’ effect 
is present (e.g. because both samples, signals, or patterns come from the same underlying 
population or category). In frequentist statistical inference, the critical value of statistical tests 
(e.g. t-test, F-test, correlation, regression) is set a priori so as to control the expected rate at 
which false positives should occur; by convention, 5% (i.e. α = 0.05); for some context, (see 
Lehmann 1993, Berger 2003).

In this vein, a new question can be stated: ‘For a given population of individuals, if a par-
ticular HRV measure was obtained from an ECG recorded at a high SF (e.g. 1000 Hz) in one 
sample of subjects, and obtained from an ECG recorded at a lower SF (h Hz) in a different 
sample of subjects, and this process were repeated many times, how often would a two-sample 
test (e.g. a t-test) be significant (using the conventional two-tailed α = 0.05)?’ The propor-
tion significant test results is the observed FPR. If the observed FPR (comparing samples 
at 1000 Hz versus h Hz) were found to be substantially higher than the expected FPR (i.e. 
 α = 0.05), concern is warranted: it indicates that HRV values at h Hz appear to come from a 

Figure 3. The possible outcomes of a binary classification test as a function of the true 
state of events and the decision based on the test outcome.
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different population of individuals than HRV values at 1000 Hz. (This method will be illus-
trated in section 2.6.2.)

We believe an FPR emphasizes the practical significance of how SF affects a given HRV 
measure, as it is more in line with a plausible methodological concern—whether HRV values 
measured in independent samples of subjects from a common population (and which were 
measured at different SFs across the different studies) can be compared without systematic 
errors (i.e. as indexed by an inflated FPR) being introduced. Such concern is relevant for the 
domains of meta-analysis and mHealth, as argued in section 1.2. By contrast, a significant 
p-value from a paired-samples test would be a cause for concern if a researcher were attempt-
ing to compare HRV values from the same subjects using different SFs at different measure-
ment occasions. A decision which prompted a change in SF over the course of a longitudinal 
study would likely reflect some larger methodological issue with its own set of experimental 
caveats.

Quantifying the relationship between SF and observed FPRs across commonly used time- 
and frequency-domain measures of HRV in nominally healthy individuals (and how that rela-
tionship is influenced by cubic spline R-peak refinement) will be the central focus of the 
present paper.

2. Methods

A summary of all steps described below is provided in figure 4.

2.1. Dataset

The PhysioNet archive (www.physionet.org/physiobank/database/ptbdb; Goldberger et al 
2000) contains numerous ECG data sets, but only a few at a high (⩾1000 Hz) sampling rate. 
For the present study, the PTB Diagnostic ECG Database (PTBDB; Bousseljot et al 1995) 
was selected. The PTBDB includes records from 52 healthy subjects aged 17 to 81. Each 
record comprises 15 simultaneous ECGs (12 conventional leads and the 3 Frank leads) of 
approximately 120 s duration, digitized at 1000 Hz with 16-bit resolution. Because ECG lead 
configuration can induce systematic effects on HRV (García-González et al 2011), only lead 
II ECGs were examined.

2.2. ECG processing

2.2.1. ECG downsampling. Each ECG was downsampled (using Matlab’s downsample.m) 
from the original SF (SFOr) to one of the 19 ‘experimental’ sampling frequencies (SFEx) by 
taking every qth data point (where q is the set of integers from 2 to 19), yielding the relation-
ship SFn = 1000 / qn. (A q  >  19 would result in SFEx values with a Nyquist frequency that 
falls within the passband of the subsequent ECG filtering stage.) This downsampling method 
results in a true decimation of the original signal. (Note: not all of these SFEx values were 
retained in the final FPR analysis, for reasons detailed in section 2.4.)

2.2.2. ECG filtering. Bandpass filtering of an ECG is typically performed prior to R-peak 
detection (e.g. Kohler et al 2002). Each ECG (at each distinct SF) was filtered using a zero-
lag 4th-order Butterworth filter (constructed using Matlab’s butter.m and filtfilt.m) with a 
passband from 5 to 25 Hz.
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2.3. R-peak processing

2.3.1. R-peak detection. R-peak detection was accomplished using rpeakdetect.m (Clif-
ford 2003), an instantiation of the classic digital filter–based algorithm by Pan and Tompkins 
(1985). (Any detected peaks within the first and last 1 s of data were ignored to exclude pos-
sible false positive ‘partial’ R-peaks.) Although more advanced R-peak detection methods 
have been proposed (e.g. wavelet transforms, filter banks, neural networks, hidden Markov 
models, and genetic algorithms; for a comprehensive review, see Kohler et al 2002), the clas-
sic method was used here so as to align the present methodology with the widest possible set 
of past and current experimental literature.

