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ABSTRACT 
Conditions such as Parkinson’s disease (PD), a chronic neu­
rodegenerative disorder which severely affects the motor sys­
tem, will be an increasingly common problem for our grow­
ing and aging population. Gait analysis is widely used as a 
noninvasive method for PD diagnosis and assessment. How­
ever, current clinical systems for gait analysis usually re­
quire highly specialized cameras and lab settings, which are 
expensive and not scalable. This paper presents a computer 
vision-based gait analysis system using a camera on a com­
mon mobile phone. A simple PVC mat was designed with 
markers printed on it, on which a subject can walk whilst be­
ing recorded by a mobile phone camera. A set of video anal­
ysis methods were developed to segment the walking video, 
detect the mat and feet locations, and calculate gait param­
eters such as stride length. Experiments showed that stride 
length measurement has a mean absolute error of 0.62 cm, 
which is comparable with the “gold standard” walking mat 
system GAITRite. We also tested our system on Parkinson’s 
disease patients in a real clinical environment. Our system 
is affordable, portable, and scalable, indicating a potential 
clinical gait measurement tool for use in both hospitals and 
the homes of patients. 
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1. INTRODUCTION 
The world population has been growing rapidly in recent 

decades, with more than seven billion people living world­
wide1 . Along with this growing trend, the world population 
is aging at an unprecedented rate, and this brings profound 
implications for many facets of human life2 . One of the 

1https://ourworldindata.org/world-population-growth/ 
2http://www.un.org/esa/population/publications/ 
worldageing19502050/ 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full cita­
tion on the first page. Copyrights for components of this work owned by others than 
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re­
publish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 

ASSETS ’16, October 23-26, 2016, Reno, NV, USA 
c⃝ 2016 ACM. ISBN 978-1-4503-4124-0/16/10. . . $15.00 

DOI: http://dx.doi.org/10.1145/2982142.2982156 

most serious implications is age-associated chronic diseases 
that deteriorate the quality of life of elderly people, such as 
neurodegenerative disorders including Parkinson’s disease, 
Huntington’s disease, and Amyotrophic Lateral Sclerosis. 

Parkinson’s disease (PD) affects an estimated seven to ten 
million people worldwide, and its incidence increases with 
age 3 . PD is characterized by decreased motor control abili­
ties, causing symptoms which typically include bradykinesia 
(slowness of movement), rest tremors, rigidity, and postural 
and gait impairment. Currently there is no cure for PD, and 
PD patients rely on medicine such as Levodopa to control 
the symptoms. 

As a chronic disease, PD progresses slowly and its onset 
is usually difficult to detect. It has a long progression time, 
which can be divided into different stages. Diagnosis of the 
PD stage of a patient is an important clinical task that also 
affects the treatment of the patient. In rural or community 
hospitals where neurologists and specialized medical equip­
ment are not available, doctors have to diagnose a patient’s 
PD stage based on experience and some simple tests. There­
fore, there is a great need for inexpensive, accessible, and 
objective tools that can be used for PD diagnosis in rural 
hospitals or hospitals in developing countries. 

Mobility assessment is a standard non-invasive PD test, 
which aims to assess the degree of mobility impairment via 
the quantification of limb movement. Specifically, gait anal­
ysis is widely used to evaluate lower motor performance. 
Some of the fundamental gait measures include stride time 
and stride length, as well as the variability of these mea­
sures. Experiments have shown that PD patients usually 
have reduced cadence and increased variation during walk­
ing. For example, a study showed that PD patients had a 
much larger step time variability (7%) than healthy controls 
(4%) [6]. 

Clinical gait measurement normally uses pressure sensi­
tive walking mats [17] or motion-capture cameras or cam­
era arrays [19]. These devices are costly and often require 
technical expertise to use, and thus are difficult to scale up. 
For those motion-capture systems, usually highly specialized 
cameras are used, such as Vicon cameras4 . However, cheap, 
general-purpose cameras on mobile phones are now ubiqui­
tous. Many smartphone (e.g., iPhone 6S, Samsung Galaxy 
S5 and newer) cameras are capable of recording videos at 4K 
resolution at 30 frames per second (FPS) or higher. These 
modern smartphones have become a potential platform for 
camera-based gait analysis. 

