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Automatic Evaluation of Song Intelligibility using
Singing Adapted STOI and Vocal-specific Features

Bidisha Sharma and Ye Wang

Abstract—An objective machine-driven measure of song intel-
ligibility would be of great utility for various music information
retrieval tasks. Song intelligibility mostly depends on two factors,
the amount of interference caused by background accompani-
ment, and the quality of singing vocal. We leverage these two
factors to determine the intelligibility of a song. For the first
factor, we adapt a well known method for intelligibility prediction
of noisy speech, short term objective intelligibility (STOI), to
singing. The singing-adapted STOI considers the polyphonic song
as a time-frequency weighted noisy version of the extracted
singing vocal. We use U-net based audio source separation
method to extract singing vocal from a polyphonic song. The
singing vocal shares the same underlying physiological mecha-
nism for production as that of speech, with some differences in the
pronunciation and prosody of the phonemes. Therefore, for the
second factor, we have introduced vocal-specific features to mea-
sure the intelligibility of the singing vocal, which are excitation
source, spectral, and prosodic singing characteristics. We perform
detailed analysis on each of these features to establish their
efficacy for quantifying song intelligibility. We train a regression
model to derive the intelligibility scores using a combination of
the vocal-specific features and singing adapted STOI, obtaining a
significant improvement in performance. The correlation between
the intelligibility score obtained using proposed framework and
human-rated intelligibility score is 0.81, which shows the efficacy
of the proposed approach.

Index Terms—Song intelligibility, language learning, song rec-
ommendation, music, vocal-specific features, modulation spec-
trum, excitation source.

I. INTRODUCTION

Song intelligibility is the measure of how comprehensible
the sung lyrics are in the presence of background accompa-
niment in a polyphonic music composition. Estimating this
measure of intelligibility could be useful to guide a song
recommendation system that specifically aims to recommend
intelligible songs. Such a system would not only be effective
for entertainment purpose, but also helps to select songs useful
for language learning [1]–[3].

However, estimating song intelligibility is a very challeng-
ing problem and can even surpass the speech intelligibility
prediction problem in difficulty. This is because of two main
factors that introduce additional difficulty in song comprehen-
sion: the accompaniment’s interference with the singing vocal,
and singing vocal-specific characteristics such as syllable rate,
pitch range, loudness, and voice quality. Moreover, for a
given song it is generally unknown how a reference version
of that song would sound like, with extremely intelligible
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lyrics; consequently, intelligibility cannot be simply derived by
comparing a given version of a song to a reference. Therefore,
in this work, we focus on developing a reference-independent
method to automatically evaluate song intelligibility in a way
that approximates human judgment.

Several studies in the literature have established that lis-
tening to songs can contribute to language development [1],
[4]–[8]. However, not all songs are equally suitable for this
task. The songs which are challenging to understand can lower
student’s interest in learning the language. On the other hand,
songs which are easily comprehensible can raise the interest of
the students, as well as help them to follow and understand the
content that they are singing [9]. This is important because,
apart from language learning, one of the potential goals of
a song for listeners is to gain some level of understanding of
the message and mood being communicated [10]. As manually
selecting songs for this purpose is onerous and subject to bias,
a system which facilitates automatic recommendation of songs
that are easy to comprehend would thus be of use. However, to
make this possible, a framework for automatically evaluating
song intelligibility would be a necessity.

Song intelligibility notion has been analyzed from different
perspectives in the literature. The studies in [11], [12] showed
that the intelligibility of vowels is significantly reduced, when
the sung pitch is very high. Particularly, high-pitched tones
were less intelligible when sung with a lowered larynx, as
classically trained singers often do. In a comparison be-
tween spoken and sung lyrics [13], researchers found that
the intelligibility of singing vocal decreased by seven-fold
compared with their spoken counterparts. This is because
singing adds many constraints to the characteristics of dif-
ferent sounds, such as higher fundamental frequencies (F0),
increased formant frequencies, vowel centralization [12], [14],
[15], linguistic and rhythmic factors [16], voice quality [17],
change in relative loudness, syllable rate, singing style, the
amount of reverberation, and the accompaniment’s timbre [18].
Deviations in these factors between singing vocals and spoken
utterances lead to incorrect perceptions of phonemes and
words in the lyrics. While the authors of [18] analyzed the
effects of such features on perceived intelligibility, they did
not extract them to quantify intelligibility more explicitly.
An investigation of how such extracted acoustic features are
useful to measure the intelligibility of a polyphonic music
composition would definitely be applicable in a real world
scenario.

In addition to the acoustic characteristic of the singing
vocal, the lexical characteristics of the lyrics is also a factor
related to the song intelligibility [19]. However, the lexical
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characteristics alone are not enough to represent the intelligi-
bility of songs. The same lyrics can be rendered more or less
intelligible depending on, for instance, the speed at which they
are sung or the intensity of the background accompaniment.
Consequently, any reasonable measure of intelligibility cannot
be limited to lexical analysis and must incorporate acoustic
content.

A. Song intelligibility measure

In [20], Ibrahim et al. performed a pilot study on the
intelligibility of sung lyrics. They explored different acoustic
features such as vocal-to-accompaniment ratio, harmonics-to-
residual ratio, high frequency energy, high frequency com-
ponents, syllable rate, tempo and event density, and Mel-
frequency cepstral coefficients (MFCCs) to classify songs as
high, moderate, or low-intelligible. They used these features
in a support vector machine (SVM) based classifier to obtain
the final classification labels. They reported a 66% average
classification accuracy, with poor accuracy (20%) for low-
intelligible songs. However, they did not perform a detailed
analysis of the significance of each of these features and their
complementary aspects on intelligibility. Furthermore, most
of the features used in this study are related to the ratio
of vocal and background accompaniment energies. However,
some vocals with little or no background accompaniment
may nonetheless be unintelligible, as can be the case with,
for example, opera and classical songs. Furthermore, while
classification provides some idea of intelligibility, a regression
approach would be better able to provide sufficient granularity
for use in music recommendation systems.

B. Speech intelligibility measure

While a wide number of methods have been proposed to
quantify speech intelligibility, many of them are specifically
designed for particular speech applications, which may not be
applicable in case of music. The speech intelligibility measures
can be broadly classified into two categories: intrusive and
non-intrusive methods. Intrusive methods require a reference
signal (clean speech) to which the test signal (degraded
speech) is compared. However, it is impractical to have a
reference song with ideal intelligibility corresponding to each
test song. For non-intrusive methods, no reference signal is
needed, but existing methods of this type are still designed for
particular scenarios that do not necessarily apply to sung utter-
ances. For example, one widely used non-intrusive method for
speech intelligibility evaluation is speech to reverberation ratio
(SRMR) [21], but this approach is specifically proposed to
predict intelligibility of reverberant and dereverberated speech,
and it does not include the factors related to song intelligibility.

Although these methods cannot be directly applied to song
intelligibility evaluation, they can potentially be adapted for
this purpose. For instance, one popular intrusive method of
spoken utterance intelligibility estimation is short term objec-
tive intelligibility (STOI) [22]. STOI is used to evaluate the
intelligibility of time-frequency (TF) weighted noisy speech
with respect to clean speech. Our research shows that STOI
can be adapted and modified to analyze the intelligibility of
sung lyrics as well.

C. Overview of proposed approach

We propose a framework to automatically obtain an intelli-
gibility score of a song that correlates with human judgment.
Based on the literature, we summarize that the factors related
to song intelligibility are mostly from two categories. First,
the interference between the background accompaniment and
the singing vocal. The presence of relatively loud background
accompaniment can inhibit comprehension of singing vocals,
which is in turn analogous to the relative loudness levels of
the vocals and the instrumental accompaniment. Second, the
aspects that relate to the singing vocal-specific features, includ-
ing syllable rate, pitch range, loudness, and vocal production
specific aspects.

Knowledge of both of these aspects is essential for assessing
song intelligibility; neither alone is sufficient. Songs with
little or no background accompaniment may nonetheless be
unintelligible due to the very high pitch, very fast or slow
tempo, or bad voice quality. On the other hand, songs with
average pitch, adequate tempo, and good vocal quality may
be incomprehensible, if background accompaniment is too
high. We hypothesize to extract both aspects independently
and combine them to derive the intelligibility information.