Figure 4. Methods pipeline for the current study.
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2.3.2. R-peak refinement. Next, the timestamps of detected R-peaks (i.e. R-wave fiducial 
points) were optionally refined (independently for each SFEx) using a two-step procedure. 
First, a piecewise cubic spline (e.g. Daskalov and Christov 1997) was fit to each downsampled 
ECG (using Matlab’s spline.m), and resampled at 1000 Hz (as in Daskalov and Christov 1997, 
Bhatia et al 2010).

Second, for each R-peak detected in the ECG at SFEx, the local maximum of the inter-
polated and resampled ECG was located (i.e. within a window of  ±100 ms of the detected 
R-peak), yielding the refined R-peak time series. It is worth noting that the procedure of (1) 
downsampling an ECG, (2) detecting R-peaks, and (3) refining R-peak timing is not necessar-
ily equivalent to the procedure of (1) downsampling an ECG, (2) interpolating the ECG with 
a cubic spline, and (3) detecting R-peaks. The first order of operations, used in the present 
paper, will not change the accuracy of R-peak detection. That is, any R-peaks that are ‘missed’ 
at a low SFEx will also be missed even after R-peak refinement is applied. Performing R-peak 
refinement in this manner is a cleaner experimental manipulation, however, as it guarantees 
the same number of detected R-peaks between nonrefined and refined versions of a particular 
R-peak series at a given SFEx.

2.4. RR interval series outlier detection, PTBDB record exclusion, and SFEx exclusion

The first-order difference of each R-peak series yields an RR interval series. Artifacts (outliers) 
in an RR interval series can arise from several sources (e.g. Friesen et al 1990). A disturbance 
in the cardiac electrical rhythm (ectopic beats), electrical noise during ECG recording, or 
errors during QRS detection itself can compromise the accuracy of HRV measures (e.g. Kim 
et al 2007, 2009). An additional source of outliers—one of particular relevance to the current 
project—is SF: if an ECG is digitized too sparsely, R-spike events may be partially or entirely 
missed. In order to present the ‘cleanest’ experimental investigation of the role of SF on HRV 
measures, only those ECG records which (1) yielded an RR series at SFOr (1000 Hz) that was 
free from any outliers (as detected by the widely used algorithm developed by Berntson et al 
1990 and implemented by Kaufmann et al 2011), and (2) did not accrue any additional spuri-
ous or missed R-peaks relative to the R-peaks detected at SFOr at any SFEx.

This two-step procedure is detailed in section 2.4 of the supplementary material (stacks.
iop.org/PM/36/091827/mmedia). To summarize, of the original set of 52 healthy controls, 47 
possessed an ECG record that was free of RR outliers at SFOr. When examining the presence 
of false positive and false negative R-peaks (with respect to R-peaks at SFOr) at each SFEx, 
all R-peaks extracted from all 47 ECG records were present down to SFEx = 71.43 Hz (i.e. 
downsampling the 1000 Hz ECG by taking every 14th data point). Thus, the final data set used 
in the FPR analysis was a total of 658 RR interval series (47 subjects  ×  14 SFs), all of which 
were free of RR interval outliers.

2.5. HRV measure calculation

A total of 24 HRV measures (6 time-domain and 18 frequency-domain) were calculated on 
each outlier-free RR interval series at each SF. All calculations were derived using publically 
available Matlab toolboxes, as detailed briefly below. (Thorough explanations of these HRV 
measures are available elsewhere; e.g. TF96; Rajendra Acharya et al 2006, Bravi et al 2011, 
Tarvainen and Niskanen 2012, Smith et al 2013a).

