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Abstract—A perceptually valid automatic singing evaluation
score could serve as a complement to singing lessons, and make
singing training more reachable to the masses. In this study, we
adopt the idea behind PESQ (Perceptual Evaluation of Speech
Quality) scoring metrics, and propose various perceptually rel-
evant features to evaluate singing quality. We correlate the
obtained singing quality score, which we term as Perceptual
Evaluation of Singing Quality (PESnQ) score, with that given
by music-expert human judges, and compare the results with
the known baseline systems. It is shown that the proposed
PESnQ has a correlation of 0.59 with human ratings, which is
an improvement of ∼ 96% over baseline systems.

I. INTRODUCTION

Singing is a popular medium of entertainment and pleasure,
and a desirable skill to develop. But singing pedagogy remains
heavily dependent on human music experts, who are a few in
number. The evaluation criterion for singing relies on subjec-
tive expert judgments, which are not conveniently available to
ordinary people who desire to learn singing. Thus, a system
for automatic and reliable evaluation of singing could serve
as an aid to singing pedagogy, singing contests, and karaoke
systems, in turn making singing training more accessible to
the masses.

Singing quality assessment often refers to the degree to
which a particular vocal production meets professional stan-
dards of excellence. For reliable assessment, it is important to
identify vocal attributes that relate to human perceptual ratings
and objectively define singing excellence.

Past studies have identified several perceptual features per-
taining to singing voice that play significant role in subjec-
tive evaluation of singing skill. One study described twelve
generally accepted criteria used in the evaluation of Western
classical singing by expert music teachers [1], which are:
appropriate vibrato, resonance/ring, color/warmth, intensity,
dynamic range, efficient breath management, evenness of regis-
tration, flexibility, freedom throughout vocal range, intonation
accuracy, legato line, and diction. Oates et al. [2] proposed
an auditory-perceptual rating scale for operatic singing voice,
which consisted of five perceptual parameters - appropriate
vibrato, ring, pitch accuracy, evenness throughout the range,
and strain, and these parameters were proven to be unambigu-
ous and covered all aspects of operatic voice.

However, all of the above parameters may not be suitable
for evaluating a non-trained or a novice singer. Chuan et
al. [3] defined and verified six perceptual parameters that
were of most relevance for assessing non-trained singers.
These parameters were: Intonation accuracy, described as

singing in tune, where suitable key transposition is allowed;
Rhythm consistency, described as singing with appropriate
tempo speed, where slight tempo variation is allowed; Timbre
brightness, described as brilliance of tone, a sensation of
brightness of spectrum; Appropriate vibrato, described as reg-
ular and smooth undulation of frequency of the tone; Dynamic
Range, described as the pitch range that the subject is able to
sing freely throughout, without inappropriate change in voice
quality or any external effort; and Vocal Clarity, described as
vocal vibrations of a clear, well-produced tone. In this work,
we explore different features of audio signal that represent
these perceptual parameters for singing evaluation, to develop
an objective methodology for singing assessment.

The paper is structured as follows. Section II reviews
the related previous work and techniques, the challenges in
the area, and formulates the problem of perceptual singing
assessment. In Section III, we discuss how singing quality is
characterized along with our feature design approach. Section
IV describes our experiment methodology of subjective and
objective evaluation, and Section V discusses our experiment
results. Section VI presents the conclusion of this study and
suggestions for the future work.

II. RELATED WORK

Objective evaluation of singing has been an area of interest
in the recent past. There have been multiple attempts to de-
velop automatic singing evaluation algorithms based on pitch,
rhythm, expression, and volume related features. But there
are some technical challenges in each of these algorithms,
that we will try to address in this work. Also, evaluation
can be template-based, in which a test sample is compared
against a reference sample, or model-based, in which a test
sample is compared against a reference model. The singing
evaluation literature, as described in this section, considers
template-based evaluation, where the template is either MIDI
notes or a reference singing. In our study also, we consider
template-based evaluation.

Intonation accuracy or pitch accuracy evaluation is the most
common method for singing assessment. In one study, Lal [7]
proposed a pitch-based similarity measure to compare a test
singing clip to the reference singing clip. But reliable and
automatic pitch estimation is a challenging task, and errors
in pitch estimation can result in incorrect automatic score.
In another study, Tsai and Lee [4] proposed an automatic
evaluation system for karaoke singing in which they compared
MIDI (Musical Instrument Digital Interface) notes of test
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singing to that of the intended reference song to compute
the pitch accuracy rating. Although MIDI notes approximately
represent the sequence of sung notes, they are unable to
represent human voice. Apart from steady notes, singing voice
comprises of pitch transitions, modulations, and voice timbre,
that are not captured by digitally generated MIDI notes.
Also, when singing without background accompaniments, the
singers tend to sing at a key they are comfortable in, which
may or may not be the same as that of the reference song. In
such a scenario, singing the correct sequence of notes with a
key transposition should not be penalized [3]. The possibility
of key transposition has not been considered in [4], because
the key of a song is inherently fixed in karaoke singing due
to background accompaniments.