3http://www.pdf.org/en/parkinson statistics 
4http://www.vicon.com/ 
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2. RELATED WORK 
There are many studies that focus on analyzing PD pa­

tient’s activities using different methods and tools. Inertial 
sensors such as accelerometers and gyroscopes have been 
used to record patient motion [23, 12, 33, 5]. A mobile phone 
application [18] was introduced to quantify the Timed-up­
and-go test which is common for PD assessment. It also 
uses the inertial sensors of the mobile device to capture the 
signals of the patient’s gait. One study [23] designed a bio­
metric suit with inertial sensors to simultaneously measure 
the gait oscillation from eight major joints (knees, hips, el­
bows and shoulders) of a human body. Another inertial 
measurement system was developed with several IMUs at­
tached to the subject’s feet [12]. These studies use mul­
tiple wearable inertial sensors to collect motion data, and 
then calculate gait parameters based on the collected data, 
which is not very convenient, especially for severe PD pa­
tients. Moreover, the data collected from inertial sensors is 
not straightforward to analyze, requiring complicated algo­
rithms to extract even simple gait parameters. 

Many studies also use specialized cameras for motion anal­
ysis. Microsoft Kinect cameras are commonly used in marker-
less tracking systems which provide both a color and depth 
image. There are some studies which use these images to ex­
tract motion parameters. For example, a Kinect camera was 
used in a study [8] to track the center of mass of a person. 
Another study [22] focuses on the effects of playing Kinect 
Adventures on the postural control of patients with Parkin­
son’s disease. These studies use relatively expensive and 
specialized cameras to track human motion, which require 
simple environments to avoid noise caused by background 
objects and lighting. A disadvantage of marker-less track­
ing systems is that their accuracy is affected by complicated 
movements. This is not ideal for tracking PD patients with 
abnormal gait patterns. 

There are some other commercial gait measurement tools 
based on pressure sensors, such as GAITRite5 [17] (a mat 
embedded with pressure sensors) which records foot steps 
when the subject walks on the mat. It does not require the 
subject to wear any special sensors on the body. However, 
it is unable to detect foot movement above the mat and 
thus can not obtain the full picture of the gait cycle. More­
over, GAITRite is too expensive to be widely adopted in the 
homes of patients or even some hospitals. 

Based on the above analysis, this paper presents a com­
puter vision (CV) based gait analysis system using a smart-
phone camera. It records a video of a subject walking on 
a mat, and calculates the subjects stride times and lengths. 
The stride length measurement accuracy is comparable with 
the “gold standard” walking mat GAITRite. A set of video 
analysis algorithms are developed to segment the videos, lo­
cate the mat and shoes, and estimate stride lengths. The 
detailed system description and algorithms will be presented 
in the following sections. 

3. SYSTEM OVERVIEW 
Due to clinical constraints, the proposed system needs to 

meet certain usability requirements. We placed a strong 
emphasis on portability, ease of use, cost reduction, and ac­
curacy. As our target users are rural hospitals, hospitals in 
developing countries, and home users, we require the sys­

5http://www.gaitrite.com 

Figure 1: System test environment. Note the smart-
phone on a tripod and the mat on the ground. 

Figure 2: Walking mat. All sizes in the figure are in 
cm. The red dashed line denotes the walking path 
in our experiment. 

tem to cause minimal interference to the patient and work 
in a wide range of environments with differing lighting con­
ditions, backgrounds, and walking styles. The basic idea of 
the system is to use video footage of patients walking on 
a specially designed mat (see Figure 1 & 2) to automati­
cally locate the foot position on the mat and then estimate 
the stride lengths of the patient. The system should be a 
complete solution for gait analysis, providing important gait 
information and statistical analysis. To this end, the system 
accepts a recorded video of a patient walking on a mat and 
outputs estimations of stride lengths. 

The pipeline of the system is presented in three main 
components: Mat Extraction, Shoe Detection and Stride 
Length Estimation. Figure 3 illustrates how the components 
are connected, with a detailed work-flow for each compo­
nent. The first component (Mat Extraction) analyses the 
recorded video to find sections where the patient is not in 
the frame. It uses these sections to extract the relative ori­
entation of a specially designed mat to the camera and acts 
as a ruler for later stride length estimation. The second 
component (Shoe Detection) uses the same video and se­
lects the sections where the patient is walking on the mat. 
This component finds the closed contour of the shoe using 
a selection of computer vision and Computer Aided Geo­
metric Design (CAGD) algorithms. The third component 
(Stride Length Estimation) uses this closed shoe contour in 
combination with the previously extracted mat information 
to map the shoe contour position to real world units and 
thus estimate stride length. This component uses a map­
ping function which relates pixels to meters, and uses dif­
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Figure 3: System Pipeline 

ferent strategies to determine where the front of the shoe is 
(even under perspective change). 

