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Abstract—Automatic evaluation of singing quality can be done
with the help of a reference singing or the digital sheet music
of the song. However, such a standard reference is not always
available. In this paper, we propose a framework to rank a large
pool of singers according to their singing quality without any
standard reference. We define musically motivated absolute mea-
sures based on pitch histogram, and relative measures based on
inter-singer statistics to evaluate the quality of singing attributes
such as intonation, and rhythm. The absolute measures evaluate
the goodness of pitch histogram specific to a singer, while the
relative measures use the similarity between singers in terms of
pitch, rhythm, and timbre as an indicator of singing quality.
With the relative measures, we formulate the concept of veracity
or truth-finding for the ranking of singing quality. We successfully
validate a self-organizing approach to rank-ordering a large pool
of singers. The fusion of absolute and relative measures results
in an average Spearman’s rank correlation of 0.71 with human
judgments in a 10-fold cross-validation experiment, which is close
to the inter-judge correlation.

Index Terms—Evaluation of Singing Quality, music-theory
motivated measures, inter-singer measures, evaluation by ranking

I. INTRODUCTION

S INGING has always been a popular medium of social
recreation. Improving singing abilities is desired by am-

ateur and aspiring singers. Music experts evaluate singing
quality with the help of their music knowledge and perceptual
appeal. Studies have shown that music experts can evaluate
singing quality with high level of consensus when the melody
or the song is unknown to them [1], [2]. This suggests
that there are inherent properties of singing quality that are
independent of a reference singer or melody, which help the
music experts to judge singing quality without a reference. In
this work, we explore these properties and propose methods to
automatically evaluate singing quality without depending on a
reference.

Computer-assisted singing learning tools have been reported
to be useful for singing lessons [3]–[5]. Recently, karaoke
singing apps such as Smule Sing![6], Starmaker[7], and online
platforms such as SoundCloud, and Youtube have provided
a platform for people to showcase their singing talent, and
a convenient way for amateur singers to practice and learn
singing. They also provide an online competitive platform
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for singers to connect with other singers all over the world,
and improve their singing skills. Automatic singing evaluation
systems on such platforms typically compare a sample singing
vocal with a standard reference such as a professional singing
vocal [8]–[11] or the song melody notes [12]–[14] to obtain
an evaluation score. For example, Perceptual Evaluation of
Singing Quality (PESnQ) [8] measures the similarity between
a test singing and a reference singing in terms of pitch, rhythm,
vibrato, etc. However, such methods are constrained either by
the need for a professional grade singer, or the availability of
a digital sheet music for every song. The aesthetic perception
of singing quality is very subjective and varies between
evaluators. As a result even experts often disagree on the
perfection of a certain performance [15]. The choice of an
ideal or gold-standard reference singer brings in a bias of
subjective choice. Therefore, a reference-independent method
of singing quality evaluation is desirable.

Aspiring singers upload cover versions of their favorite
songs on these online platforms, that are listened and liked
by millions across the globe. However discovering talented
singers from such huge datasets is a challenging task [16].
Moreover, often times the cover songs don’t follow the original
music scores, but rather demonstrate the creativity and singing
style of individual singers. In such cases, reference singing or
musical score based evaluation method is not an ideal choice.

There have been a few studies on evaluating singing quality
without a standard reference. Nakano et al. [2] designed
a singing skill evaluation scheme based on pitch interval
accuracy and vibrato, which are regarded as the features that
function independently from the individual characteristics of
singer or melody. They used pitch interval accuracy to measure
the consistency of the pitch offset values within a musical
semitone grid. For computing the pitch interval accuracy, the
fundamental frequency trajectory is fitted to a semitone (100
cents) width grid (corresponding to equal temperament in the
Western music tradition), i.e. all the pitch values are folded on
to a semitone. If the pitch values have a constant offset from
this grid throughout the song, then the singing was considered
to be of good quality. Although pitch interval accuracy is a fair
indicator, it ignores other properties of a song. For example,
if a singer sings only one note throughout the song, the pitch
interval accuracy can be unwantedly good because it ignores
other aspects of the melody, such as occurrence pattern of
notes and their durations.

In [17], we computed the absolute measures (i.e. without a
standard reference) to evaluate singing quality by characteriz-
ing the shape of the pitch histogram of a singing rendition. We
characterized the shape of the peaks in the histogram, the num-
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ber of peaks, and the concentration of the pitch values around
the peaks. This is different from computing the pitch interval
accuracy histogram as it leads to a better understanding of
the inherent discerning properties of the quality of singing
voice without making use of a reference melody. These are the
pitch histogram-based musically-motivated absolute measures.
In this work, we further build upon [17] by introducing a
novel autocorrelation-based measure to this group of measures
in Section II, while also comparatively and systematically
studying all of these measures. However, pitch histogram does
not provide the complete picture. For example, the temporal
information, such as rhythm, is not captured; furthermore, for
an unknown melody, the correctness of pitching the notes is
not evaluated. Thus, in this work, we additionally explore rel-
ative methods of evaluation, where information about rhythm
and note location is retained.

Humans are known to be better at relative judgments,
i.e. choosing the best and the worst among a small set of
singers [18], [19], than giving an absolute rating. This leads
us to the idea of automatically generating a leaderboard of
singers, where the singers are rank-ordered according to their
singing quality relative to each other. With the immense
amount of online uploads on singing platforms, we can now
leverage on the comparative statistics between singers as well
as music theory to derive such a leaderboard of singers.

We study the research problem of automatic leaderboard
generation in the scenarios where a large number of singers
perform the singing of the same song. Without the reference
singing template or gold-standard, we would like to automat-
ically rank-order the singing vocals by their singing quality.
Based on the concept of veracity, we believe that good singers
sing alike, but bad singers sing very differently to each other.
If all singers sing the same song, the good singers would
share many characteristics such as the frequently hit notes, the
sequence of notes, and the overall consistency in the rhythm of
the song. However, different poor singers will deviate from the
intended song in different ways. For example, one may be out-
of-tune at certain notes, while another may be at some other
notes. In this way, the relative measures based on inter-singer
distance can serve as an indicator of singing quality, that we
will discuss in Section III. It is worth noting that excellent
singers may stand out of the average, and may differ from
other good singers. However, the fundamental quality of the
songs, such as pitch, rhythm, and voice timbre should remain
consistent. Therefore, the relative measures will provide a
broad segregation of singers according to their relative singing
quality.

We propose an automatic leaderboard framework that com-
bines the pitch histogram-based measures with the inter-singer
distance measures to provide a comprehensive singing quality
assessment without relying on a standard reference. We assess
the performance of our algorithm by comparing against human
judgments.

