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ABSTRACT 
In this paper, we demonstrate a new IMU-based wearable 
system (dubbed MANA or Mobility ANAlytics) for measuring 
gait in a clinical setting. The design process and choices that 
were made to ensure that the technology was invisible and 
accessible are described. We collect a rich and diverse dataset 
of walking data from sixty participants, including forty people 
with Parkinson’s Disease (PD). The system is then validated 
in a clinical setting with this dataset. We present novel and 
innovative algorithms to measure common gait parameters. 
The system is able to estimate these gait parameters with high 
accuracy, with a mean absolute error of 4.0 cm for stride length 
and 2.6 cm for step length, outperforming all state-of-the-art 
methods that included data from people with PD. 
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INTRODUCTION 
The number of people aged 60 and over in the world is ex-
pected to more than double in the next forty years, from around 
900 million people in 2015 to more than 2 billion in 2050 [26]. 
As a result, diseases that overwhelmingly affect older people 
such as stroke, osteoporosis (leading to osteoporotic fracture), 
and neurodegenerative disorders (e.g., Alzheimer’s disease, 
Parkinson’s Disease) will be a heightened economic and logis-
tical challenge for society. The evaluation of these afflictions 

involves a skilled medical professional, requires specialised 
equipment, and is both expensive as well as prone to human 
error. Therefore, inexpensive, scalable, accurate, objective, 
and, most importantly, accessible systems to help manage and 
diagnose such conditions are urgently needed. 

A key consideration when designing any accessible or assistive 
technology is that there is often an implicit or explicit stigma 
associated with its use. It is important to take into account 
issues such as visibility of assistive technologies [10], cus-
tomisability [33] and device aesthetics, device necessity and 
usage context [7], social acceptability, and age appropriate-
ness, all common factors in creating a stigma that may lead to 
reducing the adoption of assistive technologies [29], to ensure 
that it is not only user-friendly but also that the stigmatisation 
of its users is kept to a minimum. To meet these requirements, 
we use a user-centred iterative design approach which consid-
ers the users needs at every stage of the design process [19]. 
In this process, understanding the user and their situation is of 
paramount importance [38]. 

In this study, our targeted users are people with Parkinson’s 
Disease (PD). PD is a neurodegenerative disorder with no 
known cure. People with PD often have a decrease in the 
control of motor functions known as “parkinsonisms”, such as 
bradykinesia (slowness of movement), rest tremors, rigidity, 
and postural and gait impairment. Due to the aforementioned 
aging population, its incidence is on the rise. Indeed, more 
than ten million people suffer from the condition1. 

1http://parkinson.org/Understanding-Parkinsons/ 
Causes-and-Statistics/Statistics 

Experiments have shown that even whilst on medication peo-
ple with PD show a reduction in gait parameters such as ca-
dence and stride length relative to age-matched healthy con-
trols [28, 20]. In addition, people with PD attempting to 
perform motor tasks at a constant rate show larger variation 
than healthy controls performing the same tasks. For example, 
a study showed that people with PD have a larger step time 
variability (7%) than healthy controls (4%) [8]. Gait measure-
ment in a clinical setting is normally quantified using pressure 
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sensitive walking mats [22], heel-mounted force-sensing sen-
sors (or footswitches) [13], or motion-capture cameras [24]. 
All of these systems are costly, non-portable, often require 
either technical or clinical expertise to use, and as a result do 
not scale easily. 

Additionally, medical specialists such as neurologists are a 
scarce resource in most countries, and smaller community hos-
pitals in such countries are ill-equipped to make an accurate di-
agnosis of PD or even perform a mobility assessment, forcing 
(often frail) older people to travel a long distance to hospitals 
in large cities. To address this critical need, we demonstrate 
a cost effective and easily deployable Inertial Measurement 
Unit (IMU)-based system dubbed MANA (Mobility ANAlyt-
ics) to ensure that long term mobility assessment becomes a 
reality for those with motor disabilities associated with PD. 
The system is low-cost, wearable, scalable, and suitable for 
long-term use in hospital and home settings. 

Contributions 
1. We demonstrate a mobility analysis system, including an 

IMU-based body sensor network (two sensors embedded in 
shoes, and one on the waist), a mobile application and a web 
service for data analysis and visualisation. We designed and 
developed these sensors to be non-invasive and invisible for 
day-to-day use, and practical for people with PD. 

2. We propose novel and accurate gait analysis algorithms by 
fusing accelerometer and gyroscope data, combining mul-
tiple sensors, and utilising kinematic physical constraints 
(such as that the shoe-embedded sensor is stationary at 
middle-stance). We also use a machine learning approach 
using multi-layer perceptrons to estimate gait parameters. 
The best algorithm accuracy is found to be a mean abso-
lute error of stride length: 4.0 cm, and step length: 2.6 cm, 
outperforming existing methods [3, 36, 34]. 

3. We collect a rich dataset of the walking of 60 participants, 
including 40 people with PD (in four different stages of the 
disease). The dataset is diverse, with stride lengths ranging 
from 29 cm to 159 cm, and step lengths ranging from 12 
cm to 82 cm. 

4. We validate our MANA system and algorithms on this 
dataset of 60 participants. 

This paper is laid out as follows. The next section contains 
relevant related work. Then we detail the MANA system, 
and its design and development. Following that section, we 
describe the data collection experiment. Then we introduce 
novel algorithms and show an analysis of the data collected. 
After the analysis, we describe the accuracy and performance 
of our system. Finally, in the last section we include future 
work and directions, as well as conclusions. 