To keep within a modest budget, our system consists of a 
Samsung S5 phone, a printed PVC walking mat, and a pair 
of shoes which have distinct and uniform colors. The camera 
is placed on a tripod and pointed at the mat (See Figure 1). 
We record 1080p video at 30fps and then transfer the video 
to a computer running our gait analysis software. In the 
next three sections we will detail the three components of 
the system. 

4. MAT EXTRACTION 
In order to extract stride lengths from a video we will 

need some point of reference to figure out the scale and ori­
entation of the recorded environment. Therefore we design 
a simple mat which acts as this reference point, giving us 
both scale, and relative orientation of the mat to the cam­
era. It also serves as a ruler for stride length estimation. In 
this section, we will describe the mat used in our system, 
and then discuss the method for automatically extracting 
perspective information from it. 

4.1 Mat Design 
We designed our mat to be durable, low cost, simple, and 

to not cause undue dizziness or vertigo in those walking 
across it. The mat consists of alternating black and white 
markers printed on the long edges of a 0.9 m × 5.0 m sheet 
of PVC material. The markers, each 10 × 10 cm in size, 
are used to calculate the orientation of the mat and provide 
a ruler in the final system component (Section 6) for stride 
length estimation. The middle of the mat is clear in order 
to both simplify shoe detection in Section 5 and to stop the 
subject getting vertigo from the high contrast edges. The 
completed mat design is shown in Figure 2. 

We selected PVC material as it is easy to find in printing 
shops around the world and can be printed to any length or 
width. It is also durable, easy to clean, and heavy enough 
that it will sit flat on the ground. Furthermore, this material 
is non-reflective and therefore it will not interfere with video 
recording. 

Figure 4: Mat extraction stages. (a) Original 
cropped mat image from video. (b) Binary mat im­
age. (c) Marker contours. (d) Paired markers. (e) 
Perspective lines. 

4.2 Perspective Information 
In our system a smartphone camera is placed on a tri­

pod and pointed towards the mat, but this position may 
not always be exactly the same. Therefore the goal of this 
component is to find the relative size, location, and orien­
tation of the mat automatically so that the camera position 
does not have to be re-calibrated every time it is set up or 
bumped. 

Before we do any processing on the recorded video it 
must be segmented into multiple sections, those with walk­
ing (walking videos) and those without (mat videos). This is 
performed using a simple background subtraction approach 
to detect motion [31, 4]. In this section we will process the 
mat videos, and in the next section we will use the walking 
videos. We define the perspective information as the ex­
tracted set of paired markers which make up the mat. From 
this set of paired markers we can ascertain the relative ori­
entation of the mat to the camera and estimate distances in 
our real world co-ordinate system. 

A procedure overview is detailed in Algorithm 1. The pro­
cedure for extracting perspective information from a video 
is automatic with the exception of the following step. First, 
we manually crop the frames of the mat video to include 
only the mat itself using a simple UI. Figure 4a shows the 
cropped image. We have not automated this step because it 
needs to be able to handle different conditions and environ­
ments and it is possible that the mat could blend into the 
background. Therefore we ask the user to specify the loca­
tion of the mat. This step reduces both overall processing 
time and the impact of other objects in the frame. From 
this step onward, the system is completely automatic. 

Next, we use a few basic image processing algorithms [21] 
to prepare the image for analysis. First we use the histogram 
equalization method to compensate for differing lighting. 
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Then we use use a basic Gaussian filter to remove the noise 
in the middle of the empty mat. Lastly, we transform the 
color image to a binary one using a threshold method. Fig­
ure 4b shows the processed image from the video. 

With this binary image we now locate, count, and pair 
off the mat markers. For simplicity sake, we will define the 
bottom of the mat as the edge of the mat that is closest to 
the camera, and conversely the top of the mat is the edge 
furthest away from the camera. The idea is straightforward: 
we count the number of markers in the bottom of the original 
mat and then align these markers to the markers in the top of 
the mat. We use the Canny operator [2] to find the contours 
of all of the markers (see Figure 4c). 

Due to the perspective of the camera, we find that there 
are a few markers at the top of the mat that have no cor­
responding markers on the bottom of the mat and therefore 
these need to be excluded. Here, we choose the line that 
passes through the left edge of the bottom first marker and 
shift the line 5 to 10 pixels to left. All top markers to the left 
of this line are removed from the binary image of the mat. 
Likewise, we do this on the right using the bottom rightmost 
marker, and therefore only the markers which can be paired 
remain. Figure 4d shows the mat after all of the markers 
have been paired, with the redundant markers removed. 

Finally we choose critical points from each marker’s left 
and right edges to draw the line between the bottom and top 
markers. We take the top and bottom marker edges, and 
then we calculate the line of best fit that connects them. 
This is repeated for all pairs of markers. To improve the 
success of this method we only use the edge points between 
5% and 95% of the total height of the marker, thus removing 
any influence of the corner of the marker. Figure 4e shows 
the final perspective information as displayed on the mat. 