The automatic leaderboard can be useful as a screening
tool for singing competitions, and karaoke applications, where
there is a need for large-scale screening of singers. In the
context of singing pedagogy, a detailed feedback to a learner
about their performance with respect to the individual un-

derlying perceptual parameters such as pitch, rhythm, and
timbre, is important. Although humans are known to provide
consistent overall judgments, they are not good at objectively
judging the quality of individual underlying parameters. We
will show that the proposed singing quality evaluation scheme
outperforms human judges in this regard. In this paper, we
make the following major contributions,

• We introduce novel inter-singer relative measures, based
on the concept of veracity algorithm, that rank-orders
large number of singing renditions without relying on a
reference singing

• We further the study of [17] by introducing a novel
autocorrelation-based measure to the group of musically
motivated measures and systematically discuss their prop-
erties.

• We propose a combination of absolute and relative mea-
sures to characterize the inherent properties of singing
quality

• We show that our algorithms assess different aspects of
singing quality independently, that outperform humans.

This paper is organized as follows. In Section II, we discuss
various musically-motivated absolute measures, in Section III,
we discuss our idea and approach for inter-singer relative
measure computation. We discuss the ranking strategy and
fusion methods in Section IV. Data preparation is discussed in
Section V, and the experiments and conclusions are discussed
in Sections VI and VII, respectively.

II. MUSICALLY-MOTIVATED MEASURES

A subjective assessment study conducted by Nakano et
al. [1] found that human judges could evaluate singers with
high level of consistency even when the songs are unknown to
the judges. This finding suggests that singing quality judgment
depends more on common, objective features rather than
subjective preference. Moreover, experts make their judgment
neither relying on their memory of the song, nor a reference
melody. This encourages us to explore methods to quantify
singing quality in a reference-independent way.

Subjective assessment studies suggest that the most impor-
tant properties for singing quality evaluation are pitch and
rhythm [20]–[22]. Pitch is an auditory sensation in which a
listener assigns musical tones to relative positions on a musical
scale based primarily on their perception of the frequency
of vibration [23]. Pitch is characterized by the fundamental
frequency F0 and its movements between high and low
values. Musical notes are the musical symbols that indicate
the pitch values, as well as the location and duration of pitch,
i.e. the timing information or the rhythm of singing. In karaoke
singing, visual cues to the lyric lines to be sung are provided
that helps the singer to have more control over the rhythm of
the song. Therefore, in the context of karaoke singing, rhythm
is not expected to be a major contributor to singing quality
assessment. Pitch, however, can be perceived and computed.
Therefore, we will focus on the characterization of singing
pitch in this section.
A. Pitch Histogram

Pitch histograms are global statistical representations of the
pitch content of a musical piece [17], [24]. They represent
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the distribution of pitch values in a sung rendition. A pitch
histogram is computed as the count of the pitch values folded
on to the 12 semitones in an octave. All pitch values in this
study are calculated in the unit of cents (one semitone being
100 cents on equi-tempered octave),

fcent = 1200× log2

fHz

440
(1)

where 440 Hz (pitch-standard musical note A4) is considered
as the base frequency.

In this work, we use the pitch estimates from the
autocorrelation-based pitch estimator PRAAT[25], [26]. Baba-
can et al. [27] have shown that PRAAT gives the best voicing
boundaries for singing voice with the least number of post-
processing steps or adaptations, when compared to other pitch
estimators such as source-filter model based STRAIGHT[28]
and modified autocorrelation-based YIN [29]. We apply one
generic post-processing step to remove the frames with low
periodicity, as described in detail in [8].

To compute the pitch histogram, it is necessary to remove
the key of the song. Previously, Nichols et al. [16] computed
the tuning frequency to induce a grid of correct pitch fre-
quencies based on an equi-tempered 12 semitone scale, and
then computed the histogram of the differences of the pitch
values from the nearest correct frequencies. This resulted in
a histogram of values within one semitone. Nakano et al. [2]
used a filterbank method to obtain the correct frequencies grid,
but then computed the one semitone histogram in the same
way as in [16]. However, determining the tuning frequency is
a challenging task [30], [31]. In this work, we first convert the
pitch values to an equi-tempered scale (cents), and then instead
of computing the tuning frequency, we subtract the median
from the pitch values. Since median does not represent the
tuning frequency of a singer, the pitch histogram obtained this
way may show some shift across singers. However, it does not
affect the strength of the peaks and valleys in the histogram.
Also, as the data used in this study is taken from karaoke
where the singers sang along with the background track of the
song, so the key is supposed to remain same across singers.

We subtract the median of pitch values in a singing ren-
dition, and transpose all pitch values to a single octave,
i.e. within -600 to +600 cents. Then we compute pitch his-
togram H by placing the pitch values into their corresponding
bins [32]:

Hk =
N∑

n=1

mk (2)

where Hk is the kth bin count, N is the number of pitch
values, mk = 1 if ck ≤ P (n) ≤ ck+1 and mk = 0 otherwise,
where P (n) is the nth pitch value in an array of pitch values
and (ck, ck+1) are the bounds on kth bin. To obtain a fine
histogram representation, we divided each semitone into 10
bins. Thus we have 12 semitones x 10 bins each = 120 bins
in total, each representing 10 cents.

The melody of a song typically consists of a set of dominant
musical notes (or pitch values). These are the notes that are
hit frequently in the song and sometimes are sustained for
long duration. These dominant notes are a subset of the 12
semitones present in an octave. The other semitones may also

(a)

(b)

(c)

Fig. 1. Normalized pitch histogram for (a) MIDI, and GMM-fit (red line)
and detected peaks (black dots) on normalized pitch histogram for (b) good
singing (c) poor singing of the song “I have a dream” by ABBA. (1 bin=10
cents)

be sung during the transitions between the dominant notes,
but are comparatively less frequent and not sustained for long
durations. Thus, in the pitch histogram of a good singing vocal
of a song, these dominant notes should appear as the peaks,
while the transition semitones appear in the valley regions.

Figure 1 shows (a) the pitch histogram of MIDI (Musical
Instrument Digital Interface) signal, (b) a good singing vocal,
and (c) a poor singing vocal, all performing the same song, I
have a dream by ABBA. The area of histogram is normalized
to 1. The MIDI version contains the notes of the original com-
position, therefore represents the canonical pitch histogram of
the song. It is apparent that the good singer histogram should
be close to the MIDI histogram. They have four sharp peaks
showing that those pitch values are frequently and consistently
hit, more than the rest of the pitch values. Since generally a
song consists of only a set of dominant notes, so the sharp,
narrow, and well-defined spikes of the good singer’s pitch
histogram indicate that the notes of the song are being hit
repeatedly and consistently. On the other hand, the poor singer
has a dispersed distribution of pitch values, that reflect that
the singer is unable to hit the dominant notes of the song
consistently.