RELATED WORK 
Gait impairment is a typical symptom of PD [28, 20], and 
the gait of people with PD has been studied extensively in 
the medical literature [13, 11]. Parkinsonian gait differs from 
that of healthy individuals in multiple ways and is therefore 
used in diagnosis. People with PD may have shuffling steps, 

reduced stride length, increased gait instability, reduced arm 
swing, and freezing of gait [15]. 

A standard non-invasive PD test is mobility assessment, which 
aims to quantify movement and give a clinical measure that 
reflects the degree of mobility impairment. It is used in di-
agnosis and medical treatment planning in the early phases 
of the disease. In the latter phases, mobility assessment may 
also be frequently necessary to monitor disease progression. 
Mobility assessment includes the quantification of both the 
lower and upper motor performance. Specifically, for lower 
motor performance, stride (and step) time and length are the 
most fundamental and important measures. Additionally, gait 
variability measures such as traditional statistical quantities 
(e.g. coefficient of variation) [4], de-trended fluctuation analy-
sis [6], and phase coordination index [31] are extremely useful 
for clinical evaluation. Early diagnosis of PD has a much 
lower accuracy (53%) than those who have had it for 5 years 
or more (88%) [1]. 

In clinical gait analysis, stride length and stride time are im-
portant and fundamental gait quantities which need to be mea-
sured. This need has given rise to a large number of highly 
specialised and expensive systems to measure gait parameters, 
such as the pressure sensitive walking mat GAITRite2, the 
motion-capture camera array Vicon3, and IMU-based wearable 
sensors such as APDM Opal4. However, these systems have 
drawbacks and are prohibitively expensive. GAITRite and 
Vicon are primarily limited to clinical usage as they require 
dedicated laboratory space and technical expertise, precluding 
their use in outdoor environments or in the home. GAITRite 
does not capture the full gait cycle or upper limb movement, 
as it can only track foot steps on the mat. Vicon systems can 
capture the entire body movement in 3D space, although they 
require the user to wear multiple reflective markers on each 
extremity which is time-consuming, inconvenient and obstruc-
tive. These systems are unwieldy, and are not usable outside 
of a hospital or gait laboratory. 

2http://www.gaitrite.com 
3http://www.vicon.com 
4http://www.apdm.com/wearable-sensors 
5http://www.shimmersensing.com 

In contrast, IMU-based wearable sensors are portable, conve-
nient, scalable, and do not require a clinical laboratory setting. 
They can capture whole body motion by wearing sensors 
on the extremities. APDM provides a proprietary software 
package (Mobility Lab) to compute gait parameters from the 
APDM Opal sensors. However, the Opal sensors do not sup-
port standard wireless protocols (such as Bluetooth) necessi-
tating the use of additional hardware for data collection. Like 
other commercial IMU sensor boards (for example Shimmer5), 
APDM does not provide a low level API to perform custom 
computations on-board the sensor (such as gait analysis or 
fall detection). Although IMU-based sensors have clear ad-
vantages, calculating the basic gait parameters such as stride 
length is still a complex and challenging research problem. 

IMU-based displacement (e.g., stride or step length) estima-
tion algorithms involve the fusion of triaxial accelerometer and 
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gyroscope data, and they can be generally grouped into three 
categories: machine learning-based regression methods [37], 
Kalman filter-based fusion algorithms [16], and double integra-
tion of acceleration [5]. Machine learning-based algorithms 
require a large and comprehensive dataset to train a model that 
can be generalised to new participants. However, their gen-
eralisability needs further validation as most existing studies 
have a limited number of test participants. Fusion algorithms 
based on Kalman filters usually require the use of a magne-
tometer as a reference of orientation, and thus are not suitable 
for pure IMU-based systems such as ours. Methods based on 
double integration of acceleration are more straightforward 
and computationally efficient, although they need to cope with 
integration drift due to sensor noise and numerical computa-
tion errors. A common method to mitigate integration drift 
is resetting the integration value to zero after each stride [12]. 
However, such resetting methods may introduce large errors 
to the stride length estimation if the IMU is not attached to an 
appropriate and consistent position on the foot [27]. Therefore, 
many of these methods require improvement in measurement 
accuracy and usability to be deployable in non-laboratory set-
tings. 

MANA SYSTEM 
In order to mitigate the drawbacks of the systems described, 
we designed MANA to be an inexpensive, portable and scal-
able mobility analysis system built on open standards such as 
Bluetooth low energy (BLE) and websockets such that it is 
platform independent and future proof. The most important 
design considerations were to make the sensors invisible and 
user friendly, thus reducing the stigma associated with their 
use. In this section, we describe the components of the MANA 
system and the design considerations made. 

System Description 
MANA consists of a series of physical devices, communi-
cation protocols, motion analysis algorithms, and software 
applications. MANA has three main physical components: 
wearable IMU-based sensors (Sensors), an application run-
ning on a mobile device (Collator), and a web application 
hosted on cloud servers (Hub) (see Figure 1). The general 

workflow of the system is that a participant can wear the sen-
sors to record motion data, which in turn uploads the data 
over Bluetooth Low Energy (BLE) to a smartphone via the 
installed Collator app. The Collator further uploads the data 
to the server for real-time processing, and the results are sent 
back to the Collator and also visualised in the web application. 
This is a closed-loop of real-time data collection, analysis, and 
feedback to the user. The first component of the system is the 
sensors, and their specifications and design. 

Figure 1. MANA system overview. 

Figure 2. The sensor in its case, and the sensors location in the shoe. 