Algorithm 1 Mat Extraction Algorithm 
1: procedure Mat–Extraction 
2: Crop frame of mat video 
3: Perform histogram equalization operation 
4: Remove noise using Gaussian Filter 
5: Convert frame to binary image 
6: Use Canny operator to extract edges of markers 
7: Count the number of markers 
8: Exclude unpaired markers 
9: Connect paired markers with a line of best fit 
10: end procedure 

To get high accuracy perspective information we recom­
mend the following steps. Ensure the camera is stable and 
record in as close to a uniform lighting environment as pos­
sible. It is also important to fine tune the parameters for 
the techniques used to get a clear contour of the edge of the 
markers. Even with this calibration we may not always get 
a continuous contour of the edge, in this event we can use 
the technique described in Section 5.2 to find a continuous 
contour. Next, we describe the process to detect the shoe 
and find its contour. 

5. SHOE DETECTION 
This component analyses the sections in a video where 

the patient is walking on the mat whilst wearing uniformly 
colored shoes. The goal here is to find the contour of both 
shoes to be used in the final component to estimate stride 

Figure 5: Shoe region segmentation. (a) Original 
frame. (b) Left shoe region. (c) Right shoe region. 

length. In this section, we describe the procedure for shoe 
detection. The procedure involves detecting the regions of 
the shoes based on the color of the shoes, and then extracting 
the closed contour of the shoes. To make the computation 
easily parallelizable, the video is first decomposed into a 
sequence of images, and shoe detection is performed on each 
image independently. 

5.1 Shoe Region Segmentation 
First, each source image is cropped to the same size and 

location as the empty central region of the mat. This step 
removes both the background and the mat markers from the 
frame. Next, we need to reduce the noise from the cropped 
image. There are many sources of noise such as those caused 
by shadows under the feet, lighting differences, and objects 
that have fallen on the mat during walking (such as dust 
and hair). Here we choose the median filter, because our 
goal is to extract the contour of the shoe, and the median 
filter performs better at preserving edges compared to simple 
average filters. After applying the median filter to the image, 
most of this noise is removed. 

In order to track both feet, our system needs the colors 
of the left and right shoe. In our experiments, we use red 
for the right shoe and black for the left, as shown in Figure 
5a. While it is not necessary for the feet to use these exact 
colors, we recommend that the feet colors have high contrast 
with each other and the mat. This is because the lighting 
conditions may vary over a recording or even vary within the 
same walk. This causes the shoe color in the image to change 
significantly. Thus using shoe colors which are sufficiently 
different from the mat color will produce the best results. 

Given the color of each shoe, we can segment the shoe 
region from the image based on the similarity between the 
shoe color and the color of each pixel. The shoe region 
is formed by the pixels which have a high color similarity 
(using a predefined threshold) to the shoe color. Figure 
5b and 5c show the segmented left and right shoe regions, 
respectively. In our system, we adopt the commonly used 
CIE94 algorithm to compare two colors [16]. 

5.2 Contour Detection 
After finding the shoe regions, we need to find the closed 

contour of each shoe, which is used to determine the exact 
location of the shoe. To obtain an accurate contour of each 
shoe, we first detect the edges of the shoe, which can be 
achieved using the Canny operator [32, 1, 20, 27]. For our 
system we choose to modify the normal operator to achieve 
a better edge detection result. In a normal Canny operator, 
an image is first filtered using a Gaussian filter before find­
ing the intensity gradient of the image. However, the Gaus­
sian filter is not very good at preserving the edges. There­
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Algorithm 2 Shoe Detection Algorithm 
1: procedure Shoe Detection 
2: Crop frame of walking video 
3: Detect edges using modified Canny operator 
4: Use edge traversing to find edges belonging to shoe 
5: while largest gap between edges > ϵ do 
6: Lower edge detecting threshold for operator 
7: Detect edges using modified Canny operator 
8: Use edge traversing to find edges 
9: end while 
10: Interpolate edges to get the closed contour 
11: end procedure 

fore, to achieve better edge detection results, we modify the 
Canny operator by instead using the bilateral filter [26, 29] 
to remove noise, as it performs better at edge-preservation. 
Although computationally expensive, it is possible to use 
general purpose GPU computing techniques to speed up the 
Canny operator [11, 25] even on mobile hardware. 