Statistical measures kurtosis and skew [2], [16] were used to
measure the sharpness of the pitch histogram. These are overall
statistical indicators that don’t care much about the actual
shape of the histogram, which could be informative about the
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singing quality. Therefore, in this work, we characterize the
musical properties of singing quality with the 12 semitones
pitch histogram. We believe that the shape of this histogram,
for example, the number of peaks, the height and spread of
the peaks, and the intervals between the peaks contain vital
information about the goodness of the sung melody. Although
we cannot directly determine the correctness of the notes being
sung when the notes of the song are not available, we can
measure the consistency of the pitch values being hit, which
is an indicator of the singing quality.

In the following sub-sections, we systematically discuss the
group of musically-motivated pitch histogram-based measures
from a musical perspective. In [17], we formulated several
pitch histogram based measures for singing quality evaluation
without a reference, that are briefly discussed in sub-sections
II-B, II-C1, and II-D. In this paper, a new measure, called
the autocorrelation energy ratio measure (Section II-C2), is
introduced.
B. From the perspective of overall pitch distribution

This is a group of global statistical measures that com-
putes the deviation of the pitch distribution from a normal
distribution. As seen in Figure 1, the pitch histogram of good
singers show multiple sharp peaks, while that of poor singers
show a dispersed distribution of pitch values. Therefore, we
hypothesize that the histogram of a poor singer will be closer
to a normal distribution, than that of a good singer [17].

1) Kurtosis: Kurtosis is a statistical measure (fourth stan-
dardized moment) of whether the data is heavy-tailed or light-
tailed relative to a normal distribution, defined as

κ = E

[(
~x− µ
σ

)4]
(3)

where ~x is the data vector, which in our case is the pitch values
over time, µ is the mean and σ is the standard deviation of ~x.
A good singer’s pitch histogram is expected to have several
sharp spikes, as in Figure 1, and thus away from a normal
distribution. So a good singer would have a higher kurtosis
value than a poor singer.

2) Skew: Skew is a measure of the asymmetry of a distri-
bution with respect to the mean, defined as

γ = E

[(
~x− µ
σ

)3]
(4)

where ~x is the data vector, µ is the mean and σ is the standard
deviation of ~x.

The pitch histogram of a good singer has peaks around the
notes of the song, whereas that of a poor singer is expected
to be more dispersed and spread out symmetrically. So, the
pitch histogram of a poor singer is expected to be closer to a
normal distribution (see Fig. 1), or more symmetric.

C. From the perspective of pitch concentration

The previous group of measures considered the overall
distribution of the pitch values with respect to a normal
distribution. However, they do not care about whether the
singing vocal hits the musical notes. Next, we would like to
quantify the precision with which the notes are being hit.

We would essentially want to measure the concentration of
the pitch values in the pitch histogram. Multiple sharp peaks in
the histogram indicate precision in hitting the notes. Moreover,
the intervals between these peaks contain information about
the relative location of these notes in the song indicating the
musical scale in which the song was sung.

1) Gaussian mixture model-fit (GMM-fit): To capture the
fine details of the histogram, we fit a mixture of Gaussian
distributions to model the pitch histogram. Figure 1(b) and (c)
show the GMM-fit for a good and a poor singer respectively.
After experimenting with different numbers of mixtures, we
found that a high number of mixtures are required for fitting
the histogram of good singers as they have many concentrated
sharp peaks. Therefore, empirically we set the number of
mixtures as 150.

To characterize the peaks in the histogram, we detect the
local maximas in the GMM-fit [33]. Figure 1(b) and (c) show
the detected local maximas. A point is considered to be a peak
candidate if it has the maximal value, while being preceded
and succeeded by a lower value [33]. Empirically, a peak
candidate is considered to be the actual local maxima if it is the
highest peak within at least ±50 cents. We characterize singing
quality on the basis of the detected peaks in the following two
ways.

Firstly, we measure the spread around the peaks, that
indicates the consistency of hitting the same notes, that we
call the Peak Bandwidth (ρb), defined as:

ρb =
1

N2

N∑
i=1

w2
i (5)

where wi is the 3 dB half power down width of the ith detected
peak. Since a pop song is expected to have more than one or
two significant peaks, we additionally penalize if there are only
a small number of peaks, by dividing by the number of peaks
N . Therefore, the peak bandwidth measure averaged over the
number of peaks becomes inversely proportional to N2.

Secondly, we measure the percentage of pitch values around
the peaks, called Peak Concentration (ρc) measure, defined as:

ρc =

∑N
j=1

∑binj+∆
i=binj−∆Ai∑M
k=1Ak

(6)

where N is the number of peaks, binj is the bin number of
the jth peak, Ai is the histogram value of the ith bin, and M
is the total number of bins, i.e. 120 here, each bin represents
10 cents. Human perception is known to be sensitive to pitch
changes, but the smallest perceptible change has been debated
upon. Scientists agree that average adults are able to recognize
pitch differences of as small as 25 cents reliably [34]. Thus,
in equation 6, ∆ is the number of bins on either sides of the
peak to be considered for measuring peak concentration. It
represents the allowable range of pitch change without being
perceived as out-of-tune. We empirically consider the ∆ values
of ±5 and ±2 bins, i.e. ±50 cents and ±20 cents respectively,
which along with the center bin (10 cents), are a total of 110
cents and 50 cents, respectively. We term these measures as
ρc110 and ρc50 respectively.
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(a) (b)

Fig. 2. The normalized pitch histogram (1 bin = 10 cents) (top), autocorre-
lation of the histogram (middle), and the magnitude of the Fourier transform
of the autocorrelation (bottom) for (a) good singing (b) poor singing.

2) Autocorrelation: Singers are supposed to sing mostly
around the 12 semitones. The minimum interval is one semi-
tone, and the intervals between the musical notes should be
one or multiples of a semitone, that can be observed if we
perform autocorrelation on the pitch histogram. If a good
singer hits the correct notes all the time, we expect to see sharp
peaks at multiples of semitones in the Fourier transform of the
autocorrelation of the pitch histograms. This is evident from
Figure 2 (bottom tier), where the magnitude spectrum of the
autocorrelation of a good singing pitch histogram has energy in
the higher frequencies representing the interval pattern of the
dominant notes in the pitch histogram. On the other hand, the
energy is concentrated only in the zero frequency component
in the magnitude spectrum of the autocorrelation of the poor
singing pitch histogram.

We compute the autocorrelation energy ratio measure or α
as the ratio of the energy in the higher frequencies to the total
energy in the Fourier transform of the autocorrelation of the
pitch histogram,

α =

∑
f=4Hz |Y (f)|2∑
f=0Hz |Y (f)|2

(7)

where,

Y (f) = F
( 120∑

n=1

y(n)y∗(n− l)
)

(8)

i.e. the Fourier transform of the autocorrelation of the his-
togram y(n) where n is the bin number, and total number
of bins is 120, and l is the lag. The assumption of sampling
frequency for Fourier transform is 120 corresponding to the
120 bins in the pitch histogram and the corresponding autocor-
relation. The lower cut-off frequency of 4 Hz in the numerator
of equation 7 corresponds to the assumption that at least 4
dominant notes are expected in a good singing rendition, i.e. 4
cycles per second.