2.5.1. Time-domain. Six time-domain measures were calculated on each RR interval 
series. (Formulas for all these time-domain measures are provided in section  2.5.1 of the 
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supplementary material) (stacks.iop.org/PM/36/091827/mmedia). Four are defined directly 
using simple transformations of the RR interval series: the average RR interval (‘AVNN’); 
the standard deviation of RR intervals (‘SDNN’); the standard deviation of successive RR 
interval differences (‘SDSD’); the square root of the mean of squared successive RR interval 
differences (‘RMSSD’). To this list are added the two most common measures derived from a 
Poincaré plot: the length of the short axis (‘SD1’) and long axis (‘SD2’) of the fitted ellipse. 
Although SD1 and SD2 are sometimes classed as nonlinear measures of HRV, their formulas 
can, in fact, be expressed in terms of SDNN and SDSD (Brennan et al 2001, equations (8) and 
(12)). This intimate mathematical relationship distinguishes SD1 and SD2 from other nonlin-
ear measures (noted briefly in section 2.5.3), and motivated their inclusion here.

2.5.2. Frequency-domain. A total of 18 frequency-domain measures derived from vari-
ous features of three distinct power spectrum density (PSD) estimates of the periodicities 
present in an RR interval series were calculated. Prior to PSD estimation, each RR interval 
series was detrended using the widely used smoothness priors method proposed by Tarvainen 
et  al (2002) and implemented in Matlab, with the regularization parameter (λ) set to 500  
(per Tarvainen and Niskanen 2012). All three PSD estimates were performed using the 
freqDomain.m Matlab script from the HRVAS package (Ramshur 2014), modified slightly to 
accommodate the PTBDB data and parameter values suggested by Tarvainen and Niskanen (2012).

The first PSD estimate was obtained from a fast Fourier transform (FFT) using a Welch 
periodogram (calling Matlab’s pwelch.m), with the RR interval series resampled at 4 Hz, an 
FFT window length of 256 samples (i.e. 64 s), and a window overlap of 50%.

The second PSD estimate was obtained from an autoregressive (AR) model using a Burg 
periodogram (calling Matlab’s pburg.m), with the RR interval series resampled at 4 Hz and a 
model order of 16. Spectral factorization of the AR output was not performed, per the recom-
mendation of Tarvainen and Niskanen (2012, p 28).

The third PSD estimate was obtained from least-squares spectral analysis via a 
Lomb  −  Scargle (LS) periodogram (calling the HRVAS script lomb2.m). Less well-known 
than FFT and AR approaches, the LS method of PSD estimation is considered superior to FFT 
and AR methods (for a detailed discussion, see Clifford and Tarassenko 2005), as it operates 
directly on the observed RR interval values and does not require their projection onto a regu-
lar time axis (via cubic spline interpolation and resampling; here, at 4 Hz), which attenuates 
higher-frequency periodicities present in the original signal.

All three periodograms were calculated with 512 points-per-Hz resolution. For each analy-
sis method, the PSD itself was quantified from the power spectrum using trapezoidal integra-
tion (calling Matlab’s trapz.m) within the low- (0.04 to 0.15 Hz) and high- (0.15 to 0.40 Hz) 
frequency bands, and converted to ms2/Hz units. The final set of frequency-domain meas-
ures from each PSD estimation method were: low- and high-frequency power in absolute 
units (‘LFau’, ‘HFau’), as well as their ratio (‘LFau/HFau’) and their sum (‘LFau + HFau’); and 
LFau and HFau expressed in normalized units: ‘LFnu’ = LFau / (LFau + HFau), and ‘HFnu’ = 
HFau / (LFau + HFau). (This ‘simplified’ definition excludes very low frequency power from 
the denominator, which cannot be fully resolved in 2 min recordings; for a more detailed 
explanation, see section 2.5.2 of the supplementary material) (stacks.iop.org/PM/36/091827/
mmedia).

2.5.3. HRV measures not examined. A number of widely used measures of HRV were, after 
careful consideration, excluded from the present analysis. For some measures, the decision 
was motivated by the ‘limitations’ of imposed by the available set of 2 min ECGs. Although 
TF96 notes that 5 min ECG recordings are ‘preferred’ for estimating HRV, it also states that 
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recordings of ‘approximately 2 min’ accurately quantify the low-frequency component of 
HRV. Demonstrations of the diagnostic sensitivity of two-minute analysis of HRV in both the 
time-domain (e.g. Dekker et al 2000) and frequency-domain (e.g. Singh et al 1998, Hall et al 
2004) are readily found in the literature.