MANA Sensors 
The MANA sensor unit (see Figure 2a) is a custom-built 
printed circuit designed for recording human motion and mo-
bility. The board itself has gone through multiple iterations 
over the years as can be seen in Figure 3. The earliest versions 
of the board had minimal computational power, little on board 
storage, and were relatively bulky. The first Arduino-based 
units had fairly small memory footprints and required a sepa-
rate bluetooth module. Though we managed to squeeze one 
simple gait algorithm onboard the early models [40], it was 
clear that the RAM available was insufficient for the more so-
phisticated algorithms we had started to trial. We then moved 
to the RFduino module which had much more RAM, program 
space, and an integrated BLE stack. The Simblee is the next 
generation of the RFduino, and provides the same function-
ality in a much smaller, single chip footprint. During this 
development, we also moved from Bluetooth v2.0 to BLE 
for its reduction in power consumption. Due to the need for 
a smaller and more feature rich sensor, we significantly im-
proved the board in terms of both hardware specifications and 
requirements for our users. The latest iteration of the board is 
a single-sided 20.4mm ⇥ 24.1mm PCB, and includes: 

• A Simblee IC, which has a 32-bit ARM Cortex M0 at 
16MHz, with 24kB of RAM, and 128Kb of program/flash 
memory. 



• A 6-axis Inertial Measurement Unit (MPU6050). Our unit 
also supports a 9-axis MPU9150 (with added Magnetome-
ter). 

• Support for a real-time location module, the DWM1000. 
This module can be used for 2-way absolute range measure-
ments, although in this project it is not used. 

• Bluetooth and USB connectivity. 

• Low power mode for long term and untethered use. 

• 256kB of EEPROM, the primary intended use for this is 
storing processed (step) data, typically a week or two of 
data. 

• Battery, and battery management circuitry for measuring 
and charging the attached 110mAh LiPo battery. 

MANA sensors are programmable and give us full access to 
the underlying hardware, allowing custom software to be run 
directly on the sensor. We do not use a magnetometer as they 
are easily susceptible to magnetic interference which can limit 
the accuracy of orientation estimates [2]. However, this lack 
of a magnetometer does not prevent us from estimating stride 
and step length as is demonstrated in the results section of this 
paper. 

Figure 3. Iteration of sensor hardware over time. 

Each sensor draws up to 100mA when charging, and can be 
recharged in about an hour, by plugging it in to a USB port. A 
significant amount of effort was spent in ensuring that all com-
ponents used the least amount of energy, choosing low power 
components throughout, and only powering components (such 
as the USB chip) when they are needed. Our sensor software 
makes use of all such energy saving features. The sensors have 
been tested to see what sort of battery behaviour they have in 
long-term use. The ultra low power standby mode (or shelf 
life) lasts for about two months. Additionally, we tested the 
battery life in a day-to-day use case of approximately one hour 
of walking per day and found the devices lasted around two 
weeks. We also tested the sensors in a test-bed, simulating 
intensive laboratory use. During our experiment, we attached 
units to around three test participants every hour, so we used 
this as a guideline for our test-bed trial. Our test-bed moved 
the units to simulate walking, and continuously streamed the 

data via Bluetooth, for 10 minutes on, 10 minutes off, 8 hours 
per day. The units last for 3-4 days between charges. The 
battery characteristics of all three use cases can be seen in 
Figure 4. 

Figure 4. Battery characteristic graph. 

During data collection, the sensor samples the IMU at 100 Hz, 
and streams the 3-axis accelerometer and 3-axis gyroscope 
readings together with the sampling timestamp to the Colla-
tor. Transmitting raw sensor data to the Collator in real-time 
is a challenge for the limited bandwidth of BLE, especially 
when multiple sensors stream data simultaneously to the same 
Collator. To maximise the use of the available bandwidth and 
reduce power consumption, the sensors compress the IMU 
data before transmission. The compression technique works 
by sending the differences in adjacent IMU readings (and 
adjacent timestamps) rather than the raw values, and thus it 
requires much fewer bytes to represent the data. As per the 
BLE specification, only 20 bytes can be sent within each time 
slot, due to the limitation of GATT (Generic Attributes) char-
acteristics. To fully use the BLE bandwidth, multiple IMU 
samples are combined into a data packet, and multiple data 
packets are placed into a sending buffer to be sent together. 
Exactly 20 bytes are taken from the sending buffer and sent 
in each time slot, so that no bandwidth is wasted. Each data 
packet contains a sequence number, so that packet loss can be 
detected. As a result, the compression technique can reduce 
the data size (and thus required bandwidth) by a factor of two 
to three during walking data collection. We can stream from 
five sensors simultaneously to the same Collator without data 
loss using this compression technique, while data loss occurs 
frequently if compression is not used. 

Since the sensor’s hardware clock drifts over time, each sensor 
will keep a different local time. In our system, every sensor 
clock is synchronised to the Collator smartphone clock via a 
simple synchronisation protocol [35]. Specifically, the Colla-
tor sends a “get-time" command to the sensor, and the sensor 
immediately replies with its local time. The Collator also 
records the time of the smartphone when the command is sent 
and when the reply is received. This procedure is repeated 
multiple times before and after data collection. With the re-
sultant timestamp dataset, we can use linear regression to find 
the best alignment of the sensor time to the smartphone time 



(by calculating an offset and a scale factor of the sensor time). 
The error bound of the synchronisation is approximately 10 
ms, which is accurate enough to align the movement recorded 
by different sensors (e.g., left and right steps). 