D. Clustering based on musical notes

As discussed earlier, a song typically consists of a set of
dominant musical notes. Although the melody of the song
is unknown, we can imagine that the pitch values, when
sung correctly, will be clustered around these dominant notes.
Therefore, they serve as a natural reference for evaluation. We
explore two ways of measuring this clustering behavior.

1) k-Means Clustering: Tightly grouped clusters of pitch
values across the histogram indicate that most of the pitch
values are close to the cluster centers which means that the
same notes are hit consistently. Keeping this idea in mind, we
apply k-Means clustering to the pitch values, where k = 12
for the 12 semitones in an octave.

Whether the pitch values are tightly or loosely clustered
can be represented by the average distance of each pitch
value to its corresponding cluster centroid. This distance is
inversely proportional to the singing quality, i.e. smaller the
distance, better the singing quality. We define the average
cluster distance as:

ζ =
1

L

k∑
i=1

d2
i (9)

where L is the total number of frames with valid pitch values,
and di is the total distance of the pitch values from the centroid
in ith cluster, defined as

d2
i =

Li∑
j=1

(
pij − ci

)2
(10)

where pij is the jth pitch value in ith cluster, ci is the ith

cluster centroid obtained from the k-Means algorithm, Li is
the number of pitch values in ith cluster, and i ranges from
1, 2, ..., k number of clusters.

The difference between this measure and the ρb measure
is that ρb is a function of the number of the dominant
peaks, whereas in ζ, the number of clusters are fixed to 12
corresponding to all the possible semitones in an octave. Thus,
they are different in capturing the influence of the dominant
notes on the evaluation measure.

2) Binning: Another way to measure the clustering of the
pitch values is by simply dividing the 1200 cents (or 120 pitch
bins) into 12 equi-spaced semitone bins, and computing the
average distance of each pitch value to its corresponding bin
centroid. Equations 9 and 10 hold true for this method too,
the only difference is that the cluster boundaries are fixed in
binning or β method at 100 cents.

In summary, we have eight musically-motivated absolute
measures for evaluating singing quality without a reference
(Table I): κ, γ, ρb, ρc110 , ρc50 , ζ, β, and α.

III. INTER-SINGER MEASURES

For the first time, we propose an approach for evaluating
singing quality without a reference by leveraging on the
general behaviour of the singing vocals of the same song by a
large number of singers. This novel approach uses inter-singer
statistics to rank-order the singers in a self-organizing way.

The problem of discovering good singers from a large
pool of singers is similar to that of finding true facts from
a large amount of conflicting information provided by var-
ious websites [35]–[37]. The truth-finder algorithm utilizes
the relationships between websites and their information. A
website is trustworthy if it provides many pieces of true
information, and a piece of information is likely to be true
if the same information is provided by many trustworthy
websites. The premise of the truth-finder algorithm is the
heuristic that there is only one true version of a fact, and
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TABLE I
LIST OF MUSICALLY-MOTIVATED ABSOLUTE AND INTER-SINGER

RELATIVE MEASURES

Measure Group Sub-group
based on

Measure names

Musically-motivated
absolute measures

Overall pitch
distribution

Kurtosis (κ), Skew (γ)

Pitch
concentration

Peak bandwidth (ρb), Peak
concentration (ρc110 , ρc50 ),
Autocorrelation energy ratio
(α)

Clustering k-Means (ζ), Binning (β)
Inter-singer distance
based relative
measures

Pitch pitch med dist,
pitch med L2,
pitch med L6 L2,
pitchhist12DDistance,
pitchhist120DDistance,
pitchhistKLD12,
pitchhistKLD120

Rhythm molina rhythm mfcc dist,
rhythm L2,
rhythm L6 L2

Timbre timbral dist

the true fact should appear in the same or similar way on
different websites. Moreover, the false facts will be different
and dissimilar between websites, because there can be many
different ways of falsifying. Our hypothesis about singing
quality follows the same heuristics [35]. We believe that a
song can be sung correctly by many people in one consistent
way, but incorrectly in many different, dissimilar ways. So, the
goodness of a perceptual parameter of a singer is proportional
to his/her similarity with other singers with respect to that
parameter.

The next question is how to measure the similarity between
singers. Let’s first define a feature that represents a perceptual
parameter of singing quality, say pitch contour. Suppose that
all singers are singing the same song, we compare this feature
of a singer with every other singer by a distance metric.
According to our hypothesis, a good singer will be similar
to the other good singers, therefore they will be close to each
other, whereas a poor singer will be far from everyone. Figure
3 is a radial visualization of the Euclidean distance between
the pitch contours of 100 singers, where the centre represents
the singer of interest, and the radial distance of each dot from
the centre represents his/her distance with one of the other 99
singers. The dots are placed at different polar angles in the
plot. The polar angles are not part of the similarity metric.
They are just for the purpose of visualization. It is evident
that the best singers (top-ranked) are similar to other singers,
therefore they are cluttered around the center, whereas the
poorest singer is distant from everybody else. The observation
validates our hypothesis that good singers are similar, and poor
quality singers are dissimilar. This also points us to a method
of ranking singers by their similarity with the peer singers.

In the following sub-sections, we discuss our metrics to
measure the inter-singer distance, as summarized in Table I.
These metrics measure the distance in terms of the perceptual
parameters pitch, rhythm, and timbre. We also discuss singer
characterization methods using these distance metrics.

Fig. 3. Visualization of the pitch-based relative measure distance metric
pitch med dist between each singer and the remaining 99 singers, for the
best 3 (top row) and the worst 3 (bottom row) singers among 100 singers
singing the song “Let it go”.

A. Musically-Motivated Inter-Singer Distance Metrics

We now discuss how to measure inter-singer similarity by
examining their pitch, rhythm and timbre in the singing.

1) Pitch-based Relative Distance:
Intonation or pitch accuracy is directly related to the cor-
rectness of the pitch produced with respect to a reference
singing [8], [20], [22], [22]. In this work, we apply them
to compare one singer with another, instead of a reference.
The distance metrics used are the dynamic time warping
(DTW) distance between the two median-subtracted pitch con-
tours (pitch med dist), the Perceptual Evaluation of Speech
Quality (PESQ)-based [38] cognitive modeling theory [39]-
inspired pitch disturbance measures pitch med L6 L2 and
pitch med L2 [8].