Rhythm consistency is another important feature for singing
evaluation. Tsai and Lee [4] evaluated rhythm by comparing
the note-onset strength of the background accompaniment of
karaoke to that of the test singing. But when we consider the
case of singing without background accompaniments (or free
singing), such methods cannot be directly applied. Like key
transposition, in free singing, the singers can have a slight
tempo variation from the reference singing, i.e. slightly but
uniformly faster or slower rhythm than the reference song.
Such tempo variations should not be penalized [3]. Molina et
al. [5] and Lin et al. [6] measured rhythm accuracy without
penalizing for a rhythm different from the reference. They
evaluated rhythm by aligning test pitch contour with the
reference pitch contour using Dynamic Time Warping (DTW),
and obtained the rhythm score by computing the deviation of
the optimal path from a straight line fit in the cost matrix of the
DTW between the pitch contours. This line-fit may be different
from the ideal 45 degree straight line, in turn compensating
for tempo difference. But aligning test and reference singing
using pitch contour makes rhythm assessment dependent on
pitch correctness. This poses a problem if the test singer sings
with inaccurate pitch (off-tune) but maintains a good rhythm.
Inaccurate pitch estimation also creates the same problem. This
method will give large deviation from the optimal path due to
pitch inaccuracies, despite good rhythm.

Expressive elements such as appropriate vibrato are consid-
ered to be important cues to distinguish between a well-trained
singer and a mediocre singer. Nakano et al. [8] computed
acoustic features which are independent from specific char-
acteristics of the singer or melody, such as vibrato features
like rate and extent of pitch undulations, to evaluate singing
in a case that has no reference singing. But while learning
to sing a song, one would try to match their singing with a
reference singing in every way possible. In such a case, vibrato
evaluation in the presence of reference singing is needed.
Vibrato detection and evaluation will also be affected by pitch
estimation errors.

Timbre brightness is defined as the ring or brilliance of a
tone [3], which often relates to voice quality. Singing power
ratio (SPR), which is the ratio of highest spectral peak between
2 and 4 kHz and the highest spectral peak between 0 and 2
kHz in voiced segments, has been used previously to separate
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Fig. 1. Overview of PESQ computation

professional singers and non singers [10]. But as pointed
out by Tsai and Lee [4], the ringing voice quality which
is indicated by high SPR, is typically observed in operatic
style of singing. However, operatic style is a specific way of
singing that, one may argue, can be unsuitable and undesirable
for singing lessons or karaoke performances, especially for
beginners. Hence our work here doesn’t consider SPR as a
parameter for automatic singing evaluation. Prasert et al. [15]
developed a more general method to evaluate voice quality
in singing based on timbral features, such as Mel Frequency
Cepstral Coefficients (MFCC) and Filter Banks (FBANK), and
found that MFCCs performed better. We will consider this
direction in our study.

As illustrated in [4], most of the singing evaluation studies
have been reported in patent documentation that do not discuss
the rationale of their evaluation methods, and fail to show
results of their qualitative analysis to validate their methods.
Comparatively, the number of scientific studies in this area is
fewer. Literature suggests that a combination of the various
perceptual parameters, as described in [3], would result in the
final judgment of a test singing clip. But both, the patents
and the scientific studies, have managed to incorporate a set
of objective acoustic cues that are relevant to only a subset of
the perceptual parameters for singing evaluation. For example,
patents such as [21], [22] have used a combination of volume
and pitch as evaluation features, while scientific studies such
as [4] have used pitch, volume, and rhythm features. We
need a unified evaluation system that finds the appropriate
weighting of all the perceptually relevant parameters to obtain
the final score. The idea of perceptual assessment of singing
quality is motivated by the International Telecommunication
Union (ITU) standard for quality assessment of speech in
telephone networks, PESQ (Perceptual Evaluation of Speech
Quality) [12]. PESQ is obtained by comparing the original
speech signal with its degraded version (test signal), that is
the result of passing the original signal through a commu-
nication channel, and predicting the perceived quality of the
degraded signal, as shown in Figure 1. We note that objective
measurement of signal quality doesn’t always correlate with
human perception. The ITU benchmark experiments report an
average correlation of 0.935 between PESQ scores and human
scores, that make PESQ an ideal objective metric. According
to cognitive modeling literature, localised errors dominate
perception of audio quality [11], i.e. a highly concentrated
error in time and frequency is found to have a greater sub-

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



jective impact than a distributed error. This concept has been
successfully used in assessing speech signal quality (PESQ),
by using a higher weightage for localised distortions in PESQ
score computation. Motivated by this approach, we apply this
concept of audio quality perception in our work to obtain a
novel singing quality assessment method.

III. SINGING QUALITY CHARACTERIZATION AND
EVALUATION

In this study, we aim to develop a holistic scoring framework
for automatic singing evaluation based on perceptually relevant
features, as recommended by music educators. We explore
various features, such as pitch, rhythm, vibrato, timbre, vol-
ume, and pitch dynamic range, that are perceptually relevant
to singing, and try to overcome their technical challenges,
to develop a measure for evaluating singing skill of a test
singer as compared to an ideal reference singing of a song.
We introduce methods to overcome the challenges of key-
transposition, and rhythm variation, as well as incorporate
other perceptual evaluation parameters such as vibrato, voice
quality, pitch dynamics, and volume. We adopt the audio
quality perception theory in singing quality assessment by
giving high weightage to localised distortions, thus obtaining
a novel score for singing quality assessment. We have termed
it as Perceptual Evaluation of Singing Quality (PESnQ) score.
We compare our results with the known baseline methods for
singing evaluation.