We consider the presence of background accompaniment as
a noisy component over the singing vocal and the extracted
singing vocal as a clean signal. The extracted singing vocal
is obtained using the U-Net based audio source separation
method [23]. We adapt the STOI measure from speech to
singing and incorporate it to determine the correlation between
the extracted singing vocal (reference signal) and singing vocal
with background accompaniment (test signal).

To quantify the effects of singing vocal-specific character-
istics, we leverage on the idea that preservation of speech-
like characteristics in the singing vocals contributes to intel-
ligibility [13]. Similar articulatory movements result in the
production of phonemes in speech and singing, and these
movements also result in similar excitation source and spectral
cues. In singing vocals, due to the presence of background
accompaniment and modification of pitch, duration, syllable
rate, and phoneme pronunciation, their acoustic features de-
viate from that of speech. These deviations, in turn, cause
smearing of the vocal-specific features and increase difficulty
in perception, resulting in lower intelligibility. The pronun-
ciation error is a result of the wrong excitation source and
vocal-tract configuration for a particular phoneme. Therefore,
we extract the vocal-specific features commonly used in the
speech literature to characterize the singing vocal.

Building on this idea of using singing adapted STOI and
vocal-specific features, we further develop regression models
to estimate intelligibility.

The rest of the paper is organized as follows: adaptation
of STOI for song intelligibility evaluation is discussed in
Section II. In Section III, we provide a detailed discussion on
vocal-specific features and their significance in terms of intel-
ligibility. The proposed framework is described in Section IV.
The experimental evaluation of the framework is presented in
Section V. Finally, Section VI summarizes the contribution,
results, and discussion of possible future studies.
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Fig. 1. Block diagram representing singing adapted STOI.

II. SINGING ADAPTED SHORT-TERM OBJECTIVE
INTELLIGIBILITY (STOI)

STOI is one of the most common approaches for automat-
ically measuring intelligibility in the case of noisy and TF-
weighted noisy speech [22], and we propose to adapt this
method to evaluate song intelligibility. If we have a reference
(noisy speech) and a test signal (clean speech), the STOI
measure would be the correlation between them.

In this approach, we consider a song as a mixture of
two characteristic sources: singing vocal and background
accompaniment. The singing vocal combined with background
accompaniment can be compared to a speech signal that is
contaminated with background noise (test signal), and the
extracted singing vocal can be compared to the corresponding
clean speech signal (reference signal), as shown in Figure 1.
We use the state-of-the-art U-Net based audio source separa-
tion method to extract the singing vocal from a polyphonic
song [23]. The U-Net architecture (initially developed for
medical imaging), builds upon the fully convolutional net-
work [24] with symmetric down-sampling and up-sampling
paths. It has the capability to recreate the fine, low-level detail
required for high quality audio reproduction. In this work, we
have used the pre-trained models corresponding to the iKala
dataset and the implementation available in [25], which uses
the Chainer framework. From our analysis, we note that the
computed singing adapted STOI is not largely dependent on
the performance of audio source separation method.

The spectrogram representations for a high-intelligible song
excerpt and its extracted singing vocal are shown in Fig-
ure 2(a) and (b), respectively. The equivalent spectrograms for
a moderate-intelligible excerpt are shown in Figure 2(c) and
(d), and those for a low-intelligible excerpt are displayed in
Figure 2(e) and (f). It is observed that the correlation between
the song’s spectrogram and that of the corresponding extracted
singing vocal decreases as intelligibility decreases, due to the
increase in interference of the background accompaniment.
Furthermore, the presence of dominant vocal information in
the intelligible songs compared to the less intelligible songs
leads to better vocal separation, which is evident from our
observation. As STOI captures the correlation between a test

signal and its reference signal, it can be effectively used to
quantify the interference caused by the background accompa-
niment.

The method of computing STOI [22] is as follows: both the
signals are TF-decomposed in order to obtain a representation
that correlates to auditory perception. The lower energy frames
with respect to the reference signal are removed from both
signals. Next, a one-third octave band analysis is performed
by grouping discrete Fourier Transform (DFT) bins. In total
15 one-third octave bands are used. The kth DFT bin of mth

frame is denoted by x̂(k,m) of the reference signal. The norm
of the jth one-third octave band is defined as,

Xj(m) =

√√√√√k2(j)−1∑
k1(j)

|x̂(k,m)|2, (1)

where k1 and k2 denote the one-third octave band edges,
which are rounded to the nearest DFT bin. Similarly, the TF
representation of test signal is represented as Yj(m). Then the
TF-unit Yj(m) is normalized and clipped (Y ′) to reduce the
signal-to-distortion ratio [22]. An intermediate intelligibility
measure is then defined as an estimate of the Pearson cor-
relation coefficient (dj(m)) between the clean (Xj(m)) and
modified/processed (Y ′j (m)) TF-units. The average of dj(m)
is measured over all bands and frames, which is defined as
the STOI measure,

d =
1

JM

∑
j,m

dj(m), (2)

where, J and M represent the number of one-third-octave bands
and the total number of frames respectively.

Before computing the singing adapted STOI, we downsam-
ple the audio signals to 10 kHz sampling rate, as all the
parameters to measure STOI are defined accordingly [22].
In the singing vocal with background accompaniment, the
singer’s voice cannot be readily heard due to the interference
of the frequency characteristics of instruments over the singer’s
formant, and this interference is specifically present in the
higher frequency bands [26]. Due to the higher pitch level
in singing relative to speech, the range of the second to the
fifth formant in a sung utterance generally lies between 1.25
to 5 kHz [27]. Unlike noisy speech, the interference caused
by the background accompaniment is generally found in the
higher frequency formants. Our analysis of the STOI measure
over different octave bands shows that the interference due
to the background accompaniment is more prominent (in the
low-intelligible excerpts) over the frequency range of 2-5
kHz. Therefore, unlike STOI in speech, we do not perform
averaging over all the frequency bands as shown in (2).
Instead, we consider only the upper three bands, denoted
as bands number 13, 14, and 15, with center frequencies
2.40 kHz, 3.02 kHz, and 4.30 kHz respectively. This can be
expressed as,

dsinging =
1

3M

15,M∑
j=13,m=1

dj(m), (3)
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Fig. 2. Spectrogram representations for (a) a high-intelligible song; (b) the extracted vocal from the same high-intelligible song in (a), (c) a moderate-
intelligible song; (d) the extracted vocal from the same moderately intelligible song in (c); (e) a low-intelligible song, (f) the extracted vocal from the same
low-intelligible song in (e).

where, j and m represent the band number and number of
frames in an excerpt, respectively. We have extracted dsinging
for 200 excerpts. A detailed description of the dataset is
presented in Section V-A. The Pearson correlation coefficients
obtained between dsinging and human-rated scores in 0.39.
However, this correlation value is particularly low for 23
excerpts out of 200 excerpts. If we consider these excerpts as
aberrations and exclude them, we achieve a Pearson correlation
coefficient of 0.60 on the remaining dataset.

A. Limitations of singing adapted STOI

Although singing adapted STOI provides a reasonable cor-
relation for most of the excerpts (88%) in the database, we
cannot overlook the examples for which the human-rated
intelligibility score is not correlated with the obtained singing
adapted STOI value. We investigate these 23 (12%) excerpts
and observed that independent of the interference caused
by the background accompaniment, certain characteristics of
singing vocals do contribute to intelligibility and cannot be
captured using singing adapted STOI. These factors include:
• Syllable rate: Our articulators move at a certain rate

when we produce a vocal signal. Normal hearing listeners
can perceive vocal signals as intelligible only if the
amplitude fluctuations of those signals is limited to a
certain frequency range [28]. If the rate of production
of syllables is very fast or slow while singing, the song
will be less intelligible.

• Pitch: It is evident from earlier studies that difficulty in
comprehending singing vocals increases with increase in
pitch [29].

• Loudness and pronunciation: Independent of the inter-
ference caused by the background accompaniment, the
loudness of the sung lyrics and the correctness of the
pronunciation of the words, syllables and phonemes are
important aspects of song intelligibility.