Additionally, in this work, we compute pitch histogram-
based relative distance metrics. As seen in Figure 1, there is a
clear distinction between the pitch distribution of a good and
a poor singer. We compute the Kullback-Liebler (KL) Diver-
gence between the normalized pitch histograms to measure the
distance between the histograms of singers. Moreover, as the
pitch histogram is computed after subtracting the median of
the pitch values, not the actual tuning frequency in which the
song is sung, the pitch histograms may be shifted by a few
bins across singers. To account for this shift, we also compute
DTW-based distance of the 12-bin and 120-bin histograms
between singers as relative measures (pitchhist12KLdist, pitch-
hist120KLdist, pitchhist12Ddist, pitchhist120Ddist).

2) Rhythm-based Relative Distance:
Rhythm or tempo is defined as the regular repeated pattern in
music, that relates to the timing of the notes sung. In karaoke
singing, rhythm is determined by the pace of the background
music and the lyrics cue on the screen. Therefore rhythm
inconsistencies in karaoke singing only occurs when the singer
is unfamiliar with the melody and/or the lyrics of the song.

Mel-frequency cepstral coefficients (MFCC) capture the
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short-term power spectrum that represents the shape of the
vocal tract and thus the phonemes uttered. So, if the words
are uttered at the same pace by two singers, then their rhythm
is consistent. Thus, we compute the DTW alignment between
two singer utterances with respect to their MFCC vectors. In
this work, we use the three best performing rhythm measures
from [8] to compute inter-singer rhythm distance: a modified
version of Molina et al.’s [14] rhythm deviation measure
(termed as molina rhythm mfcc dist) that computes the root
mean square error of the linear fit of the optimal path of
DTW matrix computed using MFCC vectors, PESQ-based
rhythm L6 L2, and rhythm L2.

3) Timbre-based Relative Distance:
Perception of timbre often relates to the voice quality [12],
[20]. Timbre is physically represented by the spectral envelope
of the sound, which is captured well by MFCC vectors, as
shown in [40]. We compute the timbral dist as the DTW
distance between the MFCC vectors between the renditions
of two singers.

B. Singer Characterization using Inter-Singer Distance

According to our theory, the distance as defined in Section
III-A between a singer and others is indicative of the singer’s
singing quality. We now explore three methods to characterize
a singer based on these inter-singer distance metrics, that we
call relative scoring methods that give rise to the relative
measures. We will refer to Figure 4 in the section, that
demonstrates the relative measure computation from the
pitch median dist distance metric with the three methods for
the best and the worst singer out of 100 singers of a song.

1) Method 1: Affinity by Headcount sh(i):
We can set a constant threshold DT on the distance value
across all singer clusters and count the number of singers
within the set threshold as the relative measure or score. If
a large number of singers are similar to that singer, then the
number of dots within the threshold circle will be high, as can
be seen in Figure 4(a). If disti,j is the distance between the
ith and jth singers, the singer i’s relative measure sh(i) by
this headcount method is

sh(i) = |disti,j < DT : ∀j ∈ Q, j 6= i| (11)

where, Q is the set of singers, and |.| is the count of the
number of points satisfying the expression within.

2) Method 2: Affinity by kth Nearest Distance sk(i):
We can fix the number of singers k as the threshold, and
consider the distance of the kth nearest singer as the relative
measure, as seen in Figure 4(b), where we set k = 10. If
this distance is small, the singer is likely to be good. Singer
i’s relative measure (sk(i)) of method 2 can be described as
follows,

sk(i) = disti,j=k; k 6= i (12)

3) Method 3: Affinity by Median Distance sm(i):
The median of the distances of a singer from all other singers
can be assigned as the relative measure, which represents
his/her overall distance from the rest of the singers (Figure

(a)

(b)

(c)

Fig. 4. Demonstration of relative scoring methods from the pitch med dist
measure for the best (Rank 1) and the worst (Rank 100) singer of an example
song (Song 1, snippet 1), along with the respective relative measure values or
scores using: (a) Method 1: Affinity by Headcount (b) Method 2: Affinity by
kth Nearest Distance, k = 10 (c) Method 3: Affinity by Median Distance.
The red circle in (a) and (b) are the thresholds, while for (c) it is the median
value.

4(c)). The median is taken instead of the mean to avoid
outliers. If this distance is small for a singer, the singer is likely
to be good. The singer i’s relative measure by this method is

sm(i) = median(disti,j);∀j ∈ Q, j 6= i (13)

IV. RANKING STRATEGY, AND FUSION METHODS

In this section, we discuss our singer ranking strategy and
score/measure and system fusion methods.

A. Strategy for Ranking

The primary objective of a leaderboard is to inform where
a singer ranks with respect to the singer’s contemporaries. As
the best-worst scaling (BWS) theory [41] says, humans are
known to be able to choose the best and the worst in a small
set of choices, which over many such sets results in rank-
ordering of the choices. However, when humans are asked to
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numerically rate singers on a scale of say 1 to 5, they do
not reveal discriminatory results. Therefore, it makes sense
to study how the absolute and relative measures reflect the
ranking, and design our algorithm towards a better prediction
of the overall rank-order of the singers.

Given a set of measure values or scores S = S1, S2, ..., ST ,
where Si represents a score of the ith singer, and, T is the total
number of singers of a song, the singers can be rank-ordered
as:

Γ = (S1, S2, ..., ST ) (14)

where,

S1 ≤ S2 ≤ ... ≤ ST (15)

It is worth noting that all absolute and relative measures
are song independent. We further normalize the measures by
the length of the song so that they are independent of song
duration.

B. Strategies for Score Fusion

Each of the absolute and relative measures can provide a
rank-ordering of the singers. To arrive at an overall ranking
of the singers, we hope to find ways to combine or fuse them
together for a final decision. One way to compute an overall
ranking is by computing an average of the ranks (AR) of all
the measures. This method of score fusion does not need any
statistical model training, but gives equal importance to all the
measures. Considering that some measures are more effective
than others, we also use a linear regression (LR) model that
gives different weights to the measures. Owing to the success
of neural networks and the possibility of a non-linear relation
between the measures and the overall rank, we also explore
neural network models to predict the overall ranking from the
absolute and the relative measures. One of the neural network
models (NN-1) consist of no hidden layers, but a non-linear
sigmoid activation function. The other neural network model
(NN-2) consist of one hidden layer with 5 nodes, with sigmoid
activation function for both the input and the hidden layers.
The models are summarized in Table II.

We also investigate the performance of the fusion of the
two scoring systems, i.e. fusion of the 8 absolute measures
system and the 11 relative measures system. One method to
combine them is early-fusion where we incorporate all the
scores from the evaluation measures to get a 19 dimensional
score vector for each snippet. Another method of combining
the measures is late-fusion, where we compute the average of
the ranks predicted independently from the absolute and the
relative scoring systems.

V. DATA PREPARATION

To evaluate singing quality without a reference, we con-
ducted experiments using the musically-motivated absolute
measures, the inter-singer distance based relative measures,
and the combinations of these measures. In this section, we
discuss the singing voice dataset and the subjective ground-
truths used for these experiments.