Next we use our modified Canny operator to detect the 
edges of the shoe (see Figure 6a). We find that the initial 
edges obtained by the Canny operator cannot guarantee a 
closed contour of the shoe region. Instead, there are often 
many gaps in the front of the shoe. This makes it difficult 
to find the front point of shoe and will cause large errors in 
the estimation of shoe location. One of the solutions for this 
problem is to adjust the parameters of Canny operator, but 
this method usually causes other side effects (e.g., too many 
unwanted edges) and is not suitable for the automation of 
the whole processing procedure. Another solution is to use 
Computer Aided Geometric Design (CAGD) algorithms [9, 
24] to modify the initial edges. 

Since we cannot always obtain a closed contour using the 
edges extracted by the Canny operator, we need to use fit­
ting methods to fill in the gaps between edges to make it 
closed. For this task we use B-spline curves, which have the 
advantages of being continuous and allowing fine local con­
trol. For the B-spline interpolation curve, the main question 
is how to calculate the so called control points on the shoe 
edges [15, 13, 30, 14]. Since there are many different types 
of shapes on the contour, we cannot simply use a uniform 
function to choose the feature points [28]. In this paper, 
we propose a new algorithm to find the feature points from 
all of the discrete points located on the shoe edges. Then 
we use non-uniform cubic B-spline interpolation method to 
obtain a closed shoe contour. 

Edge traversing methods normally come from two main 
strategies. One is based on Run-length [7], and the other is 
based on Chain Code methods [3]. Regardless, both of them 
have the disadvantage of repeatedly outputting some edges 
or missing some interior edges. Our method is based on 
3D reconstruction techniques used in medical imaging [28] 
which can quickly extract a complex contour in one scan. 
After the edge traversing process, we get a single pixel-width 
contour as shown in Figure 6b. If we find large gaps between 
adjacent edges, we can dynamically adjust the parameters 
of the Canny operator to decrease the gaps to be smaller 
than a predefined threshold ϵ. The trade off is we will also 
extract more redundant edges in the process. The improved 
edges extracted are shown in Figure 6c. 

To fill the gaps among the edges to form a closed con­
tour, we used an interpolation algorithm based on the non-

Figure 6: Modification on Canny operator result. 
(a) Original detected result. (b) Edge traversing re­
sult. (c) Reducing gap size. (d) Interpolation result. 

uniform cubic B-spline curve. First, we need to find the 
feature points from an edge line. As illustrated in Figure 
9c, for the j−th point (i.e., a pixel) Pj in an edge line, two 
of its neighbor points Pj−s and Pj+s are selected, where s 
is a predefined neighbor range (e.g. s = 4). We proposed a 
new method for easy estimation of the vertex curvature at 
Pj , which is calculated as the perpendicular distance (Hj ) 
from Pj to the line formed by Pj−s and Pj+s. If Hj is less 
than a preset threshold, Pj is selected as a candidate of the 
feature points. Then, a non-minimum suppression method 
[28] is adopted to choose the final feature points from the 
candidates. After obtaining the feature points, we apply 
the bi-directional accumulated arc length method [24] for 
parameterization in B-spline interpolation. Finally, control 
points are computed and non-uniform cubic B-spline inter­
polation curves are generated to connect the edges to form 
a closed contour [24]. The final closed contour is shown in 
Figure 6d. An overview of the procedure can be seen in 
Algorithm 2. 

6. STRIDE LENGTH ESTIMATION 
This component finds the front point of the closed shoe 

contour and maps it to real world units using the previously 
extracted mat information. It also separates each stride from 
continuous walking and thus estimates stride length. An 
overview of the procedure can be seen in Algorithm 3. 

Algorithm 3 Stride Length Estimation Algorithm 
1: procedure Stride Length Estimation 
2: Find stationary frames 
3: Find front point on shoe contour 
4: Convert from pixels to cm using mapping function 
5: Estimate stride length 
6: end procedure 

6.1 Stride Detection 
Stride length is the displacement between two successive 

foot strikes on the ground of the same foot. We denote the 
video frame that separates two adjacent strides as a “station­
ary frame” (i.e., the frame in the middle of the stationary 
stance phase). Therefore, the stride length can be calculated 
as the distance traveled by the same foot at two adjacent 
stationary frames. 