• Voice quality: Another factor related to song intelligibility
is vocal quality. If the singer’s voice contains attributes
such as breathiness, roughness, or hoarseness, the song
is likely to be less intelligible.

To take into account the above factors related to song
intelligibility, we must incorporate each of them into the song
intelligibility evaluation framework. The literature supports the
contention that singing sounds can be essentially regarded
as modified speech sounds [30], and this finding inspires
us to analyze different features widely used to characterize
speech signals. We thus study the vocal-specific features with
respect to intelligibility and incorporate them into the song
intelligibility evaluation.

III. VOCAL-SPECIFIC FEATURES

TABLE I
VOCAL-SPECIFIC FEATURES AND THEIR SIGNIFICANCE.

Features Significance
Pitch Fundamental frequency of singing vocal

Smoothed Hilbert envelope (HE) Excitation source energy
Peak-to-sidelobe ratio Strength of excitation

Slope of peaks of HE of LP residual Strength of excitation
Spectral peak energy Energy of spectrum

Modulation spectrum energy Rate of articulation
Sub-band correlation Formant structure

Spectral slope Spectral energy dustribution
Normalized autocorrelation peaks Periodicity

Suprasegmental feature Periodicity
Jitter Variation in pitch

Shimmer Variation in amplitude

In this work, we analyze three categories of vocal-specific
features: excitation source, spectral, and prosodic aspects.
The excitation source characteristics used are pitch, smoothed
Hilbert envelope, peak-to-sidelobe ratio and slope of peaks
of Hilbert envelope (HE) of linear prediction (LP) residual.
The spectral features used are the sum of spectral peak
values, modulation spectrum energy, sub-band correlation, and
spectral slope. Periodicity, jitter and shimmer are the prosodic
aspects discussed in this section. The features used and their
significance are briefly summarized in Table I.

We note that except for pitch, all of these features are
derived from the polyphonic song and not the extracted singing
vocal. The extracted singing vocal may be distorted by the
audio source separation process and smearing or preserva-
tion of vocal-specific characteristics due to the interference



5

of background accompaniment cannot be captured by the
extracted singing vocal in any event. To extract the vocal-
specific features, the audio signals are downsampled to 16 kHz
sampling rate and analyzed for 25 ms frame-size with a shift of
5 ms. We perform vocal segmentation as a pre-processing step
to remove the segments with only background accompaniment.
The dataset used consists of 200 excerpts with a human-rated
intelligibility score corresponding to each excerpt, which is
described in Section V-A.

A. Vocal segmentation

We are interested in measuring intelligibility, which applies
only to the vocal sections of a piece of music and not to
purely instrumental segments. We note that in the extracted
singing vocal, sections that contain only instrumental accom-
paniments are suppressed and their energy is very low. We
divide the spectrum of each frame of the extracted singing
vocal into 4 equal sub-bands. On account of the observation
that the 2nd sub-band energy shows a prominent difference
between segments with vocals and those without vocals, we
set thresholds based on the average 2nd sub-band energy and
segment length, then checks frames to see if they fall below
the thresholds and thus likely contain no lyrics. The detected
non-vocal sections are removed from both the extracted vocal
signal and the polyphonic song in this pre-processing step.

B. Excitation source features

1) Pitch: Pitch is considered to be the most fundamental
aspect of singing voice, and it is related to both the intelligi-
bility and the quality of songs [17], [29]. Studies have shown
increase in F0 results in lowering intelligibility [13]. We use
the librosa library [31] to perform pitch extraction from the
extracted singing vocal (Unvoiced segments are assigned a
pitch value of 0) for the entire dataset.

2) Smoothed Hilbert envelope: LP analysis is a useful tool
to deconvolve the speech signal into vocal-tract and excitation
source information [32]. LP analysis is performed to derive
the LP coefficients which are then inverse filtered to obtain
the residual signal. The LP residual is a good approximation
of the excitation source signal. One issue with this approach
is that glottal closure instants (GCIs) in the production of the
vocal are manifested as large amplitude fluctuations of either
positive or negative polarity in the LP residual. This difficulty
can be overcome by using the HE of LP residual [33].

The HE of LP residual for 100 ms vocal segment corre-
sponding to low- and high-intelligible excerpts are shown in
Figure 3(b) and Figure 3(d). They are obtained from the audio
signals shown in Figure 3(a) and Figure 3(c) respectively.
It is clear that the peaks of the HE of LP residual are far
less prominent in the case of the low-intelligible excerpt
(Figure 3(b)) as compared to that of the high-intelligible
excerpt (Figure 3(d)).

In this representation, both fine and gross level changes in
excitation characteristics are present. For instance, the fine
level change may be from closed to open phase in a pitch
period, and the gross level change may be in the energy level.
To capture only gross level information, small changes are
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Fig. 3. Comparison of Hilbert envelope of LP residuals for high-intelligible
and low-intelligible songs; (a) singing vocal with background accompaniment
from a low-intelligible song, (b) HE of LP residual extracted from the signal in
(a), (c) singing vocal with background accompaniment from a high-intelligible
song, (d) HE of LP residual extracted from the signal in (c).

smoothed away by convolving the HE of the LP residual using
a Hamming window of 25 ms [34].

The smoothed Hilbert envelope for vocal segments corre-
sponding to low-intelligible excerpt (Figure 4(a)) and high-
intelligible excerpt (Figure 4(g)) are shown in Figure 4(b) and
Figure 4(h) respectively.

3) Peak-to-sidelobe ratio: The peaks in the HE of LP
residual signal correspond to GCIs, which is indicated with
the red circle in Figure 3(b) and Figure 3(d). The difference
between the nature of the HE of LP residual signals in
Figure 3(b) and Figure 3(d) is that the sidelobes around
each peak have higher values in case of the low-intelligible
excerpt compared to that of the high-intelligible excerpt. This
reflects the impulse-like nature of the excitation source during
production of vocals [35], which is an indicator of the strength
of excitation. Distinct peaks with suppressed sidelobes indicate
loudness in the produced vocal and the presence of less
interference from instrumental sounds.

To quantify this observation, we consider a short segment
of 1.5 ms towards the right of each peak of each HE of LP
residual. The peak-to-sidelobe ratio is obtained by dividing the
peak value by the mean of the samples from 0.5 ms to 1 ms of
the 1.5 ms segment [36]. We thus obtain the feature value for
each peak of a given HE of LP residual signal, then average
the feature values over a 25 ms frame.

4) Slope of peaks of HE of LP residual: The slope of
the peaks of HE of LP residual also signifies the excitation
source strength [35]. As shown in Figure 3, the peaks of HE
of LP residual are sharper for high-intelligible singing vocal
segments compared to low-intelligible segments. Both the left
and right side slopes of each peak are calculated and their
average is treated as the slope of the peak. The slope of peaks
within each frame is averaged to determine the average slope
of the frame.

Although all of the above features are extracted from
the same HE of LP residual signal, they represent different
information. The smoothed Hilbert envelope gives us gross
level information, while the other two provide fine level
information.
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Fig. 4. (a) Singing vocal with background accompaniment from a low-
intelligible song, (b) smoothed Hilbert envelope, (c) sum of spectral peaks,
(d) modulation spectrum energy, (e) spectral correlation, (f) spectral slope
extract from the signal shown in (a); (g) singing vocal with background
accompaniment from a high-intelligible song, (h) smoothed Hilbert envelope,
(i) sum of spectral peaks, (j) modulation spectrum energy, (k) spectral
correlation, (l) spectral slope extracted from the signal shown in (g).

C. Spectral features

1) Spectral peak energy: The amplitudes of the formants
obtained from the spectrum of the vocal signal represent the
vocal-tract shape. These spectral peaks can be estimated by
selecting some of the largest peaks in the LP spectrum. Since
the objective is just to have gross information about the vocal-
tract shape, we obtain the sum of the ten largest peaks [34].
The normalized spectral peak energy contours for vocal seg-
ment corresponding to low-intelligible (Figure 4(a)) and high-
intelligible (Figure 4(g)) excerpts are shown in Figure 4(c) and
Figure 4(i), respectively.