In this section, we elaborate on singing quality charac-
terization and evaluation methods. Singing quality can be
characterised by the perceptual parameters identified by human
experts, while evaluation is the distance between the target
and the reference singing characteristics. Here we describe
the acoustic features that determine singing quality, relate
these features to the perceptual parameters used for singing
assessment, as well as describe the distance parameters defined
and used for evaluation. The following sub-sections A-F
contain both characterization and evaluation methods, while
sub-section G studies the cognitive modeling technique for
singing quality evaluation.

A. Intonation accuracy

Pitch is a major auditory attribute of music tones. Pitch of a
musical note is defined as the fundamental frequency F0 of the
periodic waveform. Intonation accuracy or “singing in tune”
is directly related to the correctness of the pitch produced
as with reference to reference singing. For developing an
automatic system that evaluates pitch accuracy, estimation
of reliable pitch contours becomes very important. Pitch
estimation is an active research area, and various algorithms
have been developed for pitch estimation in monophonic
speech signals, such as ACF (autocorrelation function)[13],
YIN [18], etc. But these methods need adaptations and post-
processing to accurately detect pitch in singing waveforms.
Babacan et al. [14] compared the different pitch detection
algorithms for monophonic singing, and found that parameter
settings specific to singing, such as increasing the F0 search

Fig. 2. Illustration of unreliable pitch values removal. (top) Pitch contour
extracted from voiced segments using PRAAT, (middle) periodicity values in
dB, (bottom) pitch contour, after removal of low periodicity pitch values

range to account for wide vocal range of singing, as well
as applying post-processing to pitch estimates lead to better
pitch estimates. They also found that the autocorrelation-based
PRAAT [16] pitch estimator gives best voicing boundaries
even without post-processing, while the source-filter model-
based STRAIGHT [17] pitch estimator is the most robust
algorithm in noisy conditions. The modified autocorrelation-
based estimator YIN [18] achieves the best accuracy of pitch
detection but it requires a number of post-processing steps
depending on the properties of the music type being analysed,
as described in [19].

In our work, we use the pitch estimates from PRAAT,
with one generic post-processing step to remove unreliable
pitch values. We first use the pitch estimates to determine the
voicing boundaries, compute the pitch estimates over all the
voiced frames, and then remove the frames with low periodic-
ity, which is determined by harmonic-to-noise ratio (HNR).
HNR, also computed in PRAAT, represents the degree of
acoustic periodicity expressed in dB. For example, if 99% of
the energy of the signal is in the periodic part, and 1% is
noise, the HNR is 10 log10 99/1 = 19.95 dB. In determining
the valid pitch frames, we remove the ones with < 98% of
energy in periodic part, i.e. HNR < 10 log10 98/2 ≈ 16.9 dB.
This threshold is set empirically. By choosing only the voiced
segments and removing the frames with low periodicity, spu-
rious F0 values are avoided and only reliable pitch values are
used. Figure 2 shows an example of pitch contour before and
after periodicity-based pitch clean-up. All pitch values in this
study are calculated in the unit of cents (one semitone being
100 cents on equi-tempered octave),

fcent = 1200× log2

fHz

440
, (1)

where 440 Hz (pitch-standard musical note A4) is considered
as the base frequency. For singing quality evaluation in terms
of pitch accuracy, we first time-align the reference and test
singing by using the alignment from DTW between their
MFCC vectors. This compensates for any tempo differences
or tempo errors between reference and test. Then, we compute
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Fig. 3. (top) Pitch contour extracted from voiced segments using PRAAT and
after removal of low periodicity frames, and (bottom) corresponding pitch
contour derivative with one frame shift.

the DTW distance between the pitch contours of the reference
and test singing (termed as pitch dist) for evaluation, which
would be an indicator of intonation accuracy, as previously
used in [5], [4], [7]. But this distance between pitch contours
will penalise key transposition, although key transposition is
allowed in case of singing without background accompani-
ments [3]. Hence we use two different methods to make the
distance measure insensitive to key transposition:

1) Pitch Derivative: Derivatives of pitch contours of both
the reference and the test singing make the resultant contours
independent of key shifts. The derivative also emphasises on
the transitions between notes, in terms of the magnitude as
well as the duration of the change. Note transition expressions,
such as glissando, are considered to be a significant indicator
of good singing, that get captured by this feature. For a pitch
vector pa =

[
p1 p2 ... pN

]T
, where N is the number

of frames, one frame derivative ∆p is computed as

∆p = pa − pb, (2)

where pb is the pitch vector shifted by one frame. Figure 3
shows an example of a pitch contour and its derivative.

2) Median-subtracted Pitch: Subtracting the median of the
pitch values of an audio segment is another way to make the
pitch contour independent of key-transposition. Here, median
is preferred over mean because averaging over all pitch values
might get affected by infrequent outlier pitch values, which is
avoided by the median. The median-subtracted pitch for a pitch
vector p, is computed as

pmedsub = p−median{p}. (3)

Figure 4 shows an example of a pitch contour and its
median-subtracted version.