We propose two methods to find the stationary frames. In 
the first method, we take advantage of the nature of walking 
as there are alternating periods when the foot is stationary 
on the ground and periods when the foot is moving above the 
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λ2d1 + λ1d2
d = . (1) 

λ1 + λ2 

α2d1 + α1d2 d1 sin θ2 + d2 sin θ1
d = = . (2) 

α1 + α2 sin θ1 + sin θ2 

Figure 7: Stationary frame detection based on the 
number of edge lines in each frame. 

ground. This leads to our key observation that the frames 
are less blurred when the foot is stationary and more blurred 
when the foot is in motion. As noted earlier, the Canny 
operator will output more edge lines if the image is blurred. 
So we can use this feature to find the number of edges in 
each frame of the whole image sequence. The dashed line in 
Figure 7 illustrates the detected number of edges in every 
frame. We can easily find, for one foot, that there are a few 
peak points. The middle point between two adjacent peaks 
is therefore the frame in which the foot is on the ground 
(i.e., the stationary frame). To facilitate peak detection, we 
apply a low-pass filter on the original signal to smooth out 
the waveform (the solid line in Figure 7). 

This stationary frame detection method is simple and ef­
fective. However, it may be affected by other noise in the 
frame. For example, if the clothing of the subject is still 
moving after the foot is stationary, the captured frame can 
still be blurred. If the subject is walking at a very slow 
speed, the frame will not be blurred much, which leads to 
less dominant peaks in the waveform of the edge lines. Nev­
ertheless, with well-tuned parameters in filtering and peak 
detection, this method worked successfully in stride detec­
tion in our experiments. 

The second method we propose for stationary frame de­
tection is based on the position of the foot in the frames. 
We can take the rightmost point in the shoe contour as the 
position of the foot. The upper panel of Figure 8 shows the 
foot position (in pixels) in each frame. We can observe that 
the foot position remains level when the foot is stationary 
on the ground, and it increases along a rising edge when 
the foot moves forward. The foot furthest away from the 
camera has small fluctuations in its foot position waveform 
which are caused by the foot closest to the camera occluding 
it as it moves by. These small fluctuations can be smoothed 
out using a low-pass filter. 

To separate the strides, we take the first order difference 
of the foot position signal, resulting in an approximately 
periodic waveform with clear peaks and troughs. This dif­
ference waveform is then low-pass filtered, as shown in the 
lower panel of Figure 8. As before, a peak detection algo­
rithm is used to find the local minimum points in the differ­
ence waveform, which correspond to the stationary frames. 
Unlike the first method, this method is more robust to slow 
walking. 

Figure 8: Front point position on foot contour 

6.2 Mapping Function 
For each stationary frame, we find the front point in the 

shoe contour, which is used to represent the foot position 
at pixel-level. First, we obtain the x−coordinate (along the 
mat direction) of each point in the shoe contour. We also 
use the edge traversing method to find the front point in the 
shoe contour, which is the rightmost point for left-to-right 
walking, or the leftmost point for right-to-left walking. 

Once we obtain the front points, we use a mapping func­
tion to transform the front point position (x) at pixel-level 
into real world position (d) in cm. There are several choices 
for the mapping function. A basic algorithm uses the aver­
age distance of a pixel (dp), which is calculated as the total 
mat length (in cm) divided by the total pixels of the mat. 
The real position of the front point is obtained as d = xdp. 
However, the above algorithm ignores the perspective differ­
ences for the pixels. 

To mitigate these problems, we designed a new mapping 
function (referred to as Method-1 in Section 7), which is il­
lustrated in Figure 9a. This method first finds two marker 
edge lines (L1 and L2) that are closest to the front point. 
The real position of these two lines (d1 and d2 respectively) 
are known from the markers. Then the perpendicular dis­
tances (λ1 and λ2) from the front point to the two lines 
are calculated at pixel level. The real position is derived 
proportionally as 

Since the two marker lines L1 and L2 are generally not 
parallel due to the perspective of the camera, we designed a 
second mapping function (referred to as Method-2 in Section 
7), as illustrated in Figure 9b. If L1 and L2 are parallel, it 
reduces to the first mapping function. Otherwise, we assume 
L1 and L2 intersect at point Q. Similarly, we estimate the 
real position based on the proportion of the arc length α1 

(formed by line PQ and L1) and arc length α2 (formed by 
line PQ and L2), where the arc lengths are proportional to 
the sin of the angle θ1 (between line PQ and L1) and θ2 

(between line PQ and L2), respectively. 

Another strategy which provided an improvement in ac­
curacy was to compensate for the small errors in the man­
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Figure 9: (a) Mapping function using perpendicular 
distance. (b) Mapping function using arc length. (c) 
Estimation of vertex curvature. 

Figure 10: Finding the front point. (a) Original 
method. (b) Finding a small region in the front of 
the contour. 

ufacture of the mat. Instead of using the assumed width 
of each marker we measure them individually, and directly 
use the real distance rather than our print specifications and 
then apply the Method-2 approach. This method is denoted 
as Method-3 in Section 7. 