In tandem with this sensor development, a custom plastic case 
has been iterated on to encapsulate the sensor board together 
with the battery, see Figure 5. Originally, our system used 
ankle mounted sensors as these provided the best measure-
ments of stride and step length. However, in discussions with 
clinicians and people with PD we realised that such a design 
would draw attention to the user of the device, causing embar-
rassment and discouraging use. We therefore had to re-think 
our original design and instead moved the sensor underneath 
the arch of the foot as can be seen in Figure 2 b and c. This 
simple change of location had many knock-on effects to our 
system design. For one, the sensor case had to be strong 
enough such that it was able to withstand the force of footfalls 
whilst being embedded in the shoes during walking. To meet 
this requirement we moved from fragile 3D printed cases to a 
durable plastic machined case. We also based the dimensions 
of the case on the dimensions of the 6th generation iPod Nano, 
allowing us to use any of the mounts and cases designed for 
this product. Furthermore, algorithms designed around the 
original location had to be redesigned to take into account the 
physics of the new position of the sensor. 

Figure 5. Iteration of sensor case over time. 

For the needs of our system, our sensors have many benefits 
over other commercial products. They are inexpensive even 
before mass production (less than USD $100), they permit 
us to use wireless transmission, and they are completely pro-
grammable. This last feature is critical as in future work we 
intend to develop more sophisticated onboard algorithms for 
gait evaluation and detection. 

MANA Collator and Hub 
The Collator is a mobile application that can run on any smart-
phone that supports BLE. It collects the data from sensors over 
BLE and then uploads the data to the Hub. It is currently im-
plemented on the Android platform and has been tested on the 

most common Android phones (such as the Samsung Galaxy 
S series). During normal operation, the application runs in 
the background collecting data from the sensors, and if it has 
access to the internet it will securely transfer the recorded data 
to the Hub. 

The Hub is a web based application for storing, processing 
and viewing the data recorded by the MANA sensors. It has 
an accounts and permission system to only allow a user’s data 
to be seen by those with appropriate authorisation (such as the 
user himself/herself or the doctor of that user). Additionally, 
there is an anonymiser system to generalise data for research 
purposes. The system supports both historical (or archived) 
data for later analysis and live streaming for real-time data 
acquisition and processing. The Hub can compute the gait 
parameters (e.g., stride time and stride length) immediately 
after each stride, and stream them back to the Collator in 
real-time. A set of communication protocols are defined and 
implemented between the Sensor, Collator and the Hub, so 
that the user can easily control the sensors from both Collator 
and the Hub. 

By connecting the wireless MANA sensors to smartphones 
and cloud services, MANA becomes an all-in-one system with 
access to both real-time motion tracking and almost unlimited 
computing power, allowing sophisticated temporal and spatial 
gait analysis to be performed. MANA was designed with 
people with PD in mind, specifically to reduce the stigma of 
using any assistive technology. With this system built, we ran 
a clinical data collection experiment to validate our system 
and algorithms. 

DATA COLLECTION EXPERIMENT 
To test our new system, algorithms, technology and applica-
tions, we designed and performed a clinical experiment at 
Huashan Hospital, Fudan University in Shanghai, China. 

Experiment Protocol 
The intention of this experiment was to test our system across 
a large and diverse set of participants with varying degrees of 
gait disability. We recruited forty people with PD, ten partic-
ipants for each severity group and ten people with rapid eye 
movement sleep behaviour disorder, a prodromal condition 
for PD. Additionally, ten age and sex matched healthy partici-
pants were recruited from the public. In total there were sixty 
participants. Participants could be included if they met the 
following criteria: 

• Between 50-75 years old. 

• Capable of reading, understanding, and signing the in-
formed consent (no cognitive impairment). 

• No serious diseases or conditions which would effect their 
ability to perform the tasks required. 

• No gait disabilities or symptoms caused by other disorders 
which could affect analysis. 

All testing procedures were approved by the Institutional Re-
view Board (IRB) at Huashan Hospital, and all participants 
signed consent forms. All participants were recruited from the 



Parkinson’s Database Study of Huashan Hospital. Participants 
were required to be in a medication deplete state to fully show 
their symptoms during the trial. 

Participants were evaluated by neurologists on the day of 
the test to give an evaluation of their disease stage. Data 
on severity of gait disability, as well as other important data 
such as height, weight, age and so forth were collected on 
each participant. All of the experiment was filmed to serve as 
ground truth and also for blind testers to evaluate the status 
of each participant. Each participant was equipped with five 
sensors, though here we only use the following three, two 
embedded in the shoes, and one on the waist (see Figure 6a), 
which recorded accelerometer and gyroscope data at 100 Hz. 
We tested our system against ground truth measurements of 
stride length and step length. We obtained our ground truth 
measurement for stride length by using a computer vision 
based system similar to that in [42]. 

Figure 6. Sensor locations on the body, and the transformation between 
sensor body and global reference frames. 

Test Procedure 
The test procedure involved walking on an eight metre walking 
track. Participants were required to walk unassisted approx-
imately 8-10 times around this walking track continuously 
to give a minimum of around 30 strides of each foot. The 
walking track has two turns, one at the beginning and one 
at the end. Participants could stop at any time if they were 
unable to continue. In the next section, we will discuss the 
algorithms used to calculate gait parameters from this recorded 
accelerometer and gyroscope data. 

ALGORITHMS AND ANALYSIS 
One of the key functionalities of MANA is gait analysis. The 
first step of analysis involves segmenting each stride from the 
IMU data, and identifying each stage in a gait cycle. After 
that we can calculate the temporal gait parameters (e.g., step 
and stride time) and spatial gait parameters (e.g., step and 
stride length). This section describes the IMU data processing 
pipeline for temporal and then spatial gait analysis. 