Additional empirical evidence supports the validity of 2 min HRV, at least for some measures. 
Schroeder et al (2004) examined several HRV statistics (AVNN, SDNN, RMSSD, HFau, LFau, 
HFnu, and LFnu) derived from 2 min versus 6 min ECGs at 1000 Hz are highly-correlated (their 
table 5), and yield a similar breakdown of variance components (e.g. between-person, between-
visit, within-visit) when analyzed using mixed linear models (their table 4). SD1 and SD2 were 
not examined in Schroeder et al (2004), but would be expected to show similar performance 
given their close mathematical relationship to SDSD and SDNN (Brennan et al 2001).

By contrast, the diagnostic sensitivity of a number of other measures of HRV is predicated 
on longer recordings of HRV. Geometric measures (e.g. the HRV triangular index and the 
triangular interpolation of RR interval histogram) require at least 20 min (and ‘preferably’ 
24 h, per TF96), as do entropy measures (e.g. approximate entropy and sample entropy; Hogue  
et al 1998, Vikman et al 1999). Another popular nonlinear HRV measure, detrended fluctua-
tion analysis, is typically analyzed using windows of at least 8000 intervals, or roughly 2 h of 
continuous data (e.g. Huikuri et al 2003, Voss et al 2009).

A final exclusion was the ‘pNNx family’ of statistics (Mietus et al 2002): the percentage of 
RR intervals greater than x ms (typically, with x = 50). Although pNNx is commonly encoun-
tered in the literature and often reported as showing high correlations with other measures 
which index rapid RR interval changes (such as RMSSD and HFau; e.g. Task Force 1996a, 
Kleiger et al 2005, Thayer and Fischer 2009, Smith et al 2013b), its statistical properties imply 
some important caveats. The value of x plays a key role in its diagnostic sensitivity; Mietus  
et al (2002) argue that x = 50 is less sensitive than lower values of x. An additional concern with 
pNNx is the potential for ‘0’-valued statistics, either as a consequence of a too-short recording 
duration or a too-high value of x, which could mask subtle but important differences among 
subjects with low HRV. By contrast, RMSSD is a continuously valued statistic; a ‘0’ value 
would only emerge if all RR intervals were identical (a physiologically implausible scenario).

2.6. Quantifying the influence of SF and R-peak refinement

2.6.1. Quantifying differences between samples. The choice of the two-sample test statistic 
used to quantify differences in HRV values at SFOr versus SFEx is important. Because distri-
butions of HRV values vary widely in terms of their (non)normality (e.g. positively skewed 
SDSD, RMSSD, LFau, and HFau), assessment of between-sample differences typically follow 
one of two analysis options (see Riniolo and Porges 2000, Ellis et al 2008). One option sub-
mits the original data values to a natural log (ln) transform (ln(value + 1)) prior to analysis 
with parametric statistical tests (e.g. a two-sample t-test). Another option utilizes a rank-based 
(nonparametric) test (for an overview, see Conover and Iman 1981), eliminating the need for 
any data transformations; for example, the Mann–Whitney–Wilcoxon U-test. Unlike a two-
sample t-test (i.e. a test of group mean differences), a U-test is sensitive not only to differences 
in distribution location (i.e. the median rank of each sample), but also to differences in distri-
bution shape (Hart 2001); it is also more powerful than a t-test under a variety of non-normal 
distributional assumptions (e.g. Blair and Higgins 1980, Fay and Proschan 2010).