2) Modulation spectrum energy: The modulation spectrum
represents the evolution of the amplitude content of various
frequency bands in the short time Fourier transform (STFT)
spectrum over time [37]. Normal hearing listeners can perceive
speech or other vocal signals as intelligible only if the ampli-
tude fluctuation is limited to a certain frequency range [28].
Therefore, capturing modulation spectrum energy over specific
bands of the vocal signal can be useful. We use the method
of Greenberg et al. [37], [38] to extract the modulation
spectrum [37], [38]. When extracting the modulation spectrum
for speech processing, a sampling frequency of 8 kHz is
usually used. However, maximum frequency of singing vocal
may exceed 4 kHz, therefore, we use a sampling frequency of
16 kHz for this purpose.

The modulation spectrum energy for 3 sec vocal segments
corresponding to low-intelligible and high-intelligible excerpts
are shown in Figure 4(d) and Figure 4(j), respectively. We
observe that the average modulation spectrum energy in Fig-
ure 4(d) is higher than that shown in Figure 4(j).

3) Sub-band correlation: It is evident from the spectro-
grams shown in Figure 2 that the formant structure is more
preserved in high-intelligible compared to a low-intelligible
song. This is partially because the introduction of more noise-
like components in the spectrum smears out the song’s har-
monic nature while making the audio unintelligible. The sub-
band correlation measure has been used in speech processing

in [39] to detect the vowel formant structure. To capture
this information, we divided the spectrum into four bands
and determined the correlation between compressed energy
envelopes of these bands. As evident from Figure 4(e) and
Figure 4(k), high-intelligible excerpts have higher values in
their sub-band energy contours than low-intelligible excerpts.

4) Spectral slope: The spectral slope represents the promi-
nence of higher and lower frequency energy in a spectrum.
Because the suppression of higher harmonics make sounds
muffled and less intelligible in the presence of noise or any
other interfering signal, the spectral slope can be treated as
an indication of intelligibility [40]. Moreover, it has been
used for this purpose in tasks such as voice quality analysis
and Lombard speech analysis [40], [41]. Motivated by these
previous studies, we examine the difference between the
spectral slopes of high-intelligible and low-intelligible songs.
Figure 4(f) and Figure 4(l) show the spectral slope contours for
the excerpts shown in Figure 4(a) and Figure 4(g) respectively.
It can be observed that high-intelligible segments have a more
negative spectral slope. In the case of loud or hyper-articulated
speech, there tend to be strong high frequency components
which result in a comparatively flatter spectrum.

D. Prosodic features

Prosodic features are long-term features, as the segments
affected (syllables, words and phrases) are larger than phonetic
units. These features are mainly manifested as sound duration,
tone, and intensity variation.

1) Normalized autocorrelation peaks: From the low-
intelligible and high-intelligible song segments shown in Fig-
ure 3(a) and Figure 3(c) respectively, it is evident that over
a small frame of about 25 ms the periodic nature is more
intact in the case of the high-intelligible compared to the low-
intelligible. Periodicity is thus a potentially helpful feature for
intelligibility prediction, and we estimate it by using short-
term autocorrelation analysis. The value of the first peak
(after the central peak) in the autocorrelation sequence is an
indication of the periodicity. The central peak is the peak of
the autocorrelation sequence at the origin. The value of the
first maximum peak is normalized with respect to the central
peak, which gives the normalized autocorrelation peak value.
In Figure 5 (a) and Figure 5 (b), the autocorrelation sequence
for the frames of low-intelligible and high-intelligible excerpts
are respectively shown. The peak values in both are marked
with rectangles. We can observe that the normalized autocor-
relation peak value is significantly less in the case of the low-
intelligible, compared to the high-intelligible excerpt.

2) Suprasegmental feature: To capture this periodic struc-
ture, we also introduce a suprasegmental feature which has
previously been used to capture the tendency of an acoustic
signal to repeat the same structure over a longer duration [36].
Firstly, the GCIs are determined from the extracted vocal
signal using the zero frequency filtering method [42]. From
these GCIs, we can obtain the pitch intervals in the polyphonic
song. The correlation between 10 successive pitch periods
from the song is computed to obtain an estimate of how
repetitive its structure is. The periodicity values are certainly
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Fig. 5. Normalized autocorrelation plot for a selected portion of singing
vocals with background accompaniment corresponding to (a) high-intelligible
and (b) low-intelligible excerpts.

lower for low-intelligible excerpts compared to that of high-
intelligible excerpts.

3) Jitter and shimmer: Jitter and shimmer are the mea-
sures of the cycle-to-cycle variation of F0 and amplitude,
respectively. They have previously been used for the study of
voice quality [43]. Jitter is affected mainly because of lack of
control of vocal fold vibration, more variation of which leads
to unintelligibility in the voice. Shimmer, for its part, is related
to the reduction of glottic resistance and mass lesions in the
vocal folds, which are in turn correlated with the presence
of noise at emission and breathiness [43]. Very high values
of jitter and shimmer are an indication of breathy, rough
or hoarse voice quality. From our analysis we found, these
two prosodic aspects have higher values for low-intelligible
excerpts compared to high-intelligible excerpts.

After exploring these features with respect to the intel-
ligibility of a polyphonic song, we combine them into a
12-dimensional feature vector, which is used to derive the
song intelligibility score. To check whether these features
are correlated to the human-rated intelligibility scores, we
average each feature over the entire excerpt. The correlation
of the average feature values with intelligibility score for
each evidence is shown in Table II. A higher magnitude of
correlation value indicates a stronger potential of the feature to
quantify intelligibility. The correlation value corresponding to
the combined 12-dimensional feature is 0.50, which indicates
the efficacy of these features in representing song intelligi-
bility. We observe that suprasegmental feature has the lowest
correlation, whereas the slope of peaks of HE of LP residual
and modulation spectrum energy show the highest correlations.
The negative signs indicate an inverse relationship between the
feature and the intelligibility score; for instance, intelligibility
decreases as pitch increases. As mentioned in Section II-A, for
23 (12%) excerpts we observe particularly lower correlation
of STOI and intelligibility score. The correlation between the
proposed vocal-specific features and intelligibility score for
these 23 excerpts is 0.54, which shows the complementary
aspects of vocal-specific features and STOI. We expect better
performance with statistical models using a combination of all
the features.

To further observe the redundancy among different vocal-
specific features, we have also included the canonical cor-
relation analysis [44] in Table II. We find canonical cor-
relation value of each vocal-specific feature with all other

vocal-specific features. The higher canonical correlation value
(closer to 1) for a feature represents more similarity with other
features. From table II, we observe that although correlation
exists between the vocal-specific features there is some extra
information captured by each feature, as the correlation value
is less than 1 in each case. For instance, the suprasegmental
feature has less correlation with human rated intelligibility
score, however it has contrasting information compared to all
other features.

TABLE II
CORRELATION BETWEEN DIFFERENT VOCAL-SPECIFIC FEATURES AND

HUMAN-RATED INTELLIGIBILITY SCORES, AND CANONICAL
CORRELATION ANALYSIS OF EACH VOCAL-SPECIFIC FEATURES WITH

OTHER VOCAL-SPECIFIC FEATURES, FOR 200 EXCERPTS.
Features Correlation value Canonical correlation

Pitch -0.22 0.71
Smoothed Hilbert envelope 0.43 0.89

Peak-to-sidelobe ratio 0.18 0.79
Slope of peaks of HE of LP residual 0.47 0.69

Spectral peak energy 0.33 0.89
Modulation spectrum energy 0.46 0.82

Sub-band correlation 0.42 0.79
Spectral slope 0.35 0.85

Normalized ACR peaks 0.18 0.74
Suprasegmental feature 0.09 0.54

Jitter -0.19 0.53
Shimmer -0.26 0.66

Combined features 0.50 –

IV. PROPOSED FRAMEWORK

Based on the features discussed in the previous sections,
we outline the proposed framework to automatically evaluate
song intelligibility, as shown in Figure 6. A given input song
is first passed through an audio source separation module to
extract the singing vocal. Both the polyphonic song and the
extracted vocal are passed through the vocal segmentation
block, where sections with only instrumental music are iden-
tified and removed. As per Section II, we then passes the ex-
tracted and segmented singing vocal, as well as the segmented
polyphonic song through the singing adapted STOI module,
which gives an STOI value for each frame of the song. The
12-dimensional vocal-specific features are also extracted from
the audio signal corresponding to the segmented polyphonic
song. We combine the STOI values and vocal-specific features
to create a 13-dimensional feature vector, which is in turn used
to train an SVM based regression model, with the human-rated
intelligibility scores treated as reference scores. During testing,
we apply the 13-dimensional feature vector to the regression
model to predict an intelligibility score for all the frames of a
given song. The final intelligibility score for a song is obtained
by averaging the scores over all the frames of that song. An
implementation of this proposed automatic evaluation of song
intelligibility is made available1 for use.