Data Preprocessing 
Before the accelerometer and gyroscope data can be analysed 
by our algorithms it must first be calibrated, then converted to 
a consistent reference frame. After that, the data is separated 

into straight line walking segments, and into non-walking 
segments. 

Figure 7. Example of IMU data. 

Figure 8. Annotated gait segment. 

Accelerometer and Gyroscope Calibration 
Each axis i of an accelerometer or gyroscope has a bias bi and 
scale factor fi, which are required to adjust the raw sensor 
measurement V raw 

i to the calibrated value V calib 
i for further 

processing: 

V calib fi(V raw = – bi).i i 

For the inertial sensors such as the ones used in our system, the 
sensor parameters bi and fi are different for different sensors, 
and also vary under different temperatures. Thus we conduct 
a one-time lab calibration to obtain the baseline parameters 
for each sensor, and use these parameters to adjust the raw 
sensor measurements. Since in each data collection session, 
the actual sensor parameters may vary slightly, we introduce 
bi and fi as variables in one of our sensor models and fine-tune 
them in each session. 

To perform this one-time lab calibration of each axis of the 
accelerometer and gyroscope, we built a calibration platform 
which can be programmed to rotate in two degrees of freedom. 
Then we affix the sensor board on the platform, and use the 
sensor readings when the platform is stationary or rotating to 
calibrate each axis of the accelerometer and gyroscope [40]. 

IMU Coordinate System 
The next step is to change the IMU coordinate system to one 
that is more intuitive and straightforward. Each shoe sensor 



is embedded in the shoe such that the three IMU axes are 
approximately parallel with the forward, leftward and upward 
directions of the participant, respectively. The sensor body 
frame constructed by the three IMU axes is denoted by B . 
For simplicity and convenience, from the participant’s perspec

{ }
-

tive, we define the three IMU axes as anterior-posterior (AP) 
axis (anterior as positive direction), left-right (LR) axis (left-
ward as positive direction), and up-down (UD) axis (upward as 
positive direction), which are denoted by AP

# – # –   – 

B, LRB and UD# 

B,
respectively (Figure 6b). These three axes form a right-handed 
Cartesian coordinate system. Thus the 3-axis acceleration can 
be denoted by aAP, aLR and aUD, respectively. Similarly, the 
3-axis rotation rates measured by the gyroscope are denoted 
by wAP, wLR and wUD, respectively. Example accelerometer 
and gyroscope waveforms are shown in Figure 7. 

Since the time interval between successive IMU samples varies 
slightly (even though the IMU is configured to sample at a 
constant rate), the raw IMU data is usually interpolated and 
resampled at a higher fixed frequency [14, 21]. In our study, 
all IMU data was cubic-spline interpolated and resampled at 
1000 Hz, and then low-pass filtered at a cut-off frequency of 
10 Hz, as is common in most studies [43, 44]. 

Straight Line Walking Segmentation 
We focus only on the analysis of gait data during straight-line 
walking. Therefore, a program was developed to separate 
straight-line walking segments from non-walking segments 
such as stationary or turning segments. This separation was 
achieved primarily based on manually selected thresholds of 
the acceleration amplitude (to remove non-walking segments) 
and rotation rate (to identify turning). Since the patterns of 
different walking segments are relatively prominent and clear 
in the walking dataset collected in this study, this straight-
line walking segmentation program achieved close to 100% 
accuracy. 

Gait Cycle Analysis 
Temporal gait analysis involves the segmentation of each in-
dividual stride (known as a gait cycle) from the IMU data. 
Figure 9 illustrates different phases in a full gait cycle, such as 
swing/stance phases and single/double support phases. These 
gait phases are separated by Toe-Off (TO) and Heel-Strike 
(HS) events. The step time is the duration between two suc-
cessive HS of the two feet, while the stride time is between 
two successive HS of the same foot. The stance phase of one 
foot is from its HS to its TO. The swing phase of one foot is 
from its TO to its HS, which corresponds to the single-support 
phase of the other foot. The double-support phase is between 
the HS of one foot and the TO of the other foot. The duration 
of each phase in the gait cycle can be directly obtained from 
the TO and HS times of both feet. 

As shown in Figure 8, each TO and HS event in a stride causes 
a predominant peak and trough in the aAP waveform. The peak 
and trough points can be located using a simple peak detection 
algorithm. To find stable and reliable correspondence points 
of the TO and HS events in the aAP waveform, we use the 
sharpest rising point (i.e., with the largest difference between 
this point and its preceding point) in the rising edge preceding 

the peak point as the correspondence point of a TO event, and 
use the sharpest rising point in the rising edge after the trough 
point as the correspondence point of a HS event. 

Whilst a single sensor attached to the waist at the navel posi-
tion can also be used by itself to detect steps and strides and 
even identify left vs. right steps [41, 9], it is usually not as 
straightforward and accurate as detection based on two foot-
attached sensors. This is an advantage of our sensor system 
which allows the whole gait cycle to be clearly defined. This 
complete gait cycle analysis cannot be achieved by a single 
sensor on one foot or on the waist. For example, one sensor 
can not detect strides of the opposite foot. Moreover, double-
support time and single-support time of the opposite foot can 
not be inferred from one sensor. 

After gait cycle analysis, statistics of an entire walking ses-
sion can be calculated, such as step count, cadence (steps per 
minute), variation of step time, and swing/stance time ratio. 
The comparison of these parameters between two feet (e.g., 
left/right step time ratio) can also be performed. To clinicians, 
these results of the temporal analysis provide insights into the 
gait dynamics and walking style of the participant and sub-
sequently to the participant’s health condition. For instance, 
some people with PD are more impaired on one side of the 
body than the other, and as such they tend to have imbalanced 
gait, which is usually reflected as a large difference between 
some or all gait parameters of two feet. 