For sake of comparison and completeness, both a t-test (Matlab’s ttest2.m applying the Welch–
Satterthwaite correction for unequal variances; see Ruxton 2006) and a U-test (Matlab’s ranksum.m, 
on the original values) were performed. All time-domain measures (other than AVNN) and all power 
spectral density values in absolute units were ln-transformed prior to two-sample tests.
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2.6.2. Quantifying FPR. A Monte Carlo subsampling paradigm was implemented to quantify 
the observed FPR of the two-sample tests. (For a theoretical and practical overview of Monte 
Carlo–based evaluations of FPR, see Serlin 2000). For each of 100 000 iterations (a number 
empirically determined to yield a stable estimate of FPR values, as detailed in section 2.6.2 of 
the supplementary material) (stacks.iop.org/PM/36/091827/mmedia), a random permutation 
of the integers 1 to 47 was taken. The first 20 values defined the set of subjects for sample 1, and 
the next 20 values defined the set of subjects for sample 2 (thus leaving seven subjects out per 
iteration). The t- and U-tests were then performed across the full set of HRV measures (sepa-
rately for values calculated using nonrefined and refined R-peaks), with sample 1 at SFOr and 
sample 2 at successive levels of SFEx. The binary significance of each test (i.e. either p  <  0.05 
or p  ⩾  0.05) was recorded for each iteration. (For the U-test, significance was determined using 
the exact critical value rather than its Normal approximation; see Bergmann et al 2000). The 
observed FPR was then taken as the proportion of iterations that yielded a significant test result.

The utility of this approach can be illustrated by analyzing the SDNN data presented in 
figure 2, using 100 000 Monte Carlo iterations 20 data points per sample. A separate FPR 
was calculated for each of the SFEx values versus SFOr, and are presented in sequence as 
‘M.C. FPR’m, below the figure. These results present a rather different picture than the paired- 
sample t-tests performed on the same data: in fact, two-sample tests between SDNN at 
1000 Hz and SDNN at 500 Hz, 333 Hz, and 250 Hz had nearly identical FPRs (≈.0508) just 
slightly higher than the expected α = 0.05. This indicates that independent samples of SDNN 
values obtained at any of these SFs could be compared without risk of inflating the rate of false 
positive test results. As argued in section 1.3, we believe that such an inference is of greater 
practical significance than the p-value associated with a paired-samples test.

3. Results

Figure 5 presents a summary of each HRV measure as a function of SF, for SFOr (1000 Hz) down 
to SFEx = 71.42 Hz, arranged into four sets: time-domain (figure 5(a)), FFT model (figure 5(b)),  
autogressive model (figure 5(c)), and Lomb−Scargle model (figure 5(d)). Three subplots are 
shown for each measure. The first two are percentile-based summaries of observed HRV values 
derived from R-peaks that were nonrefined (left plot) versus refined (middle plot). (Measures 
which were natural-log transformed are labeled explicitly.) The results of the Monte Carlo–
based FPR analysis for each HRV measure (and using either nonrefined or refined R-peaks) 
are presented in the right plot.

Results are presented in three parts. First, some remarks about SF-induced changes in dif-
ferent HRV measures. Second, some remarks about general differences between t-test and 
U-test FPRs. Finally, a summary of how FPR is influenced by SF and R-peak interpolation.

3.1. SF, R-peak interpolation, and HRV measures

In the absence of R-peak interpolation, several measures showed clear changes as SFEx 
decreased: an inflation of low-valued statistics (e.g. the 10th percentiles of SDSD, RMSSD, 
SD1, and all three HFnu values), or a deflation of high-valued statistics (e.g. the 90th percen-
tiles of all three LFnu and all three LFau/HFau values) relative to SFOr.

The explanation for this finding is relatively straightforward: as SF decreases, the mag-
nitude of stochastic measurement error at each R-peak (i.e. with respect to the ‘true’ R-peak 
location at SFOr) increases; for an illustration of this, see figure S3 in the supplementary mate-
rial (stacks.iop.org/PM/36/091827/mmedia). This increased error at the level of R-peaks trans-
lates into greater stochastic error in successive RR interval differences, thereby increasing the 
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Figure 5. Statistics for the 24 HRV measures: time-domain (a); and frequency-domain 
using fast Fourier transform (b) auto-regressive (c) and Lomb  −  Scargle (d) algorithms. 
The distribution of observed values at each SF is summarized by five percentiles: 10th 
(light gray), 30th (dark gray), 50th (black), 70th (dark gray), and 90th (light gray), and 
plotted separately for HRV measures calculated using nonrefined R-peaks (left) and 
refined R-peaks (middle). Observed false positive rates (FPRs) for each measure are 
plotted as a function of SF in the right panel.
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amount of high-frequency ‘noise’ in the RR interval series. In subjects with relatively low 
beat-to-beat changes in RR interval at SFOr, as SF decreases, this increasing amount of noise 
leads to increasing inflation among HRV measures that are sensitive to rapid beat-to-beat fluc-
tuations (SDSD, RMSSD, SD1, and HFau). Even though LFau does not exhibit any systematic 

Figure 5. (Continued) 
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SF-induced inflation or deflation as SF decreases, the inflation of HFau as SF decreases leads 
to a corresponding deflation of ratio-based measures with LFau in the numerator (LFnu and 
LFau/HFau).