6.3 Front Point Selection 
The previous analysis used a naive approach to find the 

front of the shoe, taking the maximum point on the shoe 
contour (see Figure 10a). Certainly, this maximum point on 
the contour may not always be the front most point on the 
shoe as the contour can change under rotation. To compen­
sate for this issue we propose a new iterative testing method 
to find a better estimate for the location of the front of the 
shoe. 

This method is based on the assumption that the true 
front of the shoe exists in the small region enclosed in the 
front of the foot contour. We first use a threshold to define a 
small region near the maximum point on the contour. Next, 
we use the mapping function to calculate the position in real 
units of all the points inside this region. Finally, we pick the 
rightmost point in this region as the front point on the foot. 
Figure 10b shows the area that we use in this method. This 
refined front point selection method in combination with 
Method-3 is labelled as Method-3+R in Section 7. 

7. SYSTEM ACCURACY 
Now that we have a system for estimating stride length 

we must quantify the accuracy of its output. To test our 
system we designed some imitation experiments in different 
environments. To do this we must compare our CV stride 
length estimates against ground truth measurements. We 
aligned a ruler to the edge of the mat and took a high qual­
ity photo for every step taken using a secondary camera 
and then directly measured the stride length. Whilst this 
ground truth measurement is simple and inexpensive, it is 
also cumbersome and requires a lot of busywork. 

We invited five subjects to mimic PD patients with differ­

ent walking requirements. The accuracy of the system was 
tested in one room, over multiple days, at numerous times 
during the day. This caused a large variation of lighting 
and coloring on the mat. The non-PD subjects were shown 
videos of PD patients and were asked to imitate their move­
ments: failing to initiate walking (in PD fields known as 
“start hesitation”), walking with asymmetric gait patterns, 
and simulating the common “freezing of gait” symptoms. In 
this experiment, we collected 128 video sessions with 382 
strides. Table 1 shows the accuracy of all three methods. 
It can be seen that Method-2 outperforms Method-1, and 
Method-3 outperforms both. Additionally, using the im­
proved front point selection approach in combination with 
Method-3 further decreases the error (Method-3+R in Table 
1). We found the mean absolute error of the stride length 
of both feet to be 0.62 cm for Method-3+R, which is com­
parable with “gold standard” tools such as GAITRite. 

8. CLINICAL TEST 
Now that we have an estimate of the accuracy of our sys­

tem, we try to investigate its practicality and usefulness in 
practice. Therefore we tested our system in a real world 
clinical environment using real patients with severe gait is­
sues. 

8.1 Procedure 
We recruited 55 elderly subjects, 44 PD patients and 11 

healthy controls with help from Huashan Hospital located in 
Shanghai, China. The PD patients came from four severity 
groups according to the Hoehn and Yahr Scale (HY) [10]. 
The subjects recruited in our experiment were classified into 
HY1 (10), HY2 (14), HY3 (10), HY4 (10) and healthy con­
trols (11) by neurologists. Our inclusion criteria only allowed 
subjects who (1) were 50 to 75 years old, (2) were able to 
walk by themselves without help, (3) had no other serious 
diseases, (4) were able to understand and sign the consent 
forms. This test had IRB approval and was performed in 
accordance with hospital ethics board requirements. 

The procedure in this test involved a subject walking from 
left to right, turning around at the end and walking back 
as shown in the Figure 2. We did not limit the duration 
for walking, and encouraged subjects to walk for as long as 
they were able such that we could get a minimum of thirty 
strides on each foot. One “session” was defined as walking 
from one side to the other side (Left to Right or Right to 
Left). Subjects would repeat this process numerous times. 

8.2 Results 
We obtained 98 videos consisting of 1947 walking sessions 

from the 55 subjects over a period of two weeks. In our test, 
we processed all videos and our system was able to correctly 
identify every shoe contour in comparison with human an­
notated data. It also correctly counted every stride even in 
severe patients with abnormal cadence or gait patterns. Fi­
nally, it correctly extracted the walking mat in all videos. 
While we were unable to test the stride length accuracy on 
these patients due to the cumbersome nature of our ground 
truth measures, we were able to test the practicality of using 
the system in a real world scenario. Importantly, we could 
detect all subject’s shoe contours even under very different 
lighting conditions, gait styles, gait abnormalities, and with 
subjects who wore a wide array of different clothing. 
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Table 1: Absolute stride length error between ground truth and estimations from different methods 
Left Foot Right Foot 