Stride Length Calculation 
Now that the gait cycle of each stride is clearly defined, we can 
calculate stride length, which is an important and fundamental 
spatial gait parameter. The position of the IMU affects the 
accuracy of stride length estimation [27]. Due to our users 
requirements we embedded the sensor in the bottom of the 
shoe which enforced several kinematic constraints that can be 
used in our algorithms. The following subsections describe 
two stride length algorithms based on double integration and 
kinematic constraints, which use the data from a single shoe-
embedded sensor. 

The stride length is the distance between two stance positions 
of the same foot. As the foot sensor is embedded in the 
shoe, the sensor stays stationary during the stance phase of 
the gait cycle, and therefore all axes of IMU data do not vary 
much. This is clearly shown in Figure 8 as the segment of 
the waveform which is flat and approximately zero for both 
accelerometer and gyroscope. Thus, we define the middle time 
point of the stance phase as the “zero point”, because at “zero 
point” the gravity-removed acceleration, velocity, and rotation 
rate of the IMU can all be assumed to be zero. This definition 
is consistent with the “zero velocity assumption” [12] and 
the Zero Velocity Update method (ZUPT) at mid-stance that 
are widely adopted by many studies for foot-mounted IMU 
analysis. Unlike our study, the IMU in those studies is attached 
to the back of the heel or the ankle position, causing the IMU 
to slowly rotate during stance. In general, the higher the sensor 
is attached on the foot, the faster the sensor rotates at stance. 
Research has shown that multiple significant modelling errors 
are related to the ZUPT methods [27]. By contrast, our shoe-
embedded sensors have almost constant readings at “zero 



point”, which results in smaller errors and justifies the use of 
the “zero velocity assumption”. 

Figure 9. The gait cycle. 

Transformation Between Coordinate Systems 
As stride length is measured in the global reference frame 
(denoted by 
from the sensor

{G }), we must transform the IMU acceleration 
 body frame to the global frame. Assuming 

straight-line walking on level ground, a global coordinate 
system {G } can be established with its AP AP

# 
 axis (

– 
  G) pointing 

forwards along the walking line, its LR axis (LR# – 

G) pointing 
leftwards of the participant, and UD axis (UD#  – 

G) pointing 
upwards (parallel with gravity direction). During straight-line 
walking, the global coordinate system {G } is fixed, while 
the sensor body frame {B} rotates along with the shoe. The 
acceleration recorded by the IMU is represented in B , while 
the spatial gait parameters such as stride length are 

{
represented

}
 

in {G }. Thus the first step is to transform the acceleration into 
{G 
thus

}. Let R be the transformation matrix from {B  to G , 
 the acceleration vector aB a a a T= [ ,

{ }
AP,

}
LR UD]  measured 

by IMU in {B} can be transformed to acceleration in G  as 
aG = RaB. Double-integrating aG gives the  

{ }
distances traveled 

in the global frame, such as stride length. 

During walking, R changes in time, and is denoted by R(t) at 
time t. Time t starts from 0 (at the beginning of the stride) and 
ends at T (at the end of the stride). First, we need to determine 
R(0), i.e., the rotation of the shoe at the start of a stride. 

Since the IMU is assumed to be stationary in the beginning of 
a stride, the acceleration measured should be purely accelera-
tion due to gravity. We introduce a parameter q as the angle 
between the direction of movement in the global frame and the 
AP axis, as shown in Figure 6b. Usually q is relatively small 
as the IMU is embedded in the shoe such that they are almost 
co-directional. The parameter q will be determined differently 
later in the two algorithms described in the next subsections. 

After R(0) is obtained, and given the IMU rotation rate w(t) =  
[wAP(t),wLR(t),wUD(t)] measured by the gyroscope at time t, 
R(t) can be updated iteratively by 

" 1 – wUD(t)dt wLR(t)dt # 

R(t +dt) = R(t) wUD(t)dt 1 – wAP(t)dt , 
– wLR(t)dt wAP(t)dt 1 

where dt is a small time interval between two IMU sam-
ples [17, 32]. 

Note that this equation integrates w(t) over time, which may 
cause an accumulated estimation error of R(t) due to the noise 
in w(t) and the errors of numerical integration. This is the 
main source of error in this stride length estimation approach 
and the next subsections will describe the general idea of dif-
ferent methods to compensate for it, a more in-depth overview 
can be found in [39]. 

Reset-based Stride Length Algorithm (SL-Reset) 
The key idea of the Reset-based Stride Length Algorithm is 
to linearly reset the gravity-removed acceleration and velocity 
to zero at the end of each stride, which is a zero point. As 
mentioned before, R(t) usually drifts over time, which can 
cause increasing estimation errors. At the stride ending time 
t = T , the acceleration in the global frame may be far from 
zero, even though based on the zero point assumption, it should 
be close to zero. To mitigate this drift problem, the following 
linear resetting function h0(·) is applied to the acceleration to 
force it to be zero at t = T : 

t
h0(x(t)) = x(t) – x(T ),

T 
where x(t) is a time series with t between 0 and T . 