Figure 5. (Continued) 
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By contrast, when R-peak interpolation was applied prior to HRV measure calculation, 
the percentile-based summary statistics are far more stable across the SFEx values examined: 
inflation/deflation is nearly absent in the time-domain measures (SDSD, RMSSD, and SD1) 

Figure 5. (Continued)
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and frequency-domain measures (HFau, LFnu, and LFau/HFau) that all showed clear inflation/
deflation in the absence of R-peak interpolation.

Although these patterns and similarities are interesting, the results of the Monte Carlo–
based FPR analysis give a better intuition about the experimental consequences of comparing 
samples at different SFs. We turn to those results next.

3.2. General comments about FPRs

Two general comments about FPRs may be offered before discussing individual HRV mea-
sures. First, in most cases, U-test FPRs were consistently lower than t-test FPRs. This was 
not unexpected, due to the noncontinuous relationship between rank-based statistics and their 
‘exact’ p-values (see Bergmann et al 2000). For example, when n = 20, a U-test is significant 
if U  ⩽  127, and yields an expected α = 0.0491 rather than α = 0.05. The actual difference 
between the t- and U-test FPRs tends to exceed the expected difference of (0.05  −  .0491) 
= 0.0009, particularly when R-peak refinement was used. This suggests that use of R-peak 
refinement in conjunction with a U-test conveys true protection against false positive two-
sample test results for many HRV measures.

Second, FPRs showed some variation around the expected α = 0.05, even when both sets of 
HRV values were calculated at SFOr. As with any Monte Carlo-based operation, such variation 
is inevitable, as is illustrated by the simulation detailed in section 3.2 of the supplementary 
material (stacks.iop.org/PM/36/091827/mmedia). Thus, for sake of simplicity, the amount of 
FPR inflation at a given SFEx will be described relative to the FPR level at SFOr. For example, 
‘inflation of +0.001 at 200 Hz’ would indicate that a particular FPR that was higher by 0.001 
at 200 Hz relative to that same FPR at 1000 Hz (e.g. 0.052 versus 0.051).

3.3. SF, R-peak interpolation, and FPRs

Figure 5 reveals clear differences for nonrefined HRV measures and refined HRV measures. 
The benefits of R-peak interpolation on the stability of HRV values, noted above, extended 
to the pattern of observed FPRs. Specifically, all HRV measures showed inflation of less than 
+0.001 across all SFEx values.

When R-peak interpolation was not utilized, however, FPRs showed varying patterns and 
rates of inflation. Some measures performed much like their refined counterparts, with infla-
tion of less than +.001 (AVNN, SD2, all three HFau, and all three LFau + HFau) or just over 
+.001 (SDNN) across all SFEx. The remaining time-domain measures (SDSD, RMSSSD, and 
SD1) showed FPR inflation of +.005 at 125 Hz and +.01 (or more) by 100 Hz. The remaining 
frequency-domain measures (all three HFau, LFnu, and HFnu, and LFau/HFau) all showed ris-
ing FPR inflation below 100 Hz, reaching +.005 (or more) by 71 Hz. (The substantially lower 
FPRs for LFau/HFau t-test results are likely a consequence of the positively skewed distribution 
of values, which are not typically log-transformed prior to calculation. The nonparametric 
U-test yielded a more typical pattern of FPRs.)

Thus, to summarize, negligible FPR inflation (i.e. less than 0.005 higher than the expected 
0.05 level) was maintained under the following conditions:

 1. When R-peak refinement was utilized: down to 71 Hz for all time-domain and frequency 
measures.

 2. When R-peak refinement was not utilized, (a) down to 100 Hzm for frequency-domain 
measures inflation; (b) down to 125 Hz for SDSD, RMSSD, and SD1; and (c) down to 
71 Hz for AVNN, SDNN, and SD2.