V. EXPERIMENTAL EVALUATION

In this section we first describe the dataset used for the
analysis and experiments. Then we discuss our experimental
set-up and results.

1https://github.com/bidishasharma/Automatic-Song-Intelligibility
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Fig. 6. Framework for automatic evaluation of song intelligibility using
singing adapted STOI and vocal-specific features.

A. Dataset

For the analysis and evaluation presented in this work,
we use the database of English songs collected in Ibrahim
et al. [20]. There are 10 genres in the database: classical,
electronic, folk, jazz, metal, pop/rock, punk, rap, reggae, and
RnB. To create this database, songs were randomly selected
from the Rate Your Music database, with the only restrictions
being that songs had to be in English and have few ratings
with low popularity scores; this latter requirement was in
order to reduce the chances that a user had previously heard
a song and thus knew its lyrics from some other context.
From each song, two excerpts were selected; these excerpts
included a complete utterance and had an average duration of
6.5 seconds. A total of 200 such excerpts were thus created.
Each of the 200 excerpts is then transcribed by 17 participants
and the transcription was compared with the original lyrics to
obtain the word accuracy rate. The average word accuracy
rate for each excerpt over 17 participant is the human-rated
intelligibility score used as the ground-truth measure.

The dataset used has a limited number of excerpts for each
genre and an unbalanced distribution over the entire range
of human-rated intelligibility score (0-1). As each genre has
different acoustic characteristics, to analyze the performance
of our algorithm over all 10 genres for both high- and low-
intelligible excerpts, we have to include at least some examples
of each genre in the test dataset. With this strategy, we divide
the dataset of 200 excerpts into training and testing sets. As
there are a total of 10 genres which each has 20 excerpts
in the dataset, the training set consists of 140 excerpts (14
excerpts per genre) and testing set consists of 60 excerpts (6
excerpts per genre). The histogram representations of training
and testing excerpts with respect to intelligibility score are
shown in Figure 7. It is evident that both the training and
testing sets have an identical distribution over the entire range
of intelligibility scores. Similar representations for each genre
are depicted in Figure 8, which shows that folk and jazz have

Fig. 7. Histogram plot representing the distribution of human-rated intelligi-
bility scores for (a) train and, (b) test dataset.

the highest human-rated intelligibility scores in this dataset,
whereas punk and metal have the lowest.

B. Experimental setup

We perform three types of experiments to validate the pro-
posed framework. Although we are using a regression model
to obtain the intelligibility scores, to validate the efficacy
of the proposed features for quantifying intelligibility, we
also perform 2-class (low- and high-intelligible) and 3-class
(low-, moderate- and high-intelligible) classification tasks. To
effectively use the limited amount of data, we employ SVM
based models for all the above mentioned experiments.

C. Two-class and three-class classification

To develop the 2-class classifier, the excerpts with human-
rated intelligibility scores (< 0.5) are labeled as low-
intelligible and (> 0.5) are labeled as high-intelligible. In case
of the 3-class classifier, excerpts with human-rated intelligi-
bility score (> 0.66), (< 0.66 & > 0.33) and (< 0.33) are
labeled as high-, moderate- and low-intelligible, respectively.
We develop 6 different types of systems (for each of the 2-
and 3-class classifiers) using the features listed below,
• Acoustic feat: Acoustic feature vector proposed in

Ibrahim et al. (6-dimensional) [20]
• MFCC: MFCCs along with its first derivative (34-

dimensional)
• Vocal feat: Proposed vocal-specific features (12-

dimensional)
• Vocal feat+STOI: vocal-specific features fused with

singing adapted STOI (13-dimensional)
• Vocal feat+MFCC: vocal-specific features fused with

MFCCs along with its first derivative (46-dimensional)
• STOI+MFCC: Singing adapted STOI fused with MFCCs

along with its first derivative (35-dimensional)
• Acoustic feat+MFCC: Acoustic features used in Ibrahim

et al. [20] fused with MFCCs along with its first derivative
(40-dimensional)

• Vocal feat+STOI+MFCC: Vocal feat+STOI fused with
MFCCs (47-dimensional)
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TABLE III
CLASSIFICATION ACCURACY (%) FOR TWO-CLASS CLASSIFIERS FOR DIFFERENT FEATURE SETS CORRESPONDING TO VARIOUS GENRES.

% Accuracy for 2-class classification
Genre Acoustic feat MFCC Vocal feat Vocal feat+STOI Vocal feat+MFCC STOI+MFCC Acoustic feat+MFCC Vocal feat+STOI+MFCC

Feature dimension→ 6-dimensional 34-dimensional 12-dimensional 13-dimensional 46-dimensional 35-dimensional 40-dimensional 47-dimensional
All 65.00 81.66 65.51 77.10 83.34 83.33 81.36 88.13

Classical 50.00 83.33 83.33 83.33 83.33 66.67 83.33 66.67
Electro 66.67 66.67 83.33 83.33 83.33 100.00 66.67 100.00

Folk 100.00 100.00 60.00 100.00 100.00 100.00 100.00 100.00
Jazz 100.00 100.00 100.00 83.33 100.00 83.33 100.00 83.33

Metal 50.00 66.67 50.00 75.00 100.00 100.00 83.33 100.00
Pop-rock 50.00 83.33 50.00 50.00 66.67 66.67 83.33 83.33

Punk 66.67 83.33 50.00 83.33 66.67 83.33 66.67 83.33
Rap 50 83.33 83.33 83.33 66.67 83.33 83.33 100.00

Reggae 50.00 66.67 50.00 50.00 66.67 66.67 66.67 66.67
RnB 66.67 83.33 40.00 80.00 100.00 83.33 83.33 100.00

TABLE IV
CLASSIFICATION ACCURACY (%) FOR THREE-CLASS CLASSIFIERS FOR DIFFERENT FEATURE SETS CORRESPONDING TO VARIOUS GENRES.

% Accuracy for 3-class classification
Genre Acoustic feat MFCC Vocal feat Vocal feat+STOI Vocal feat+MFCC STOI+MFCC Acoustic feat+MFCC Vocal feat+STOI+MFCC

Feature dimension→ 6-dimensional 34-dimensional 12-dimensional 13-dimensional 46-dimensional 35-dimensional 40-dimensional 47-dimensional
All 50.00 67.21 53.22 54.80 66.84 68.00 54.83 69.23

Classical 66.67 66.67 33.33 33.33 50.00 66.67 50.00 50.00
Electro 42.86 50.00 42.85 57.14 71.42 57.14 28.57 85.71

Folk 83.33 100.00 100.00 100.00 83.33 83.33 100.00 100.00
Jazz 60.00 80.00 80.00 80.00 100.00 80.00 80.00 80.00

Metal 75.00 100.00 87.50 87.50 87.50 100.00 75.00 87.50
Pop-rock 0.00 16.67 33.33 33.33 16.67 16.67 16.67 33.33

Punk 66.67 83.33 50.00 50.00 83.33 100.00 50.00 83.33
Rap 33.33 50.00 16.67 16.67 33.33 33.33 33.33 33.33

Reggae 28.57 28.57 14.28 14.28 42.86 42.86 28.57 40.00
RnB 40.00 100.00 80.00 80.00 100.00 100.00 100.00 100.00

All the features mentioned above are derived from the excerpts
using a sampling frequency of 16 kHz, frame-size of 25 ms
and a frame-shift of 5 ms. To match the dimension during
fusion with other features, we obtain the STOI values for
each frame of an excerpt by removing the averaging over all
frames as shown in (2). Each dimension of the feature vector
is normalized to obtain a minimum value of 0 and a maximum
of 1. We use SVM models with a radial basis function (RBF)
kernel, where the values of c and γ are set using 5-fold
cross validation over the entire training dataset. During testing,
the same features are extracted for each of the test excerpts
and normalized using the minimum and maximum values
obtained during training. The frame level normalized features
are fed to the classifier, which in turn provides predicted class
information for each frame. We perform majority voting over
the frames of an excerpt to derive it’s predicted class. The
overall classification accuracy along with the genre specific
classification accuracies for the 2-class and 3-class classifiers
are depicted in Table III and Table IV respectively.