We apply the cognitive modeling theory to these frame-level
modified pitch vectors (pitch-derivative and median-subtracted
pitch) to obtain the pitch evaluation between reference and test
singing (Section III-G).

B. Rhythm Consistency

Rhythm is defined as the regular repeated pattern in music,
that relates to the timing of the notes sung, and is often referred
to as tempo. Rhythm consistency refers to the similarity

Fig. 4. (top) Pitch contour extracted from voiced segments using PRAAT and
after removal of low periodicity frames, and (bottom) corresponding median-
subtracted pitch contour.

of tempo between reference and test singing. As mentioned
earlier, a slight variation in tempo is allowed, i.e. uniformly
faster or slower tempo compared to the reference. Molina et
al. [5] proposed DTW as a procedure for automatic rhythm as-
sessment, and accounted for rhythm variation. They computed
the DTW between the reference and the test pitch contours,
and analyzed the shape of the optimal path in the cost matrix of
DTW. A 45◦ straight line would represent a perfect rhythmic
performance with respect to reference melody, while straight
line with an angle 6= 45◦ would represent good rhythmic
performance in a different tempo. So they fit a straight line on
the optimal path in the cost matrix of the DTW, and computed
the root mean square error of this straight line fit from the
optimal path (termed as molina rhythm pitch dist),

ε =

√√√√ 1

N

K∑
k=1

ε2k, (4)

where εk is the error in linear fit at frame k, and N is the
total number of frames.

But aligning test and reference singing using pitch contour
makes rhythm assessment dependent on pitch correctness. So
if the singer maintains a good rhythm but sings with inaccurate
pitch, this algorithm will give a poor score for rhythm. Thus
this method works well only when the test singing pitch is
same as that of reference singing, even if words are spoken
incorrectly. But this method will give a large deviation from
the optimal path if the pitch is inaccurate, despite good rhythm.

We propose a modified version of Molina’s rhythm de-
viation measure. Instead of using pitch contour, we use 13
MFCC feature vectors to compute DTW between reference
and test singing. MFCCs capture the short-term power spec-
trum of the audio signal that represents the shape of the vocal
tract and thus the phonemes uttered. So when we compute
DTW between MFCC vectors, we assume that the sequences
of phonemes and words are uttered correctly, thus making
this measure independent of off-tune pitch. So we obtain
a modified Molina’s rhythm deviation measure (termed as
molina rhythm mfcc dist) that measures the root mean square
error (Equation 4) of the linear fit of the optimal path of DTW
matrix computed using MFCC vectors.
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We also introduce another way to compute rhythm devi-
ation, while accounting for allowable rhythm variations. We
compute 13 MFCC vectors over a 32 ms long window for
every 16 ms of the reference singing, and then compute the
corresponding frame rate for the test singing such that the
number of frames in reference and test are the same. This
way we compensate for constant rhythm difference between
reference and test singing, and thus the number of MFCC
vectors in reference and test are equal. Then we apply cogni-
tive modeling theory to these frame-equalized MFCC feature
vectors to obtain the rhythm evaluation between reference and
test singing (see Section III-G).

C. Voice Quality and Pronunciation

Timbre is related to the voice quality and describes the
perceived quality of a tone produced by the singer. Perception
of timbre is physically represented by spectral envelope of the
sound, which, as mentioned earlier, is captured well by MFCC
vectors, as illustrated in [15]. MFCCs also represent phonetic
quality, which relates to pronunciation. Thus, we compute the
distance between reference and test singing timbre (termed as
timbral dist) by computing the DTW distance between their
13 MFCC vectors. This measure represents two parameters -
voice quality and pronunciation.

D. Appropriate Vibrato

Vibrato is the rapid periodic undulations in pitch on a steady
note while singing. Studies have found that vibrato oscillations
are within 5-8 Hz, and their extent is between 30-150 cents
[20]. Vibrato is considered to be a fair indicator of the quality
of singing, hence we would like to evaluate it. For a fully
automated evaluation system, the idea is to first detect the
vibrato sections in the reference, then find the corresponding
time-aligned pitch segments in the test, and finally compute
measures to compare the reference and test vibrato segments.
Another way could be to compare vibrato-specific feature
vectors of every frame from test and reference. However, the
frames in test that correspond to those in reference that do not
contain vibrato, should not be given a high score, as we are
not giving marks for “absence of vibrato”. Thus detection of
vibrato sections as the first step is necessary.

Nakano et al. [8] applied short-term Fourier transform to
the first order differential of F0 and defined vibrato likeliness
Pv(t) as the product of power Ψv(t) and sharpness Sv(t) as:

Ψv(t) =

∫ FH

FL

X̂(f, t)df, Sv(t) =

∫ FH

FL

∣∣∣∣∣∂X̂(f, t)

∂f

∣∣∣∣∣df, (5)

Pv(t) = Ψv(t)Sv(t), (6)

where (FL,FH ) is the range of vibrato rate set as 5 and 8
Hz respectively, and X̂(f, t) is the power spectrum X(f, t)
normalized over f :

X̂(f, t) =
X(f, t)∫
X(f, t)df

. (7)

If the value of vibrato likeliness is greater than a threshold, the
section is detected as vibrato section. However, the problem

Fig. 5. (top) Pitch contour extracted from reference singing, and (bottom)
modified vibrato likeliness Pvmod (t), vibrato sections marked in red.

with this measure of vibrato likeliness is that the obtained
likeliness values are not normalized, which makes it difficult
to set a singer-independent threshold for vibrato detection. In
this study, we have modified the vibrato likeliness measure
as the ratio of energy in the power spectrum of F0, X(f, t),
between 5 to 8 Hz (FL,FH ) to the total energy in the spectrum
(Equation 8). A similar feature was used by Amir et al. [9].