The implications of these findings will be discussed next.
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4. Discussion

The present paper aimed to take a fresh look at the relationship between sampling frequency 
(SF), R-peak interpolation, and common time- and frequency-domain measures of HRV. Prior 
investigations into this topic (see table 1) typically used a within-subjects approach to quantify 
the SF-induced changes in HRV values. In our view, the results of such an analysis would 
offer insights into a rather limited experimental scenario: changing the sampling rate over the 
course of a longitudinal trial. By contrast, a between-subjects analysis—specifically, testing 
whether HRV values from two different sets of subjects at two different SFs are consistently 
different—offers insights that would be highly relevant for the growing number of meta-ana-
lytic studies of HRV, or for studies wishing to compare ambulatory HRV with normative HRV 
values collected at a potentially different SF.

Two specific hypotheses were evaluated. First, that repeated two-sample comparisons of 
HRV values at 1000 Hz in one healthy sample and increasingly lower SFs in an independent 
healthy sample would lead to progressively higher false positive rates (FPRs). Second, that the 
use of cubic spline interpolation to ‘refine’ the R-wave fiducial point would reduce the sever-
ity of FPR inflation. Previous in-depth discussions of FPR in the context of psychophysiology 
have been largely restricted to techniques designed to maintain a valid familywise error rate 
when performing multiple comparisons within the context of repeated-measures analysis of 
variance (e.g. Jennings 1987, Vasey and Thayer 1987). To our knowledge, the present study 
marks the first use of Monte Carlo methods to derive the observed FPR of a particular statisti-
cal test within the domain of psychophysiology.

The present set of results adds some concrete insight into the behavior of HRV measures when 
comparing values measured at different SFs. The language used in two classic reference papers 
on HRV methodology (Task Force 1996a, pp 1047–1048; Berntson et al 1997, p 630) was rather 
cautious with respect to SF recommendations: 128 Hz ‘may be useable’ and 250 Hz ‘may be ade-
quate’ in some cases, but 500 Hz ‘or perhaps higher’ would be ‘optimal and generally applicable’. 
Also, that R-peak interpolation of ECGs at lower SFs ‘may’ result in HRV measures that ‘behave 
satisfactorily’. Our own results can be stated more concretely: without R-peak interpolation, all 
examined HRV measures showed negligible inflation of FPRs down to 125 Hz; with R-peak inter-
polation, inflation was negligible down to 71.43 Hz (i.e. decimating a 1000 Hz signal by 14).

That FPRs remain statistically valid even when comparing HRV values at 1000 Hz and 
125 Hz (and, by inference, at SF values in between them) is particularly notable, as the bulk of 
prior published work on HRV uses SFs within this range (see table 2), including contemporary 
studies at 1000 Hz and numerous legacy studies utilizing a Holter monitor at 128 Hz. It would 
also imply that values recorded in the laboratory at a high SF in one sample could be com-
pared with values recorded ‘in the field’ at a battery-saving 128 Hz in another sample from the 
same population without systematically inflating the FPR above the target α = 0.05—under 
the assumption that any differences in sample demographics, signal recording, and data analy-
sis would not themselves induce a confound.

4.1. Caveats

Several design aspects of the present study stand in marked departure from previous investi-
gations. Although we believe that these changes result in cleaner experimental methods and 
inferentially stronger results, they should (at a minimum) be noted as caveats.

A first caveat pertains to the chosen dataset of healthy subjects. The ECG records selected 
from the PTBDB database were high quality and relatively free of recording artifacts, were 
digitized at a high original sampling frequency (SFOr = 1000 Hz), and sampled a wide age 
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range (17 to 81). They were also more numerous (47 unique subjects) than nearly all previ-
ous forays into this topic (see table 1). Nevertheless, certain properties of this dataset (e.g. the 
wide age range of subjects) may translate into undetected experimental confounds. We also 
note that we opted not to use simulated ECGs (e.g. as are available using the compelling and 
comprehensive ECGSYN model proposed by McSharry and colleagues (McSharry et al 2003, 
McSharry and Clifford 2006). Although doing so would have solved the ‘low-N’ problem,  
it would have introduced its own caveats. ECGSYN, for example, generates ECGs by first simulat-
ing an RR interval series with precise spectral characteristics (which the user is required to specify) 
and then generating the associated ECG using a series of time-varying differential equations which 
capture different waveform components. We chose the PTBDB dataset so as to make our approach 
as data-driven as possible, mirroring an actual experiment. However, the relatively short duration 
of ECG records (2 min) precluded studying several widely used HRV measures (see section 2.5.3). 
Were such a database (e.g. 20 min ECGs at 1000 Hz) made available in the future, our approach 
could be used to explore how SF influences geometric and nonlinear measures of HRV.