For the 2-class classifier, the average classification accuracy
using proposed vocal-specific features along with singing
adapted STOI is 77.10%, and the accuracy in its weakest
genres, reggae and pop-rock is 50% (Table III). From the
genre-wise distribution of the intelligibility score shown in
Figure 8, we can observe that the reggae genre has many
excerpts with an intelligibility score near the threshold of 0.5;
these excerpts fit almost equally well in either category and are
thus likely to be misclassified. In all the classifiers we achieve
good accuracy for the folk genre, where most of the excerpts
are in the high-intelligible class. We also achieve excellent
accuracy (83.33%) for the classical excerpts, which are evenly
distributed between the high- and low-intelligible classes. This
shows that the proposed features (Vocal feat+STOI) work
reasonably well for this task. The addition of MFCC features
provides an absolute improvement of 11% in accuracy, and the
accuracy of pop-rock genre improves the most. This validates
the efficacy of the proposed vocal-specific features and singing
adapted STOI to represent song intelligibility.
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In the 3-class classification task shown in Table IV, the
accuracy obtained using proposed features is 54.80%, which
improves to 69.23% after fusion with MFCC. According to
the distribution of training and testing data shown in Figure 7,
many excerpts have intelligibility scores very close to 0.66,
which is the threshold between the high- and moderate-
intelligible classes. From our investigation, we found that most
of the wrongly classified instances have an intelligibility score
value near this threshold. The accuracy obtained using MFCCs
alone is 67.21%. Similar to the 2-class classification task, the
lowest accuracy using the proposed features is for the reggae
genre and highest for folk. In this case, the performance of the
classical genre is not favorable. We observe improvement in
performance of both the classifiers when each of the vocal-
specific features and STOI is individually combined with
MFCC. This also validates the presence of useful information
in the proposed features to represent intelligibility.

D. Regression model

In this work, we are particularly fascinated to automatically
obtain an intelligibility score for a song that correlates with
human perception. To obtain the intelligibility score corre-
sponding to each song, we use SVM based regression model.
We develop different models using the different combination
of features as listed for the classification task; in total, 6
different types of systems are developed and compared.

The features are processed in an identical manner as dis-
cussed in the classification task. Similarly, we use the RBF ker-
nel for the regression model, where c and γ values are set using
5-fold cross validation for the entire training database. While
testing, each dimension of the feature vector is normalized
with respect to minimum and maximum values obtained from
the training feature set. The predicted intelligibility scores
corresponding to all the frames of an excerpt are averaged
to derive a single intelligibility score for each excerpt.

The correlation and mean absolute error (MAE) values
between the intelligibility scores obtained from the regression
model and human-rated intelligibility scores are measures of
the efficacy of the proposed method. These correlation and
MAE values are depicted in Table V for different sets of fea-
tures. Using only MFCCs and delta MFCCs (34-dimensional),
we obtain a correlation of 0.78. For the proposed feature set
(Vocal feat+STOI), the average correlation value is 0.75. For
metal, this correlation is the lowest (0.19) and it is the highest
for jazz (0.87). After appending the proposed features, with
MFCCs we achieve an average accuracy of 0.81 over all the
genres. The MAE using only MFCCs is 0.15, which improves
after appending vocal-specific features (0.14) and STOI (0.13).
The MAE drops down to 0.10 using the proposed feature
set with MFCCs. We achieve the highest correlation of 0.95
for the RnB genre in this case. The MAE is 0.10 using the
proposed vocal-specific features and singing adapted STOI in
combination with MFCCs, which is 0.15 using only MFCCs.

The scatterplots in Figure 9 show the derived intelligibility
scores for different feature sets with respect to the human-
rated intelligibility scores for the entire test set. We can
observe that the points converge towards a linear line as
we append the proposed features with MFCCs. The genre-
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specific correlation values for different regression models from
Table V can be compared in Figure 10. These experiments
establish the proposed framework for automatic evaluation of
song intelligibility.

E. Genre independent training

In the previous experiments, we include excerpts from all
the genres in both the training and testing data, which do
not demonstrate whether the model is genre-independent, or
equivalently, whether the model will work accurately on a
genre that is not represented in the training set. Therefore,
we perform another experiment in which all the excerpts
corresponding to 9 genres are used to train the SVM based
regression model, and the remaining genre is used for test-
ing. Effectively, this results in 10 regression models, each
of them to be tested against the one genre excluded from
training that particular model. We use the 47-dimensional
feature vector (Vocal feat+STOI+MFCC). For each genre, the
correlation value obtained between the predicted and human-
rated intelligibility score is depicted in the bar plot shown
in Figure 11. We observe that the correlation values drop
relatively steeply for the folk and punk genre when they are not
included in the training data. However, other genres have only
a relatively small drop in correlation value when compared
to the correlations in Table V. This shows that the proposed
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TABLE V
THE CORRELATION (CORR) AND MEAN ABSOLUTE ERROR (MAE) BETWEEN THE INTELLIGIBILITY SCORES OBTAINED FROM REGRESSION MODELS AND

HUMAN RATED INTELLIGIBILITY SCORES, FOR DIFFERENT FEATURE SETS CORRESPONDING TO VARIOUS GENRES.

Genre↓ Acoustic feat MFCC Vocal feat Vocal feat+STOI Vocal feat+MFCC STOI+MFCC Acoustic feat+MFCC Vocal feat+STOI+MFCC
Feature dimension→ 6-dimensional 34-dimensional 12-dimensional 13-dimensional 46-dimensional 35-dimensional 40-dimensional 47-dimensional

Evaluation parameter→ Corr MAE Corr MAE Corr MAE Corr MAE Corr MAE Corr MAE Corr MAE Corr MAE
All 0.32 0.33 0.78 0.15 0.65 0.19 0.75 0.17 0.78 0.14 0.79 0.13 0.76 0.14 0.81 0.10

Classical 0.53 0.96 0.77 0.13 0.76 0.14 0.67 0.15 0.78 0.13 0.80 0.13 0.73 0.14 0.80 0.11
Electro 0.50 0.22 0.85 0.18 0.67 0.22 0.36 0.20 0.86 0.09 0.88 0.12 0.79 0.17 0.94 0.08

Folk 0.18 0.36 0.52 0.14 -0.58 0.28 0.73 0.16 0.52 0.14 0.50 0.14 0.56 0.13 0.49 0.13
Jazz 0.71 0.19 0.86 0.17 0.85 0.17 0.87 0.16 0.91 0.12 0.88 0.14 0.92 0.13 0.89 0.09

Metal -0.03 0.30 0.64 0.17 -0.11 0.23 0.19 0.20 0.58 0.15 0.62 0.19 0.78 0.11 0.77 0.10
Pop-rock 0.09 0.25 0.63 0.19 0.60 0.22 0.82 0.20 0.67 0.19 0.64 0.13 0.38 0.21 0.68 0.12

Punk 0.78 0.23 0.57 0.17 0.62 0.21 0.69 0.20 0.60 0.17 0.58 0.17 0.52 0.20 0.63 0.15
Rap 0.73 0.28 0.41 0.10 0.87 0.10 0.66 0.10 0.52 0.10 0.60 0.10 0.66 0.10 0.66 0.10

Reggae 0.60 0.23 0.80 0.10 0.65 0.11 0.82 0.13 0.62 0.10 0.58 0.10 0.77 0.09 0.60 0.11
RnB 0.00 0.24 0.84 0.17 0.76 0.24 0.73 0.20 0.83 0.17 0.86 0.12 0.83 0.14 0.95 0.08
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Fig. 11. Correlation of the intelligibility score for different genres obtained
from the regression models trained using all other genres.

features also work relatively well independent of the genres
used in training the model.