Pvmod
(t) =

∫ FH

FL
X(f, t)df∫
X(f, t)df

. (8)

This measure gives a normalized score between 0 and 1, unlike
the score obtained by Nakano et al. Also it is a good indicator
of concentration of energy in the vibrato oscillation frequency
range. We compute this modified vibrato likeliness score over
every 512 ms frame (i.e. 32 samples, similar to [8]) of the
reference singing segment, and empirically set a threshold of
0.4 to detect the valid vibrato segments in the reference singing
as shown in Figure 5.

We map the time stamps of the detected vibrato segments
in reference to that of the aligned test pitch contour to obtain
potential vibrato segments in the test. For these segments,
we compute three vibrato-related features - modified vibrato
likeliness (Pvmod

(t) from Equation 8), extent, and rate. The
extent and rate features are the ones defined by Nakano et al.:

1

rate
=

1

N

N∑
n=1

Rn extent =
1

2N

N∑
n=1

En, (9)

where Rn (in sec) is the time period of nth oscillation,
computed as the difference between alternate zero-crossing
time instants, and En (in cents) is the difference between the
maximum and the minimum pitch value in the nth oscillation.
As a post-processing step, we discard any detected reference
vibrato section from vibrato evaluation that does not have at
least one whole oscillation present. Thus we have modified
vibrato likeliness, rate, and extent features for every valid
reference vibrato section and corresponding test pitch section.
We compute the Euclidean distance of these features between
the reference and the test to obtain the vibrato distance score
(termed as vib segment dist) for evaluation.
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E. Volume

Dynamics of volume reflect the relative loudness or softness
of different parts of the song. It is expected that there will be a
similar pattern of volume variations across time when different
singers perform the same song [4]. Apart from Tsai and Lee’s
work, various singing evaluation patents have incorporated
volume as an acoustic cue in their systems [21], [22]. In
this study, we implement the volume feature used by Tsai
and Lee’s system, i.e. short-term log energy over 30 ms
window, and then compute the DTW distance of this feature
between the reference and the test (termed as volume dist) for
evaluation.

F. Pitch Dynamic Range

The pitch range that a subject is able to sing freely through-
out is a good indicator of quality of singing [3]. Thus we
compute the absolute difference between the highest and the
lowest pitch values in an audio segment as a feature for pitch
dynamic range. The distance of this feature between reference
and test singing (termed as pitch dynamic dist) is an indicator
of the similarity of the test singing range to the expected
singing range, and is used for singing quality evaluation.

G. Cognitive Modeling for Evaluation

PESQ standard [12] incorporates the audio perception the-
ory that a localized error in time has a larger subjective impact
than a distributed error [11]. PESQ combines the frame-level
disturbance values of an audio file by computing the L6

norm over split-second intervals, i.e. over 20 frames (320 ms)
window (with 50% overlap and no window function), and the
L2 norm over all these split-second disturbance values over
the length of the speech file. The value of p in Lp norm is
higher for averaging over split-second intervals, to give more
weightage to localized disturbances. Lp norm is computed as:

Lp norm =

(
1

N

N∑
m=1

disturbance[m]p
) 1

p

. (10)

where N is the total number of disturbance values, over
index m. Similarly in singing, errors are time-localized; for
example, only certain notes may become off-tune or only
certain sections may be sung with bad rhythm. Therefore, in
this study we explore the possibility of applying the same
cognitive modeling concept as in PESQ, for singing quality
evaluation.

We first compute the frame-level disturbance values of
the following singing features: pitch derivative ∆p, median-
subtracted pitch pmedsub, and frame-equalized MFCC feature
vectors for rhythm. That is, we compute the optimal path
in the cost matrix of DTW between the respective feature
vectors of reference and test. If the pitch or rhythm in test
singing matches with that of the reference, it would give a 45◦

optimal path in the corresponding DTW cost matrix. Figure
6 illustrates the optimal path of singing with good and poor
rhythm accuracy. Deviation of the best alignment path from
the diagonal represents error in that characteristic (pitch or

(a) (b)
Fig. 6. Optimal path in DTW cost matrix for (a) good rhythm (b) poor rhythm.
Red broken diagonal line shows the ideal rhythm.

(a) (b)
Fig. 7. Frame disturbance for (a) good rhythm (b) poor rhythm.

rhythm). We compute the number of frames that deviate from
the ideal diagonal path for every frame, called rhythm frame
disturbance Rd, pitch derivative frame disturbance Pd∆p

, and
median-subtracted pitch frame disturbance Pdpmedsub

. Larger
deviations indicate poor intonation/rhythm accuracy. Figure 7
shows an example of the frame disturbance of good and poor
rhythm.