A second caveat pertains to the chosen methods of R-peak detection (Pan and Tompkins 
1985) and R-peak refinement (cubic spline interpolation; e.g. Daskalov and Christov 1997; 
see figure 2). Numerous methods for both R-peak detection (e.g. for a review, see Kohler 
et al 2002) and R-peak refinement (see table 1) are available, and may yield improvements 
in R-peak detection power or R-peak refinement accuracy over the two ‘classic’ operations 
used here. A systematic comparison of how different R-peak detection and R-peak refinement 
options affect FPRs is beyond the scope of one paper. Thus, our choice was driven by a desire 
to make the present methodology (and thus its findings) aligned with the broadest possible set 
of experimental studies dating from the 1990s to the present.

A third caveat pertains to the exclusion of ECG records which yielded spurious R-peaks, 
missing R-peaks, or other potential outliers (as identified using the algorithm by Berntson  
et al 1990) across the entire set of SFEx values examined (i.e. relative to detected R-peaks 
in the ECGs at SFOr). This decision was made to ensure that the observed FPR patterns 
were driven by the target experimental manipulations of ECG downsampling and R-peak 
refinement, and not confounded with an additional source of error (i.e. possible outliers). 
Importantly, this choice may mean that our results reflect a ‘best case scenario’: FPRs would 
almost certainly be higher, for example, if outliers due to missing R-peaks were present at low 
SFs. Furthermore, although we found no R-peak outliers in the current sample of 47 ECGs at 
71.43 Hz, Task Force (1996a) and Berntson et al (1997) note that SFs below 100 Hz have the 
potential to lead to missed or partial R-spikes.

A fourth caveat pertains to the reliance on FPR itself as a means to assess the ‘significance’ 
of SF-induced changes in HRV values. Although we have argued in section 1.3 that an FPR 
enables more practically significant insights than does a traditional within-subjects approach 
quantifying SF-induced error in HRV values, FPR is but one side of the coin—or, perhaps, one 
side of the dice—as is discussed in the next section.

4.2. False positives and true positives

The FPR of a binary classification test is only one of several statistics that can be calculated 
from a 2   ×   2 (see figure 3). FPR is the probability that two samples from the same popula-
tion are incorrectly labeled as statistically different. Another statistic is the true positive rate 
(TPR): the probability that two samples from different populations are correctly labeled as 
statistically different. Put another way, TPR is the probability of obtaining a statistically sig-
nificant difference when a real difference is present. In the statistics literature, TPR is more 
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often referred to as statistical power (e.g. Cohen 1992); in the clinical medicine literature, 
TPR is more often referred to as diagnostic sensitivity.

Evaluating the role of SF on diagnostic sensitivity is a substantially more challenging task 
than the one addressed in the current paper, as the specific disease or condition being exam-
ined introduces a new set of challenges. It may be, for example, that measure m1 has greater 
sensitivity than measure m2 when comparing populations p1 and p2, whereas measure m2 has 
greater sensitivity than measure m1 when comparing populations p1 and p3—even before dif-
ferences in SF enter the picture. Evaluating the effect of SF on sensitivity becomes a complex 
task when considering a large set of HRV measures {m1, m2, …} and populations {p1, p2, …}. 
Such work must be left to future studies.

4.3. Conclusion

A careful look at the how sampling frequency (SF) and R-peak interpolation influence HRV 
was presented. Building upon repeated tests of statistical significance (i.e. a Monte Carlo 
analysis of false positive rates in two-sample tests), findings of practical significance are 
offered regarding the statistical validity of comparing samples of subject data collected at 
different SFs. Given the recent increasing attention to the importance of false positive results 
across numerous scientific disciplines and methodologies (e.g. Ioannidis 2005), we hope that 
the present results will provide researchers with useful insights regarding FPR inflation for 
one widely explored physiological construct: heart rate variability.
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