Optimisation-based Stride Length Algorithm (SL-Opt) 
The Optimisation-based Stride Length Algorithm utilises a 
sensor fusion model with parameters and then optimises these 
parameters based on kinematic constraints. As mentioned, 
the sensor bias and scale factor may change under different 
environments, or even after each switch-on. To account for 
these variable sensor properties, we first process the sensor 
data using the following models. The acceleration model used 
in this method is given by 

ai = (1 + f Acc – bAcc)(ãi ),i i 

where i is one of the AP, LR or UD axes, ãi is the IMU-
measured acceleration after preprocessing, bAcc is i the bias, 
and f Acc is the adjustment of the scale i factor. Similarly the 
model for rotation rate wi is 

wi = (1 + f Gyro – bGyro 
i )(w̃i .)i 



The parameters W  b  f Acc Gyro  Gyro 12 model Acc  =  
i , i , b , f i i i will

be estimated later using least-squares
{

 optimisation (such
}

 as 
using the Levenberg–Marquardt algorithm [25]). Finally, after 
the model parameters W and q are determined, the stride length 
is calculated. 

Linear Correction of SL-Reset and SL-Opt 
In the previous two approaches, we found that the derived 
stride lengths had a mean error of approximately 2-4 cm, in-
stead of zero (see the results in Table 1). The underestimation 
of stride length is likely caused by several reasons. For exam-
ple, since the IMU data is low-pass filtered in the preprocessing 
step in order to remove noise, the amplitude of the resultant 
data is inevitably reduced to some extent, which leads to a 
reduction in stride length estimation. Another source of this 
underestimation is that in reality the velocity at zero points 
may be slightly larger than zero for some strides, thus resetting 
the velocity to zero can cause an underestimated stride length. 

In order to compensate for this underestimation, we fit a model 
to map the initial stride length estimation (L0) to the ground-
truth stride length (L). Since this is a simple mapping between 
two scalar variables, we used a regression model. Specifi-
cally, different degrees of polynomial regression models were 
trained and evaluated, and we selected simple linear regression 
(i.e., L = aL0 + b ) for its accuracy and parsimony, where the 
coefficients a and b are determined using least squares fitting. 

Table 1. Measurement errors of our three stride length estimation algo-

rithms and comparison to other studies 

Algorithm 
Error: cm (% error) 
Mean MAE 

SL-Reset Initial -3.78 (-3.09) 6.9 (5.71) 
SL-Reset Corrected 0.03 (0.02) 6.72 (5.68) 
SL-Opt Initial -2.16 (1.8) 5.78 (4.8) 
SL-Opt Corrected 0.02 (0.02) 5.72 (4.71) 
SL-ML -0.63 (0.27) 4.04 (4.24) 
Bamberg et al. [3] - 8.50 (-) 
Sijobert et al. [36] - 9.00 (5.60) 

Machine Learning Regression for Stride Length (SL-ML) 
Another approach is to use machine learning methods to esti-
mate stride length. For each stride, we extracted features from 
the IMU waveforms of both foot sensors. For the three accel-
eration waveforms (and similarly for the three rotation rate 
waveforms), the first and second integral of each waveform 
as well as the energy waveform (i.e., the Euclidean norm) are 
used. Approximately 5000 features are extracted from each 
waveform, and are similar to those in existing studies [41], 
such as the min, max, mean and standard deviation of each 
waveform. 

We used Multi-layer Perceptrons (MLP) to build our regression 
models in this study, due to their flexible configuration and 
modelling capability, as well as their wide application (with 
validated performance) in gait analysis (e.g., [37, 41]). We use 
the scikit-learn library [30] to train the regression model. 
Our process involves 

1. Feature standardisation by centering and scaling the features 
to zero mean and unit variance. 

2. Feature dimensionality reduction using Principal Compo-
nent Analysis (PCA). 

3. Training and evaluation of the regression model. 

We split the data into 80% for training and validation sets, 
with the remaining 20% as a test set. The sets are split such 
that the ratio of steps of each participant is the same in all sets. 
We performed five-fold cross-validation using the training and 
validation sets to tune the MLP hyper-parameters. The final 

model performance is evaluated on the test set. Our best hyper-
parameters were found to be 40-100 PCA components, and a 
single hidden layer of size 800. 

Machine Learning Regression for Step Length (StepL-ML) 
Step lengths (as distinct from stride lengths) are another impor-
tant spatial gait parameter for clinicians to evaluate gait [23, 
18]. As described in the previous subsections stride length can 
be calculated analytically based on the zero point constraints 
using a shoe-embedded sensor. However, it is not as straight-
forward to calculate the step length between alternating feet 
purely based on two shoe-embedded sensors, since one sensor 
can only measure the movement of the foot that it is mounted 
on and it is difficult to align the two sensor positions spatially. 

In the MANA system, the waist-mounted sensor can be used 
to measure step length since the waist sensor captures the 
movement of both feet. The previous stride length methods 
rely on the assumption that the IMU is stationary at the middle 
of stance and thus it is not suitable for step length calculation 
using the waist sensor, because the waist sensor keeps moving 
forward even during the foot stance phase. 

To calculate step length based on the waist sensor, machine 
learning-based regression methods were used, as have been 
adopted by many studies for IMU-based displacement mea-
sures, including step and stride length [41]. We repeated the 
same procedure using an MLP as in the previous subsection, 
but this time using the waist sensor data in addition to the foot 
sensor data. Our best hyper-parameters were found to be 100 
PCA components, and a single hidden layer of size 700. 

RESULTS 
A stride length dataset of 5141 strides from both feet was 
combined across 60 participants, with a minimum of 30 strides 
for each participant. Since the participants vary from healthy 
participants to participants with severe PD, the stride length 
dataset has a large range from 29 cm to 159 cm. The mean 
and standard deviation of the stride lengths are 102 cm and 24 
cm, respectively. 