Next, we compute the L6 norm over split-second inter-
vals and L2 norm over all these split-second disturbance
values over the length of the sung file for all of the frame-
level disturbance values mentioned above - Pd∆p

(termed as
pitch der L6 L2), Pdpmedsub

(termed as pitch med L6 L2),
and Rd (termed as rhythm L6 L2). And for performance
comparison, we also compute the L2 norm of all the distur-
bance values over the entire file, to observe the effectiveness
of the cognitive modeling method for singing evaluation. To
summarize, we compute three kinds of evaluation features: L2

norm, L6+L2 norm (PESQ-based), and DTW distance (feature
groups: L2, L6+L2, and dist respectively). The summary of
evaluation features is listed in Table III.

We define Perceptual Evaluation of Singing Quality
(PESnQ) as the score generated from a system comprising of
a combination of PESQ-based, L2 norm, and DTW distance-
based features. In the following sections, we will explore
different combinations of these features to build various
singing evaluation systems and investigate the factors that
can impact their performance, such as type and definition
of features, the PESQ-based perceptual distance features, and
their combinations.

IV. EXPERIMENTS

A. Data

To test our methodology for singing evaluation, we chose
two popular English songs - “I have a dream” by ABBA
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(∼2 min), and “Edelweiss” (∼1 min) from the movie “The
Sound of Music”. These songs have steady rhythm throughout
the song, and are rich in long steady notes and vibrato.
We needed monophonic sung recordings of these songs from
singers with a range of singing ability - poor to professional.
Duan et al. [23] recorded these two songs from 20 singers,
but the range of singing ability in that dataset was limited to
mediocre to good level, where the singers had some exposure
to vocal training or were talented to sing in tune and rhythm.
However, to cover the entire spectrum of singing ability, we
needed samples from the two extremes - poor singers and
professionally trained excellent singers. So we first obtained
the dataset from Duan et al. and then recruited a few subjects
to fill the gap at the two ends of the spectrum. We recruited two
professionally trained singers and five students from NUS with
no past experience in singing. These subjects were a mix of
native and non-native English speakers, but all were proficient
in speaking in English, similar to [23]. To be consistent with
the previous dataset [23], we followed their procedure for
collecting audio data from the new recruits. Subjects were
asked to familiarize themselves with the two songs beforehand.
Audio data was collected in a sound-proof audio recording
studio at 16-bit and 16 kHz. A metronome was fed to the
subject via headphone to serve as a guide for singing: “I have a
dream” at 56 bpm, and “Edelweiss” at 32 bpm. These settings
were same as that in [23]. Except for the metronome beats,
no other accompaniment was provided. Lyrics for the songs
were provided for the subject’s reference while recording.

From the previous and the newly collected dataset, we
selected 20 recordings for singing quality evaluation. Each
was sung by a different singer with singing abilities ranging
from poor to professional. Ten singers sang the song “I have
a dream”, and the other ten sang “Edelweiss”. We obtained
subjective evaluation ratings from music experts for these 20
recordings and ensured that this dataset is well representative
of the singing skill spectrum (see Section IV-B). We also
obtained objective evaluation scores for these recordings using
our features and methods, and the known baseline methods.

B. Subjective Evaluation

We developed a website to collect subjective ratings for
this dataset. The task was to listen to the audio recordings
and evaluate the singers’ singing quality, compared to a
professionally trained reference singer (also provided on the
website). The reference singing of both the songs were from
one professional singer from the dataset of [23], different
from our test singing evaluation dataset of 20 singers. Five
professional musicians were the human judges to complete
this task. These judges have been trained in vocal and/or
musical instruments in different genres of music such as jazz,
contemporary, and Chinese orchestra, and all of them were
stage performers. One of them has also been a music teacher
for more than 2 years. The task could be done in multiple
sittings, a few recordings each time. Their evaluations were
saved in our database, that they could revisit later.

The website had two songs, each with 10 audio tracks, sung

by different individuals (as described in Section IV-A). For
every track, the corresponding lyrics were displayed on the
screen. This is followed by a questionnaire, where the judges
were asked to give an overall singing quality score out of 5
to each of these audio recordings compared to the reference
singing of the song. The judges were also asked to separately
rate each of the recordings based on pitch (intonation accu-
racy), rhythm (rhythm consistency), expression/vibrato (appro-
priate vibrato), voice quality (timbre brightness), articulation,
relative volume, and pitch dynamic range on a likert scale of
1 to 5. Additionally, an optional question was asked to know
if the music expert considers any other parameters that the
singer could improve upon, apart from the ones already listed.