F. Comparison of STOI and vocal-specific features

To test whether the proposed singing adapted STOI and
the vocal-specific features carry complementary information,
we develop another SVM based regression model in a similar
manner as described in Section V-D, but using only the
singing adapted STOI values. We obtain a correlation value
of 0.41 between the predicted and human-rated intelligibility
scores. We observe that for a particular number of excerpts
this correlation is relatively low. Therefore, we divided the
testing excerpts into two groups, A and B, based on whether
singing adapted STOI works reasonably well for the excerpt
or not. As shown in Table VI, the correlation value for the
excerpts corresponding to group A is 0.58 and that of group
B is 0.25. It is evident that the intelligibility of the excerpts
corresponding to group A depends on the interference caused
by the background accompaniment, whereas that of group B
depends on vocal-specific characteristics. We also observe that
the model obtained using only vocal-specific features performs
in a reverse way for the two groups of excerpts. However,
after combining both STOI and vocal-specific features, the
performance for both the groups is enhanced. This experiment
supports that both the evidence are complementary to each
other, and both are necessary for calculating intelligibility.

TABLE VI
COMPARISON OF STOI AND VOCAL-SPECIFIC FEATURES.

Group STOI Vocal feat Vocal feat+STOI
A 0.58 0.61 0.79
B 0.25 0.69 0.71

G. Features derived from the extracted vocal

We also consider the vocal-specific features obtained from
the extracted vocal instead of the polyphonic song. However,
based on our experiments, we found that the correlation of the
combined vocal-specific features derived from the extracted
singing vocal with human-rated intelligibility score is 0.39,
while it is 0.50 for the same features extracted from the poly-
phonic song. This may be due to some distortion introduced in
the audio source separation method. In this case, the regression
model also shows a poor correlation (0.60) with the human-
rated intelligibility score. We also use MFCCs derived from
extracted vocal and develop a regression model, that results
in a correlation of 0.60 (Table VII). By combining all the
features obtained from the extracted vocal, we obtained a
correlation of 0.66. Whereas, MFCCs from the polyphonic
song and vocal-specific features from the extracted vocal, gives
a correlation of 0.73. These results are weaker than the ones
in which the features are calculated from the polyphonic song.
More prominent characteristics of the vocal in presence of the
background accompaniment leads to better intelligibility.

TABLE VII
CORRELATION OF INTELLIGIBILITY SCORES OBTAINED FROM

REGRESSION MODELS TRAINED USING THE FEATURES DERIVED FROM
THE EXTRACTED SINGING VOCALS.

Regression correlation Classification accuracy(%)
Vocal feat MFCCs Vocal feat+ Two-class Three-class

+STOI STOI+MFCCs (47-dim) 47-dim 47-dim

0.60 0.60 0.66 72.41 54.83

VI. SUMMARY

In this work, we focus on developing a framework to
automatically estimate intelligibility of polyphonic song. Our
proposed strategy uses acoustic cues extracted from the song
to derive its intelligibility, which include singing adapted
STOI and vocal-specific features. The proposed features are
validated with 2-class and 3-class intelligibility classification
tasks. Finally, to derive the intelligibility score against each
excerpt of a song, we used regression models trained using
the proposed features. The 2-class classification accuracy for
the proposed feature set is 88.13%, which is 69.23% for the
3-class classification. We use correlation and MAE measures
between intelligibility score obtained from the regression
model and human-rated intelligibility score, to establish the
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efficacy of the proposed method. This correlation is 0.81 and
MAE is 0.10 for the proposed framework. Among 10 different
genres, our method achieve the best performance for Electro
and RnB.

We also analyze the performance of the proposed frame-
work, by excluding one genre from training. We find that
the proposed method is genre independent to a certain extent.
We also explore that the singing adapted STOI and vocal-
specific features perform in a complementary way to each
other. Although we use extracted singing vocal in the singing
adapted STOI, we could not achieve good performance with
the vocal-specific features derived from the extracted singing
vocal. Rather, we observed degraded performance using the
features derived from the extracted singing vocals.

The proposed framework is uncomplicated and oriented
towards the application of song recommendation for language
learning. It is true that the SVM-based statistical model does
retain the limitations of having a small dataset and possibility
of train-test data mismatch. To get around this drawback, a
larger database would be of use. Fortunately, the proposed idea
can be easily replicated on a new larger dataset. Moreover,
we also derive an intelligibility score without any statistical
model and using only average of raw vocal-specific features.
By combining the proposed vocal-specific features, we achieve
a correlation of 0.50 as shown in Table II. In combination with
the singing adapted STOI, a correlation of 0.59 is obtained.
This demonstrates the efficacy of the proposed feature set to
represent song intelligibility.

In the future, using the proposed features, we would like to
derive an intelligibility measure without using any statistical
models, evaluated on a larger dataset.

VII. ACKNOWLEDGEMENTS

This research is supported in part by an unrestricted gift
from Smule Inc.

REFERENCES

[1] D. Schön, M. Boyer, S. Moreno, M. Besson, I. Peretz, and R. Kolinsky,
“Songs as an aid for language acquisition,” Cognition, vol. 106, no. 2,
pp. 975–983, 2008.

[2] M. Schwantes, “The use of music therapy with children who speak
english as a second language: An exploratory study,” Music Therapy
Perspectives, vol. 27, no. 2, pp. 80–87, 2009.

[3] D. Fisher, “Early language learning with and without music. reading
horizons,” Reading Horizons, vol. 42, no. 1, pp. 40–49, 2001.

[4] A. Tierney and N. Kraus, “Music training for the development of reading
skills,” vol. 207, pp. 209–241, 2013.

[5] A. D. Patel, “Language, music, syntax and the brain,” Nature neuro-
science, vol. 6, no. 7, pp. 674–681, 2003.

[6] V. L. Trollinger, “The brain in singing and language,” General Music
Today, vol. 23, no. 2, pp. 20–23, 2010.

[7] A. Kultti, “Singing as language learning activity in multilingual toddler
groups in preschool,” Early Child Development and Care, vol. 183,
no. 12, pp. 1955–1969, 2013.

[8] C. F. Mora, “Foreign language acquisition and melody singing,” ELT
journal, vol. 54, no. 2, pp. 146–152, 2000.

[9] T.-a. Kao and R. L. Oxford, “Learning language through music: A
strategy for building inspiration and motivation,” System, vol. 43, pp.
114–120, 2014.

[10] K. Mori and M. Iwanaga, “Pleasure generated by sadness: Effect of sad
lyrics on the emotions induced by happy music,” Psychology of Music,
vol. 42, no. 5, pp. 643–652, 2014.

[11] L. A. Smith and B. L. Scott, “Increasing the intelligibility of sung
vowels,” The Journal of the Acoustical Society of America, vol. 67,
no. 5, pp. 1795–1797, 1980.

[12] M. S. Benolken and C. E. Swanson, “The effect of pitch-related changes
on the perception of sung vowels,” The Journal of the Acoustical Society
of America, vol. 87, no. 4, pp. 1781–1785, 1990.

[13] L. B. Collister and D. Huron, “Comparison of word intelligibility in
spoken and sung phrases,” Empirical Musicology Review, vol. 3, no. 3,
pp. 109–125, 2008.

[14] J. W. Gregg and R. C. Scherer, “Vowel intelligibility in classical
singing,” Journal of Voice, vol. 20, no. 2, pp. 198–210, 2006.

[15] H. Hollien, A. P. Mendes-Schwartz, and K. Nielsen, “Perceptual confu-
sions of high-pitched sung vowels,” Journal of Voice, vol. 14, no. 2, pp.
287–298, 2000.

[16] R. B. Johnson, D. Huron, and L. Collister, “Music and lyrics interactions
and their influence on recognition of sung words: an investigation
of word frequency, rhyme, metric stress, vocal timbre, melisma, and
repetition priming,” Empirical Musicology Review, vol. 9, no. 1, pp.
2–20, 2013.