Three stride length algorithms (SL-Reset, SL-Opt, and SL-
ML) were tested on this dataset and compared to ground truth 
measurements. Different metrics have been used in the litera-
ture to quantify such measurement errors, and here we report 
the mean error, and mean absolute error (MAE) measured in 
cm for each algorithm, as shown in Table 1. Furthermore, 
since the stride length varies across a large range, we also 



calculated the normalised percentage error, which is the es-
timation error divided by the ground-truth stride length and 
multiplied by 100. Each row in the table represents a different 
condition of the algorithm, where “Initial” means the original 
estimation of stride length without applying the linear regres-
sion method, and “Corrected” means that linear regression 
was applied. 

As can be seen in Table 1, these errors of the proposed algo-
rithms are dramatically smaller than other IMU-based studies 
that are tested on people with PD. It is worth noting that our 
study involves a large group of participants with a wide range 
of gait styles and stride lengths. By applying linear regression, 
the mean error of all algorithms is reduced to almost zero. A 
mean error of about zero indicates an accurate algorithm for 
estimating the total walking distance (such as in pedestrian 
tracking), and outperforms existing studies. However, SL-ML 
is the best performing and has the smallest mean absolute error 
of approximately 4.0 cm (or 4.3%). 

A step length dataset of 4857 steps was combined across 
the 60 participants. The size of the step length dataset is 
slightly smaller than the stride length dataset because each 
step requires the existence of two strides of both feet. The step 
length dataset ranges from 12 cm to 82 cm, with a mean of 
51 cm and standard deviation 12 cm. The results of our step 
length algorithm accuracy can be seen in Table 2. As can be 
seen in the same table, by incorporating the information from 
the foot sensor and waist sensor, StepL-ML has an accuracy 
that is comparable to (or better than) other studies of the same 
type. Whilst a direct comparison can not be made with Zhu et 
al. [41], the RMSE error is of the same order as our study. 

Table 2. Measurement error of step length estimation algorithm and 
comparison to other studies 

Algorithm 
Error: cm (% error) 

Mean MAE 
StepL-ML -0.01 (0.76) 2.63 (5.86) 
Sayeed et al. [34] - 3.30 (-) 
Zhu et al. [41] - RMSE: 3.22 (6.95) 

We also looked at the performance of our system as a function 
of PD severity. We split our 60 subjects into three groups 
of increasing severity, those without PD, those with PD in 
stages 1 and 2, and finally those with PD in stages 3 and 
4. We then evaluated our best performing stride length and 
step length algorithms on these groups. As can be seen in 
Table 3, the accuracy of the system is slightly lower in the 
more severe cases. This is expected as in late stages of the 
disease, walking patterns can become more erratic. Despite 
this, it still outperforms the other studies in Table 1 and 2. 

Table 3. Breakdown of measurement error of stride and step length esti-

mation algorithms by severity group 

Algorithm 
Error MAE: cm (% error) 

Healthy Mild Severe 
SL-ML 4.08 (3.24) 3.80 (3.62) 4.23 (5.45) 
StepL-ML 2.66 (4.32) 2.14 (4.04) 3.05 (8.40) 

In summary, by measuring stride and step length for both 
feet, MANA can provide comprehensive insights into spatial 

gait dynamics, as well as the statistics (e.g., variation) and 
comparison between two feet, which is a fundamental part of 
gait and mobility analysis. 

FUTURE WORK AND CONCLUSIONS 
In this paper we demonstrated an all-in-one system for mo-
bility analysis, including a body sensor network (two sensors 
embedded in the shoes, and one on the waist) and a data 
analysis and visualisation backend. We introduced novel and 
accurate gait analysis algorithms by fusing accelerometer and 
gyroscope data and using imposed kinematic constraints. We 
also use machine learning techniques to calculate stride and 
step metrics accurately. Additionally, we performed a clinical 
trial with 60 participants, 40 people with PD, 10 people with 
rapid eye movement sleep behaviour disorder, and 10 healthy 
people to validate our system and algorithms. 

By taking into account our users’ requirements, and putting 
the user center in our development, we were able to find new 
and innovative methods to estimate gait metrics. For example, 
embedding the sensor in the shoe enabled the development 
of novel algorithms for gait length estimation. This is an im-
portant differentiating characteristic of our system in contrast 
to most commercial systems which use ankle mounted sen-
sors. This new location is shown to be an advantage for some 
stride length estimation algorithms (specifically for justifying 
zero point assumptions). Furthermore, the unobtrusiveness of 
the sensor location and the long battery life makes long term 
monitoring using MANA a strong possibility. 

The flexibility, portability, and scalability of MANA enables 
a wide range of applications and use cases with high social 
impact. Firstly, MANA provides people with PD with afford-
able access to gait analysis technology normally only available 
at large hospitals. Systems such as the GAITRite cost many 
tens of thousands of dollars, whereas each of our sensors cost 
less than USD $100. MANA can be used at home as it is a 
convenient and invisible wearable system designed to limit the 
stigma associated with assistive technologies. It makes it possi-
ble for someone to track their motor performance over a much 
longer time period, providing more accurate and fine-grain 
information. Our system also allows for up to five sensors 
recording data at one time, meaning sensors could be placed 
on other extremities to record other human motion. 

MANA is not only restricted to monitoring people with PD; it 
can also be used for evaluation of those with mobility impair-
ment in general. MANA lays out the technical foundation for 
higher level applications to be developed and deployed. For 
example, MANA could detect other parkinsonian symptoms 
such as freezing of gait and perhaps provide audio or visual 
cues to help a user resume walking. In conclusion, MANA 
represents a promising platform for accessible and affordable 
clinical mobility analysis with a wide range of potential appli-
cations. 
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