The average inter-judge (Pearson’s) correlation of the over-
all singing quality question was 0.82, which shows a high
agreement of singing quality assessment amongst the music
experts. Table I shows the inter-judge correlation of all the
questions that used a likert scale. Most of the questions showed
correlation of higher than 0.60. Thus these parameters are
judged by music experts coherently. However, the questions
on pronunciation and volume showed lower inter-judge corre-
lation. Since the lyrics were already provided to the singers,
there was little room for mispronouncing words because of
unfamiliar lyrics. The only way mispronunciations could have
happened was due to mother-tongue influence in non-native
English. A possible reason for less agreement on pronunciation
ratings is unclear definition of mispronunciation in singing,
which leads to influence of other factors on this rating. An
example of disagreement was when a singer, whose mother-
tongue was English, but who had poor singing skills, was rated
poorly for pronunciation by a couple of judges, while the other
three judges rated the singer high for the same parameter. So
in this case, poor singing seems to influence the perception of
pronunciation. We believe that the reason for disagreement
in case of the relative volume question is also because of
lack of clear definition. As seen in Section I, volume never
showed up in the literature on subjective assessment of singing
in non-trained singers [3], [2], but volume was one of the key
features in the objective evaluation literature [4], [21] because
this measure is easy to compute objectively and pattern-match
with a reference template, but difficult to rate subjectively.
This explains the low agreement on volume parameter.

We computed the average of the overall singing quality
score given to each of the 20 singers over the 5 human judges.
We found that this data represents the complete singing skill
spectrum. Table II shows the number of singers with different
overall singing abilities categorized by average human ratings.

C. Objective Evaluation

Here we describe automatic systems built using combina-
tions of the features from Section III. Our automatic singing
evaluation framework is the same as that of PESQ (Figure 1).

As a pre-processing step, we first split every audio recording
into shorter segments of approximately 20 sec duration. This
is done by using DTW to align MFCC feature vectors of the
test audio with that of the reference audio that is marked with
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TABLE I
INTER-JUDGE CORRELATION FOR THE QUESTIONNAIRE QUESTIONS.

TABLE II
NUMBER OF SINGERS WITH DIFFERENT LEVELS OF OVERALL SINGING

ABILITY, CATEGORIZED BASED ON AVERAGE HUMAN RATINGS.

segment boundaries. Rough segment boundaries for test audio
file are obtained from this method, and then a quick manual
check and correction of these segments is done, if needed.
We need these short audio segments because alignment errors
propagation is expected to be less in short duration segments
compared to relatively longer segments. From here on, each
of the features are computed for each of these segments. The
subjective evaluation for a test audio recording is assumed to
hold for every segment of that recording. We have 80 such
segments for the song “I have a dream”, and 40 segments for
the song “Edelweiss”, in total 120 test singing segments.

We then compare each of the corresponding reference
and test audio segments in terms of pitch, rhythm, vibrato,
voice quality, pronunciation, volume, and pitch dynamic range
related objective features, as listed in Table III. The methods
to compute these features are described in Section III.

To investigate the factors that influence the performance of
machine-based singing quality evaluation, we use combina-
tions of the various objective features to design two baseline
and 9 test evaluation systems (Table IV). Baselines A and B
are the systems purely consisting of features extracted from
the singing evaluation literature. Baseline A consists of pitch
distance feature [5], [4], [21], [22] and Molina et al.’s pitch-
based rhythm feature [5], while Baseline B has an additional
volume distance feature [4], [21]. So Baselines A and B are
the comparison benchmarks of this study. Also these systems
would reveal the impact of the additional volume feature.
Systems 1 and 2 are modified-baselines A and B respectively
with the difference of the pitch-based rhythm feature [5]
being replaced with the MFCC-based modified version (see
Section III-B). These systems will provide insight about the
definition of the objective feature for rhythm consistency,
i.e. if the MFCC-based rhythm feature is better than the pitch-
based version. System 4 contains PESQ-based L6+L2 norm
features along with distance features but no L2-norm feature,
while System 5 is the one with L2-norm features but without
L6+L2 features. System 6 contains only the distance features.
Systems 4, 5, and 6 should show the impact of the PESQ-

TABLE III
EVALUATION FEATURES GROUPED BASED ON THE SINGING

CHARACTERISTICS (OR PERCEPTUAL FEATURES).

based perceptual features, compared to the distance features
commonly used in singing evaluation literature. System 3
consists of PESQ-based (L6+L2) features as well as all other
distance and L2-norm based features, except for the rhythm
distance feature of [5] and its modified version. System 7 adds
the MFCC-based modified rhythm distance feature to System
3, while System 8 adds the pitch-based rhythm feature [5] to
System 3. System 9 adds both these rhythm distance features
to System 3. Comparison of Systems 3, 6, 7, 8, and 9 will
provide insight about the interaction between the objective
features that they comprise of, in terms of their performance
in predicting the overall singing quality rating.

Systems 3, 4, 6-9 consist of combinations of PESQ-based,
L2-norm, and DTW distance-based features. Thus the score
generated from these systems is termed as the PESnQ score.

We build a Linear Regression (LR) model and a Multi-
Layer Perceptron (MLP) model with one hidden layer for each
of these systems using Weka [24], in two modes: A) train
and test on overall singing quality score averaged over the 5
judges in 10-fold cross validation, and B) Leave-one-judge-
out, i.e. train on 4 judges in 10-fold cross validation, and test
on 1 judge. The R-squared correlation values (computed in
Weka) between the various system outputs and human ratings
are shown in Table V.
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TABLE IV
THE OBJECTIVE FEATURES THAT DESCRIBE THE VARIOUS SINGING

EVALUATION SYSTEMS.