[17] P. Fine and J. Ginsborg, “Perceived factors affecting the intelligibility of
sung text,” in Proceedings of the Third Conference on Interdisciplinary
Musicology (CIM07), 2007, pp. 15–19.

[18] N. Condit-Schultz and D. Huron, “Catching the lyrics: intelligibility in
twelve song genres,” Music Perception: An Interdisciplinary Journal,
vol. 32, no. 5, pp. 470–483, 2015.

[19] J. Ginsborg, “The influence of interactions between music and lyrics:
what factors underlie the intelligibility of sung text?” Empirical Musi-
cology Review, vol. 9, no. 1, pp. 21–24, 2013.

[20] K. M. Ibrahim, D. Grunberg, K. Agres, C. Gupta, and Y. Wang,
“Intelligibility of sung lyrics: A pilot study,” in ISMIR, 2017, pp. 686–
693.

[21] T. H. Falk, C. Zheng, and W.-Y. Chan, “A non-intrusive quality and
intelligibility measure of reverberant and dereverberated speech,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no. 7,
pp. 1766–1774, 2010.

[22] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm
for intelligibility prediction of time–frequency weighted noisy speech,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 19,
no. 7, pp. 2125–2136, 2011.

[23] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and
T. Weyde, “Singing voice separation with deep U-Net convolutional
networks,” in 18th International Society for Music Information Retrieval
Conference, 2017, pp. 745–751.

[24] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[25] “A chainer implementation of u-net singing voice separation model,”
https://github.com/Xiao-Ming/UNet-VocalSeparation-Chainer, [Online;
accessed 28-October-2018].

[26] D. Z. Borch and J. Sundberg, “Spectral distribution of solo voice
and accompaniment in pop music,” Logopedics Phoniatrics Vocology,
vol. 27, no. 1, pp. 37–41, 2002.

[27] S. O. Ternstrom, “Hi-fi voice: observations on the distribution of energy
in the singing voice spectrum above 5 khz,” Journal of the Acoustical
Society of America, vol. 123, no. 5, pp. 3379–3379, 2008.

[28] R. Drullman, J. M. Festen, and R. Plomp, “Effect of temporal envelope
smearing on speech reception,” The Journal of the Acoustical Society of
America, vol. 95, no. 2, pp. 1053–1064, 1994.

[29] N. S. Di Carlo and A. Germain, “A perceptual study of the influence
of pitch on the intelligibility of sung vowels,” Phonetica, vol. 42, no. 4,
pp. 188–197, 1985.

[30] J. Sundberg and T. D. Rossing, “The science of singing voice,” The
Journal of the Acoustical Society of America, vol. 87, no. 1, pp. 462–
463, 1990.

[31] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in python,” in
Proceedings of the 14th python in science conference, 2015, pp. 18–25.

[32] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the
IEEE, vol. 63, no. 4, pp. 561–580, 1975.

[33] T. V. Ananthapadmanabha and B. Yegnanarayana, “Epoch extraction
from linear prediction residual for identification of closed glottis inter-
val,” IEEE Transactions on Acoustics, Speech and Signal Processing,,
vol. 27, no. 4, pp. 309–319, 1979.

[34] S. M. Prasanna, B. S. Reddy, and P. Krishnamoorthy, “Vowel onset point
detection using source, spectral peaks, and modulation spectrum ener-
gies,” IEEE Transactions on audio, speech, and language processing,
vol. 17, no. 4, pp. 556–565, 2009.

https://github.com/Xiao-Ming/UNet-VocalSeparation-Chainer


13

[35] G. Seshadri and B. Yegnanarayana, “Perceived loudness of speech based
on the characteristics of glottal excitation source,” The Journal of the
Acoustical Society of America, vol. 126, no. 4, pp. 2061–2071, 2009.

[36] B. Sharma and S. Mahadeva Prasanna, “Sonority measurement using
system, source, and suprasegmental information,” IEEE/ACM Transac-
tions on Audio, Speech and Language Processing, vol. 25, no. 3, pp.
505–518, 2017.

[37] S. Greenberg and B. Kingsbury, “The modulation spectrogram: In
pursuit of an invariant representation of speech,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing Proceedings.
IEEE, 1997, p. 1647.

[38] H. Dudley, “Remaking speech,” The Journal of the Acoustical Society
of America, vol. 11, no. 2, pp. 169–177, 1939.

[39] D. Wang and S. S. Narayanan, “Robust speech rate estimation for spon-
taneous speech,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 8, pp. 2190–2201, 2007.

[40] V. C. Tartter, H. Gomes, and E. Litwin, “Some acoustic effects of
listening to noise on speech production,” The Journal of the Acoustical
Society of America, vol. 94, no. 4, pp. 2437–2440, 1993.

[41] B. Sharma and S. R. M. Prasanna, “Enhancement of spectral tilt in
synthesized speech,” IEEE Signal Processing Letters, vol. 24, no. 4, pp.
382–386, 2017.

[42] K. Murty and B. Yegnanarayana, “Epoch extraction from speech sig-
nals,” IEEE Transactions on Audio, Speech, and Language Processing,,
vol. 16, no. 8, pp. 1602–1613, 2008.

[43] H. F. Wertzner, S. Schreiber, and L. Amaro, “Analysis of fundamental
frequency, jitter, shimmer and vocal intensity in children with phonolog-
ical disorders,” Brazilian journal of otorhinolaryngology, vol. 71, no. 5,
pp. 582–588, 2005.

[44] W. Krzanowski, Principles of multivariate analysis. OUP Oxford, 2000,
vol. 23.

Bidisha Sharma is a Postdoctoral Research Fellow
in the Electrical and Computer Engineering Depart-
ment at the National University of Singapore (NUS).
She received Ph.D. degree from Indian Institute
of Technology (IIT) Guwahati in India in 2018,
B.E. degree in Electronics and Telecommunication
Engineering from Girijananda Chowdhury Institute
of Management and Technology, Gauhati University,
Guwahati, India, in 2012. Her research interests are
in speech signal processing, speech synthesis, auto-
matic speech recognition and singing voice analysis.

Ye Wang is an Associate Professor in the Computer
Science Department at the National University of
Singapore (NUS) and NUS Graduate School for
Integrative Sciences and Engineering (NGS). He
received his Ph.D. degree from Tampere University
of Technology in Finland in 2002, M.Sc. degree
from Braunschweig University of Technology in
Germany in 1993, and B.Sc. degree from South
China University of Technology in China in 1983.
He established and directed the sound and music
computing (SMC) Lab (www.smcnus.org). Before

joining NUS, he was a member of the technical staff at Nokia Research
Center in Tampere, Finland for 9 years. His research interests include sound
analysis and music information retrieval (MIR), mobile computing, and cloud
computing, and their applications in music edutainment and e-Health, as well
as determining their effectiveness via subjective and objective evaluations. His
most recent projects involve the design and evaluation of systems to support
1) therapeutic gait training using Rhythmic Auditory Stimulation (RAS), 2)
second language learning, and 3) motivating exercise via music-based systems.


	Introduction
	Song intelligibility measure
	Speech intelligibility measure
	Overview of proposed approach

	Singing Adapted Short-term Objective Intelligibility (STOI)
	Limitations of singing adapted STOI

	Vocal-specific Features
	Vocal segmentation
	Excitation source features
	Pitch
	Smoothed Hilbert envelope
	Peak-to-sidelobe ratio
	Slope of peaks of HE of LP residual

	Spectral features
	Spectral peak energy
	Modulation spectrum energy
	Sub-band correlation
	Spectral slope

	Prosodic features
	Normalized autocorrelation peaks
	Suprasegmental feature
	Jitter and shimmer


	Proposed Framework
	Experimental Evaluation
	Dataset
	Experimental setup
	Two-class and three-class classification
	Regression model
	Genre independent training
	Comparison of STOI and vocal-specific features
	Features derived from the extracted vocal

	Summary
	Acknowledgements
	References
	Biographies
	Bidisha Sharma
	Ye Wang