Method-1 Method-2 Method-3 Method-3+R Method-1 Method-2 Method-3 Method-3+R 
Max (cm) 11.36 4.10 2.77 1.75 12.14 4.50 4.07 1.87 
Min (cm) 1.45 0.65 0.01 0.04 0.06 0.04 0.15 0.06 
Mean (cm) 5.97 2.52 1.31 0.59 5.83 2.54 1.62 0.65 
SD (cm) 2.79 0.84 0.67 0.40 2.96 1.12 0.97 0.48 

Table 2: Example of a basic statistical report 
Parameters Left Foot Right Foot 

Basic Statistical Analysis 
Mean Stride Length (cm) 73.69 73.66 
Mean Stride Time (s) 0.96 0.96 

# of Strides 75 74 
Stride Length 

Standard Deviation (cm) 11.14 9.5 
Coefficient of Variation 0.15 0.13 

Stride Time 
Standard Deviation (s) 0.06 0.05 
Coefficient of Variation 0.15 0.05 

To provide information to doctors or clinicians, the sys­
tem is able output the subject’s basic statistical information, 
including mean, coefficient of variation, and standard devi­
ation of left and right stride lengths and times (an example 
is shown in Table 2). These results can be used to gener­
ate many gait measures of interest to clinicians. The system 
can be used in combination with other systems as it imposes 
minimal interference to the subject. Some patients preferred 
to have someone walk beside them as they performed the 
walking task. Our system could handle this scenario, mean­
ing that aided walking (for severe PD patients) could also 
be analyzed. 

9. CONCLUSIONS 
This paper presented a novel system for accurate estima­

tion of stride lengths of Parkinson’s disease patients based 
on computer vision techniques. It serves the needs of neu­
rologists who want to ascertain PD progress by way of gait 
analysis, even in rural hospitals or hospitals in developing 
countries. Our clinical test demonstrated that our system 
supports various testing environments and is suitable for use 
in a clinical setting. 

Our system has a few limitations, mostly due to the use 
of the contour of the shoe which is not invariant under ro­
tation. This requires clever techniques to compensate for 
this perspective shift which does not occur in other motion 
based systems. We also have a limited recording width as 
we are constrained by the field of view of the camera, how­
ever with the use of higher resolution cameras in modern 
smartphones and external optics such as fish eye lenses it 
is possible to overcome this limitation without losing accu­
racy. Stride times are also limited by the refresh rate of the 
camera, however modern smartphones can support 60 fps or 
higher. 

The accuracy of the system is dependent on many factors, 
such as lighting, filming distance, lens type, frame rate, and 
video quality. In our experiments and trials, we fixed the 
video quality, frame rate, and filming distance. However, 

lighting changed throughout recording and despite this we 
were able to identify the contour of the shoe correctly, in 
part due to the high contrast colors used between the shoes 
and mat. Two major errors were identified, those associated 
with the parallax effect between the shoe and the markers, 
and the fact that the front part of the shoe contour does 
not always coincide with the front part of the shoe. In the 
paper we proposed methods to get around these constraints 
and limitations. 

Despite these limitations our system has many advan­
tages over other commercial systems such as high accuracy, 
low price, portability, and scalability. The cost of our sys­
tem is less than $800 USD: $200-$700 USD for a smart-
phone (which many users already have), $50-$80 USD for 
the printed mat, and $20 USD for the camera tripod. In 
contrast, commercial gait measurement systems are orders 
of magnitude more expensive. GAITRite (a pressure sensi­
tive mat-based system) costs $36,000 USD, Vidcon motion 
capture systems can retail for $45,000 USD, and APDM (an 
inertial measurement sensor-based system) costs approxi­
mately $10,000-$18,000 USD. As the system only has two 
main components (the smartphone and the mat), it can be 
easily transported and set up. The system does not require 
a lab setting, or clinicians and is therefore suitable for the 
home. 

For future work, we believe the system could be scaled to 
run entirely on a smartphone as the algorithms have low time 
complexity and could be computed on mobile GPU hard­
ware. The use of improved mapping functions, perspective 
modeling, and better front point selection will definitely re­
duce estimation errors. A study of the stride and step length 
accuracy on a group of elderly subjects (including PD pa­
tients) is also an important step for the validation of the sys­
tem. Additionally, these same algorithms proposed in this 
paper could be used to detect the hand movements of PD 
patients to quantify tremor, another important symptom 
for PD progression. Finally, testing the system concurrently 
with commercial systems such as GAITRite is the next step 
to validating the system. 

In conclusion, we have presented a pipeline for a low cost 
system for gait analysis which is easy to use, portable, and 
accurate. The use of CV algorithms and smartphone cam­
eras has the potential to make gait analysis cheap, acces­
sible, and ubiquitous even in hospitals in rural areas or in 
developing countries. 
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