TABLE II
SUMMARY OF THE FUSION MODELS. (ri = RANK-ORDERING OF SINGERS

ACCORDING TO ith MEASURE; N = # OF MEASURES; x = MEASURE
VECTOR; wi = WEIGHT VECTOR OF ith LAYER; b = BIAS; S(.) = SIGMOID

ACTIVATION FUNCTION; y = PREDICTED SCORE); AR: AVERAGE RANK,
LR: LINEAR REGRESSION.

# Model Description Equation
1 AR Equally weighted sum of

individual measure ranks
y = 1

N

∑N
i=1 ri

2 LR Weighted sum of measures y = b+wTx

3 NN-1 MLP with sigmoid activa-
tion, no hidden layer

y = S(b+wTx)

4 NN-2 MLP with sigmoid activa-
tion, 1 hidden layer with 5
nodes

y = S(b(2) +
w(2)S(b(1) +

w(1)Tx))

TABLE III
SUMMARY OF THE SINGING VOICE DATASET. NOTES CAN BE OF SHORT,

LONG OR MIXED DURATIONS; BPM = BEATS PER MINUTE

# Song Name Nature of Melody Tempo (bpm)Pitch Range Note duration
1 Let it go (Frozen) more than an oc-

tave
mix 68

2 Cups (Pitch Perfect) within an octave short 130
3 When I was you man

(Bruno Mars)
more than an oc-
tave

mix 73

4 Stay (Rihanna) within an octave mix 112

A. Singing Voice Dataset

In the automatic leaderboard experiments, we assume that
all singers sing the same song. We construct a database
that consists of 4 popular Western songs each sung by 100
unique singers (50 male, 50 female) extracted from Smule’s
DAMP dataset [42]. DAMP dataset consists of 35k solo-
singing recordings without any background accompaniments.
The selection of songs was based on the available number of
unique singers in the dataset, and equal distribution between
males and females, to avoid gender bias. Our selected subset
of songs were the most popular four songs in the DAMP
dataset with more than 100 unique singers singing them. All
the songs are rich in steady notes and rhythm, as summarized
in Table III. The dataset consists of a mix of songs with long
and sustained as well as short duration notes with a range of
different tempi in terms of beats per minute (bpm).

We divide every song into 4 snippets, where each snippet is
of approximately 20 seconds in duration. Such short duration
clips are recommended for the relative measure computation
as shorter duration segments are less prone to misalignments
during DTW [8], [43], [44].

B. Subjective Ground-Truth

We need subjective ratings as ground-truth to validate the
objective measures for singing evaluation. We can obtain
consistent ratings from professionally trained music experts.
However, obtaining such ratings at a large scale may not be
always possible, as it can be time consuming, and expensive.
We have shown in [17] that crowd sourcing platforms, such
as Amazon mechanical turk (MTurk), is effective to obtain
reliable human judgments of singing vocals. We showed that
the ratings provided by MTurk users correlated well with
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the ratings obtained from professional musicians in a lab-
controlled experiment [17]. The Pearson’s correlation between
lab-controlled music-expert ratings and filtered MTurk ratings
for various parameters are as follows: overall singing quality:
0.91, pitch: 0.93, rhythm: 0.93, and voice quality: 0.65. We
continue to use MTurk to derive the subjective ground-truth
in this paper.

While it is possible that professional musicians rate singing
quality at an absolute scale of 5 consistently, we cannot be
sure about the ratings through crowd sourcing. Also, absolute
ratings are known to not discriminate between items, and
each rating on the scale is not precisely defined [18], [41].
Therefore, we used a method of relative rating called best-
worst scaling (BWS) which can handle a long list of options
and always generates discriminating results as the respondents
are asked to choose the best and worst option in a choice set
[18], [19]. At the end of this exercise, the items can be rank-
ordered according to the aggregate BWS scores of each item,
given by

B =
nbest − nworst

n
(16)

where nbest and nworst are the number of times the item
is marked as best and worst respectively, and n is the total
number of times the item appears.

The Spearman’s rank correlation between the MTurk exper-
iment and the lab-controlled experiment reported in [17] was
0.859.

In this work, we conducted a pairwise BWS test on MTurk
where a listener was asked to choose the better singer among
a pair of singers singing the same song. We presented one
excerpt of approximately 20 seconds from every singer of
a song (the same 20 seconds for all the singers of a song).
There are 100C2 number of ways to choose 2 singers from
100 singers of a song, i.e. 4,950 Human Intelligence Tasks
(HITs) per song. This experiment was conducted separately
for each of the 4 songs of Table III. Therefore there were in
total 4, 950× 4 = 19, 800 HITs.

We screened the MTurk users in the same way as we did
in [17]. We asked the users for their experience in music and
asked them to annotate musical notes as a test. We accepted
their attempt only if they had some formal training in music,
and could write the musical notations successfully. We also
monitored the time spent by the MTurk users in performing
the task to remove the less serious attempts in case some may
not finish listening to the snippets.

VI. EXPERIMENTS

In Sections II, and III, we designed various musically-
motivated absolute and relative objective measures that, we
believe, can assess the inherent properties of singing quality
that are independent of a reference. When the absolute and
relative measures are appropriately combined, we generate a
leaderboard of singers ranked in the order of their singing
ability. Figure 5 shows the overview of this framework.
Various methods to combine the absolute and relative measures
are explored, as discussed in Section IV-B. The rank-order of
the individual measures are averaged to obtain an average rank
(AR). Moreover, we train the linear regression (LR) model,

and the two different neural network models (NN-1, NN-2)
(as discussed in Section IV-B) in 10-fold cross-validation. We
ensure that in every fold, equal number of singers are present
from every song, both in train and test data. The absolute and
relative measure values are the inputs to these networks, while
the human BWS scores given in equation 16 are the output
values to be predicted. The loss function for the neural nets
is mean squared error, with adam optimizer. All computations
are done using scikit-learn [45].

We conduct several experiments to investigate the role
of the absolute and the relative measures individually in
predicting the overall human judgment, and the methods of
combining these measures. Moreover, we compare the ability
of our machine-based measures and humans in predicting the
performance of the underlying perceptual parameters.

In this section, we first discuss the baseline system perfor-
mance from the literature, and the achievable upper limit of
performance in the form of the human judges’ consistency in
evaluating singing quality. Then we describe our experiments
and analyse the results.