V. RESULTS AND DISCUSSION
From the subjective evaluation, we wanted to see if the

parameters pitch, rhythm, vibrato, voice quality, pronunciation,
volume, and pitch dynamic range perceptually combine to
predict the overall singing quality score. We trained and tested
the two models in the leave-one-judge-out mode (mode B) as
mentioned in Section IV-C. We used the average subjective
ratings for each of these parameters to predict the average
subjective overall singing quality rating. Mode A, i.e. using the
average score over all the judges, is not applicable in this case
because of overlap between train and test data. The predictions
showed the maximum average leave-one-judge-out correlation
of 0.87 (Table V). This is the maximum correlation achieved
amongst human judges, thus it is also the upper bound of
the achievable performance of machine-based singing quality
evaluation. We asked an optional question to the human judges
to find out if there are other perceptual features that are
important to singing quality assessment. Most of the answers
were associated with one of these seven parameters, e.g. “key
changes in the middle of the song” is indicated by the pitch
accuracy parameter, etc. But there were a few comments
which were indeed not covered in those seven parameters,
such as “inability to sustain long notes”. Nonetheless, with
the high correlation between parameter-based prediction of
overall score and the actual overall score, we can safely
consider that the current set of seven perceptual features are

TABLE V
CORRELATION BETWEEN SYSTEM OUTPUT AND HUMAN OVERALL

SINGING QUALITY RATINGS.

(a) (b)
Fig. 8. Machine score vs. Average Human Rating for overall singing quality
with (a) Baseline B (b) System 8.

good predictors of the overall singing quality. So we designed
objective methods to obtain automatic scores for each of
these parameters for building an automatic singing quality
evaluation system.

Training and testing the various singing evaluation systems
(Table V) on average overall score (Mode A) shows that
System 8 performs the best with a correlation of 0.59 with
the average human ratings, as compared to 0.30 of Base-
line B. This shows that a combination of PESQ-based, L2-
norm, and distance-based pitch, rhythm, vibrato, voice qual-
ity, pronunciation, volume, and pitch dynamic range related
objective features, can predict the overall singing rating with
an improvement of ∼96% over the current baseline systems
(Baseline B) that use only a subset of these features. Figure
8 shows the outputs of these two systems versus the average
human ratings. Ideally the machine scores should be directly
proportional to the human ratings. This relation is visually
much more evident in the plot of System 8, compared to that
of Baseline B. This result shows that our designed features
that take key transposition and rhythm variations into account
have a positive impact on the system performance.

Addition of volume feature in Baseline B shows only a
slight improvement over Baseline A. System 1, which is the
modified version of Baseline A, performs better than the
baselines. This shows that our MFCC-based modified rhythm
distance feature performs better than the baseline pitch-based
rhythm distance feature [5]. This supports our theory that
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mistakes in pitch will degrade the baseline pitch-based rhythm
distance feature. In our dataset, the subjects were proficient in
English and had rehearsed the songs before recording. Thus,
they made few mistakes in the lyrics while singing. However,
they were restricted by their singing ability. Thus, the MFCC-
based modified version of the baseline rhythm distance feature,
which is robust to pitch errors, is more suitable in this case.

An interesting finding is that System 4 shows improvement
over System 5. This is also evident when System 4 (PESQ-
based and distance features) is compared to System 6 (only
distance features). PESQ-based L6+L2 features provide an
improvement of 3.7% over only distance features. Although
earlier works relied on distance metric alone, our results show
that adding features based on cognitive modeling theory im-
proves machine correlation with human perceptual judgment.

The leave-one-judge-out experiments (Mode B) show that
the output of our system trained on 4 judges correlates well
with the 5th judge consistently. Thus, our system is able to
generalize when trained on 4 judges. System 9 shows the best
average correlation of 0.66. This is closer to the upper-bound
of achievable correlation compared to the baseline system that
shows correlation of 0.38. We also notice that the performance
of some of our systems is comparable to that of the human
judges. For example, System 9 shows correlation of 0.74 for
leave-out-judge4 experiment, which is comparable to human
judges’ leave-out-judge3 correlation values. So, our system is
close to reproducing judgments from a human music expert.

VI. CONCLUSION

We presented a framework for automatic perceptual eval-
uation of singing quality. From the subjective judgments of
music experts, we found that pitch, rhythm, voice quality,
vibrato, pronunciation, volume, and pitch dynamic range are
the perceptual parameters that can reliably predict the overall
singing quality. We designed objective features to automati-
cally evaluate each of these perceptual features, while over-
coming the challenges of the well-known baseline features.
Our pitch evaluation features avoided penalizing for overall
key transposition, and our rhythm evaluation features avoided
penalizing for uniform rhythm variation, even when the pitch is
off-tune. Also we designed features according to the cognitive
modeling theory for audio perception in speech, used in the
PESQ standard. We found that this theory could be applicable
for singing evaluation also. Based on these features, we
compared various systems trained to predict the overall singing
quality. The predicted PESnQ score from a system having
a combination of PESQ-based, L2-norm, and distance based
features (System 8), showed a correlation of 0.59 with human
ratings. This is a ∼96% improvement over the system built on
baseline features. In future, we would explore the possibilities
of indicating as feedback, the type and the precise location
of the error, so that this framework can be developed into a
comprehensive singing training tool.
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