A. Baseline

As discussed earlier, Nakano et al. [2] and Bohm et al. [15]
attempted to evaluate singing quality without a reference. They
used the global statistics kurtosis and skew to measure the
consistency of pitch values. These are two of our eight abso-
lute measures. Moreover, [15] used the Interspeech ComParE
2013 (Computational Paralinguistics Challenge) feature set
as baseline. It comprises of 60 low-level descriptor contours
such as loudness, pitch, MFCCs, and their 1st and 2nd order
derivatives, in total 6,373 acoustic features per audio segment
or snippet [46]. We extract this same set of features using
OpenSmile toolbox [47] to create our baseline for comparison.
We conducted a 10-fold cross-validation experiment using the
snippet 1 from all the songs to train a linear regression model
with these features. The Spearman’s rank correlation between
the human BWS rank and the output of this model is 0.39.
This rank correlation value is an assessment of how well the
relationship between the two variables can be described using a
monotonic function. This implies that with the set of features
used in the literature, the machine predicted singing quality
ranks has a positive but a low correlation with that given by
humans.

B. Performance of Human Judges

In a pilot study [8], we recruited 5 professional musicians to
provide singing quality ratings for 10 singers singing a song.
These judges were trained in vocal and/or musical instruments
in different genres of music such as jazz, contemporary, and
Chinese orchestra, and all of them were stage performers
and/or music teachers. The subjective ratings obtained from
them showed high inter-judge correlation of 0.82. This shows
that humans do not always agree with each other, and there
is, in general, an upper limit of the achievable performance of
any machine-based singing quality evaluation. Thus the goal
of our singing evaluation algorithm is to achieve this upper
limit of correlation with human judges.
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Fig. 5. Overview of the framework for automatic singing quality leaderboard
generation, consisting of fusion of musically-motivated absolute scoring
system and inter-singer distance based scoring system.

Fig. 6. Spearman’s rank correlation performance of the three methods for
inter-singer distance measurement (Section III-B): Method 1: Affinity by
Headcount; Method 2: Affinity by 10th Nearest Distance; Method 3: Affinity
by Median Distance. Models are as listed in Table II.

C. Experiment 1: Comparison of Singer Characterization
Methods using Inter-Singer Distance

In this experiment, we perform a preliminary investigation
to compare the three singer characterization methods discussed
in Section III-B: headcount (method 1), kth nearest distance
(method 2), and median distance (method 3). We obtained
the relative measures from these methods for each of the 11
inter-singer distance measures. Figure 6 shows the Spearman’s
rank correlation of the human BWS ranks with ranks from
these relative measures used with the six models of Table II,
over the snippet 1 of all the 4 songs for the three methods.
To observe the best case scenario for method 1 (headcount
method), its distance threshold is optimized for each measure
for snippet 1. The number of singers threshold for method 2
(kth nearest distance method) is empirically set as 10 singers,
assuming that roughly at least ten percent of singers in a large
pool of singers would be good. In this way, if the distance
of a particular singer from the 10th nearest singer is small, it
means that the singer sings very similarly to 10 singers, thus
the singer is good.

We observe that the kth nearest distance method (method
2) performs better than the other two methods for all the
six models. The result suggests that our assumption that at
least ten percent in a pool of singers would be good, serves
our purpose. Method 3, i.e. the median of the distances of a
particular singer from the rest of the singers assumes that half
of the pool of singers would be good singers, which is not a

reliable assumption, therefore this method performs the worst.
With the preliminary findings, we decide that the relative

measures are computed using the kth nearest distance method
(method 2) in the rest of the experiments.

D. Experiment 2: Evaluating the measures individually

We analyze how well can each of the absolute and relative
measures individually predict the ranks of the singers. Figure
7 shows the Spearman’s rank correlation of each of the 8
absolute and the 11 relative score vectors with the human
BWS ranks. We can see that all the derived measures show
a positive correlation with humans, although some correlate
better than others. The newly introduced autocorrelation en-
ergy ratio α measure shows the best correlation among the
absolute measures. This suggests that the interval pattern of the
dominant notes in the histogram carry important information
about singing quality. The ρc50 shows better performance than
ρc110 , which agrees with the finding in the literature that
human ear is sensitive to changes in pitch as small as 25 cents
[34].

The relative measures, in general, perform better than the
absolute measures, which suggests that the inter-singer com-
parison method is closer to how humans evaluate singers.
The pitch-based relative measures perform better than the
rhythm-based relative measures. This is an expected behav-
ior for karaoke singings, where the background music and
the lyrical cues help the singers to maintain their timing.
Therefore, the rhythm-based measures do not contribute as
much in rating the singing quality. Among the relative mea-
sures, pitchhist120DDistance performs the best, along with
the KL-divergence measures, showing that inter-singer pitch
histogram similarities is a good indicator of singing quality.
The pitch med dist measure follows closely, indicating that
the comparison of the actual sequence of pitch values and the
duration of each note give valuable information for assessing
singing quality. These aspects are not captured by the pitch
histogram-based methods.

Another interesting observation is the high correlation of
the timbral dist measure. It indicates that voice quality, rep-
resented by the timbral distance, is an important parameter
when humans compare singers to assess singing quality. This
observation supports the timbre-related perceptual evaluation
criteria of human judgment [20], [48], [49] such as timbre
brightness, color/warmth, vocal clarity, strain. The timbral
distance measure captures the overall spectral characteristics,
thus represents the timbre-related perceptual criteria.

E. Experiment 3: Absolute Scoring System: The fusion of
absolute measures

In this experiment, we evaluate the performance of the
combination of musically-motivated pitch histogram-based ab-
solute measures that were introduced in Section II in ranking
the singers. Table IV, second column shows the Spearman’s
rank correlation between the human BWS ranks and the ranks
predicted by absolute measures with different fusion models.
Our preliminary experiments show that the pitch histogram for
the full song provide a better representation than the histogram
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Fig. 7. Spearman’s rank correlation of the individual absolute measures (top)
and relative measures (bottom) with human BWS ranks.

of a short duration snippet of the song because more data
results in better statistics. Therefore, we compute the absolute
measures for the full songs (more than 2 minutes duration) in
all the experiments.

One hidden layer in the neural network model (NN-2)
performs better than the one without a hidden layer (NN-
1), as well as the LR model. This indicates that non-linear
combination of the measures provides a better prediction of
human judgment. Interestingly, the average of ranks (AR)
performs comparably with NN-2, suggesting that all measures
are informative in making meaningful ranking. It also indi-
cates that although the measures individually may not have
performed equally well (Figure 7), each of them captures
a different aspect of the pitch histogram quality, therefore,
combining them with equal weights results in a comparable
performance.

It is important to note that there are specific conditions
when the absolute measures fail to perform [17]. By converting
a pitch contour into a histogram, information about timing
or rhythm is lost. The correctness of the note order also
cannot be evaluated through the pitch histogram. Moreover,
the relative positions of the peaks in the histogram cannot
be modeled without a reference, i.e. incorrect location of
peaks goes undetected. For example, if a song consists of
five notes, and a singer sings five notes precisely but they
are not the same notes as that present in the song, then
the absolute measures would not be able to detect it. Pitch
histogram also loses the information about localized errors,
i.e. errors occuring for a short duration. According to cognitive
psychology and PESnQ measures [8], [38], [39], localized
errors have greater subjective impact than distributed errors.
Therefore, if a singer sings incorrectly for a short duration,
and then corrects himself/herself, the absolute measures are
unable to capture it.

F. Experiment 4: Relative Scoring System: Evaluating the
fusion of relative measures

In this experiment, we investigate the performance of the
combination of the inter-singer relative measures computed
from method 2 in Section VI-C. Table IV, third column shows
the Spearman’s rank correlation between the human BWS
ranks and the ranks predicted by the relative measures with the
different fusion models. We evaluate the four different snippets

TABLE IV
SUMMARY OF THE PERFORMANCE OF ABSOLUTE AND RELATIVE

MEASURES, AND THEIR COMBINATIONS. THE VALUES IN THE TABLE ARE
SPEARMAN’S RANK CORRELATION BETWEEN HUMAN BWS RANKS AND

THE MACHINE GENERATED RANKS AVERAGED OVER 4 SNIPPETS.(ALL
P-VALUES<0.05)

Model Absolute
Measures

Relative
Measures

Early-
fusion

Late-fusion

AR 0.4796 0.6396 0.6877 0.7059
LR 0.4205 0.5737 0.6413 0.6426
NN-1 0.3975 0.5799 0.6385 0.6407
NN-2 0.4711 0.6153 0.6636 0.6692

from each song and average the ranks over these snippets. It is
worth noting that, according to the preliminary experiments,
we found that the samples of longer duration lead to better
statistics, therefore, more accurate scores.

The combinations of the relative measures outperform the
combinations of the absolute measures. This is consistent with
the observation in Section VI-D where the relative measures
individually outperform the absolute measures. Like the abso-
lute measures, average of ranks (AR) performs better than the
other score fusion models, indicating that all relative measures
are informative in making meaningful ranking.

G. Experiment 5: System Fusion: Combining absolute and
relative scoring systems

In this experiment, we investigate the combinations of the
8 absolute and 11 relative measures by early-fusion and late-
fusion methods (Section IV-B). The rank correlation between
the BWS ranks and the ranks obtained from early-fusion
method averaged over four snippets is reported in column 4,
Table IV, and that from late-fusion is in column 5.

The results suggest that the late-fusion of the systems show
a better correlation with humans than early-fusion. This sug-
gests that the predictions coming separately from the absolute
and relative measures provide different and equally important
information. Therefore, equal weighting to both shows better
correlation with humans. Moreover, a simple rank average
shows a better performance than the complex neural network
models. It is encouraging to see that the individual measures
describe different aspects of singing quality, and correlate with
human judgments to a different extent. It is important to note
that the process of converting values to ranks is inherently
non-linear (see Section IV-A).

H. Experiment 6: Humans versus Machines

We note that human judgment on individual singing quality,
for example, between pitch and rhythm, tends to be influenced
by their overall judgment of the rendition. In other words,
when humans judge a song as having bad pitch, they tend
to consider them having bad rhythm as well. We would like
to study how the objective evaluation techniques compare
with human judgment in terms of independent judgment on
perceptual parameters, such as pitch, rhythm, and timbre.

In this experiment, we use the data from our previous work
[8], where music experts were asked to rate each singer on a
scale of 1 to 5 with respect to the three aspects of perceptual
quality, namely pitch, rhythm, and timbre individually. Figure
8(a) shows that human ratings for the three perceptual aspects
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Fig. 8. Humans vs. Machines: Correlation between scores given individually
for pitch, rhythm, and timbre by (a) human experts on the data in [8], (b)
machine, on the same data as in (a), and (c) machine, on the data used in this
work, as in Table III.

are highly correlated amongst each other. On the same data
(each song is split into multiple short duration segments for
processing), the machine scores for the three aspects are
significantly less correlated (Figure 8(b)). We also verified
this observation on the data used for the experiments in this
current work (Figure 8(c)). It is clear that machines are able
to assess the perceptual aspects of the singing rendition more
objectively than humans. Such machine assessment can be
useful for a learner to understand how to improve upon the
individual parameters.

I. Discussion

With both absolute and relative measures, the proposed
framework effectively addresses the issue with pitch interval
accuracy [2] by looking at both the pitch offset values as well
as other aspects of the melody. The absolute measures such
as ρc, ρb, and α, characterize the shape of the pitch histogram
of a given song. Furthermore, the relative measures compare
a singer with the rest of the singers singing the same song. It
is unlikely for all singers in a large dataset to sing one note
throughout the song.

The experiments in this paper show that 100 renditions from
different singers constitute a database for a reliable automatic
leaderboard ranking. The absolute measures in the framework
are independent of the singing corpus size, while the relative
measures are scalable to a larger corpus.

The experimental results show that the derived absolute and
relative measures are reliable reference-independent indicators
of singing quality. We have focused the evaluation on the
fundamental quality of the songs, such as pitch, rhythm, and
voice timbre. It is noted that another level of singing quality
appreciation, such as expressions, flexibility, and agility that
project artistry, creativity, and personality, requires further
studies. While the automatic leaderboard works well for first

stage screening of a large number of singers, the resulting
performance-related parameters can be useful for analysis by
music experts as well.

One can expect variations in these objective measures across
different genres and styles of singing. For example, the criteria
of evaluation of a rap singing will be different from that of
a jazz singing, or a Chinese opera singing from a Western
classical singing. This work explores Western pop, as the first
step in the direction of a large-scale reference-independent
singing evaluation framework. In the future, other singing
styles and music genres need to be investigated.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we successfully introduce a self-organizing
method to produce a leaderboard of singers according to
their singing quality without relying on a reference singing
sample or musical score, by leveraging on musically-motivated
absolute measures and veracity based inter-singer relative mea-
sures. The baseline method (Section VI-A) shows a correlation
of 0.39 with human assessment using linear regression, while
the linear regression model with our proposed measures shows
a correlation of 0.64, and the best performing method shows
a correlation of 0.71, which is an improvement of 82.1% over
the baseline. This improvement is attributed to:

• the musically-motivated absolute measures, that quantify
various singing quality discerning properties of the pitch
histogram, and

• the novel veracity based musically-informed relative mea-
sures that leverages on inter-singer statistics and over-
comes the drawbacks of using only absolute measures

We find that the two kinds of measures provide distinct
information about singing quality, therefore a combination of
them boosts the performance.

We find that the proposed ranking technique provides objec-
tive measures for perceptual parameters, such as pitch, rhythm,
and timbre independent, that human subjective assessment fails
to produce.

Human experts, in general, are more consistent amongst
themselves than the machine scores, with a correlation of
0.82 (Section VI-B). Thus, the machine scores remain to be
improved. Inclusion of other perceptual parameters such as
vibrato and pronunciation can further improve the machine
scores. Extension of the proposed methods to music genres
other than Western pop also needs to be investigated in future.
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