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ABSTRACT
Automatic lyric transcription (ALT) is a nascent field of study at-
tracting increasing interest from both the speech and music in-
formation retrieval communities, given its significant application
potential. However, ALT with audio data alone is a notoriously
difficult task due to instrumental accompaniment and musical con-
straints resulting in degradation of both the phonetic cues and the
intelligibility of sung lyrics. To tackle this challenge, we propose
the MultiModal Automatic Lyric Transcription system (MM-ALT),
together with a new dataset, N20EM, which consists of audio record-
ings, videos of lip movements, and inertial measurement unit (IMU)
data of an earbud worn by the performing singer. We first adapt the
wav2vec 2.0 framework from automatic speech recognition (ASR)
to the ALT task. We then propose a video-based ALT method and
an IMU-based voice activity detection (VAD) method. In addition,
we put forward the Residual Cross Attention (RCA) mechanism
to fuse data from the three modalities (i.e., audio, video, and IMU).
Experiments show the effectiveness of our proposed MM-ALT sys-
tem, especially in terms of noise robustness. Project page is at
https://n20em.github.io.

CCS CONCEPTS
• Applied computing→ Sound and music computing; • Infor-
mation systems → Music retrieval; Speech / audio search;
• Computing methodologies → Neural networks; • Human-
centered computing → Ubiquitous and mobile computing sys-
tems and tools.
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1 INTRODUCTION
Automatic lyric transcription (ALT) is the task of recognizing lyric
text from singing. The supplementing of textual information via
ALT often facilitates solutions to other music information retrieval
problems, such as lyric alignment [27], query by singing [30], audio
indexing [25], and music subtitling [24]. Additionally, ALT systems
can be augmented to appraise singing from various linguistic or mu-
sical aspects, such as word intelligibility and pronunciation[53]. Re-
cently, research inALT has become increasingly active, as evidenced
by the emergence of benchmark singing datasets, e.g., [17, 50, 51],
and further studies of advanced acoustic modeling techniques, e.g.,
[8, 20].

To our knowledge, ALT systems thus far are built with audio-
only data, which has arguably led to a plateau in research efforts
plagued by the following reoccurring challenges:

Difficulty of the ALT task. Since musicality distinguishes
singing from speech, a singer inevitably sacrifices some richness
of linguistic features such as word stress and articulation to com-
pensate for musical features such as melody, tempo, and timbre.
Consequently, singing is generally less intelligible than speech
[64]. This insufficient richness of linguistic features handicaps ap-
proaches adapted from automatic speech recognition (ASR) to ALT.
This might account for the performance gap (19.60% vs. 8.7% word
error rate) of the same acoustic model between ALT [17] and a
similar-scale ASR task [59].

Nonconformity with human perception patterns. The per-
ception of speech extends beyond the auditory realm, as observed
by the McGurk effect [46] that visual information can substan-
tially contribute to auditory perception. Studies have shown that
visual cues of speech play an essential role in language learning
[18, 48], lending further support to the notion that human auditory
perception relies on multimodal information.

Insufficient robustness. Given the two points above, it is rea-
sonable to surmise that attempting ALT on audio-only recordings in
challenging signal-to-noise ratio (SNR) environments would proba-
bly yield unsatisfactory results. Coupled with lowered intelligibility
over speech and the lack of external cues, the added factor of noise
(e.g., accompaniments) further increases the difficulty of retrieving
information from musical audio.
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Due to the interconnected relationship between sound produc-
tion and observable lip movements, it is clear that adding the modal-
ity of visual information to the ALT system is a promising prospect
at present. Recent advances in audio-visual speech recognition
(AVSR), e.g., [45, 66], show that audio-visual models perform better
than their audio-only counterparts, suggesting that including addi-
tional sensory information on top of the acoustic signal enhances
the overall performance of ALT systems by enriching the input to
the model. We assume that training an ALT system on multimodal
data is a viable solution to the challenges mentioned earlier.

Additionally, inertial measurement unit (IMU) data from wear-
able devices are an augmentation offering potential for improving
system performance. In the early stages of data collection, we ob-
served that participants tended to make rhythmic head movements
and facial expressions along with the music, in addition to regular
pronunciation efforts during singing. This was especially obvious
for those who displayed higher levels of musicality. Furthermore,
the jawmovements of singers are highly correlatedwith the pronun-
ciation of lyrics. We assume that these additional cues are valuable
in improving lyric recognition and increasing system robustness.
We use eSense [38], an earbud augmented with inertial sensors, to
capture data of facial and head movements. This device has been
proven to reliably detect head-, jaw-, and mouth-related movements
[44, 60, 62], facial expression [41], speakers in conversations [52],
and even human emotions [60].

We conduct this work to validate our assumptions. The contri-
butions are summarized into three aspects:

• We present the MultiModal Automatic Lyric Transcription
system (MM-ALT), which utilizes three modalities of input:
audio, video, and signals from wearable IMU sensors. To fa-
cilitate building the system, we curate the N20EM dataset for
multimodal lyric transcription. We create a group of models
on this dataset that can perform multimodal lyric transcrip-
tion with varying combinations of modalities, obtaining a
minimumword error rate (WER) of 12.71%.We further reveal
an increase in system robustness by introducing additional
modalities. With severe perturbations of musical accompani-
ments (-10 dB SNR), our system can achieve 27.04% absolute
lower WER compared to its audio-only counterparts.

• We initialize two new tasks: lyric lipreading and IMU-based
voice activity detection (VAD). In the lyric lipreading task,
we attempt to recognize lyrics in singing utilizing only video
information. Our video encoder is the first attempt to re-
trieve language-related information from singing recordings
without the help of audio input. As to the IMU-VAD task, our
IMU encoder is the first attempt at building a frame-level
VAD system solely from motion data captured by a wear-
able IMU device. Our experiments elucidate the correlation
between the IMU and audio modalities.

• We propose Residual Cross Attention (RCA), a new feature
fusion method to better fuse the multimodal features using
self-attention and cross-attention mechanisms. We demon-
strate the effectiveness of this new modality fusion method
in our ALT system by comparing it with various feature
fusion methods.

2 RELATEDWORK
2.1 Automatic Speech Recognition
The development of deep neural network (DNN) techniques has
revolutionized ASR by prompting a shift in paradigm from hidden-
Markov-model- (HMM-) based systems, to DNN-HMM hybrid mod-
els, and finally, to end-to-end (E2E) models [42]. Compared to previ-
ous models, E2E ASR systems possess more consistent optimization
objectives, more simplified pipelines, and more compact model
structures[42]. The Connectionist Temporal Classification (CTC)
[26] and Attention-based Encoder-Decoder (AED) [5, 13] are two
mainstream E2E ASR models. Jointly optimizing the shared encoder
of AED and CTC models in a multitask learning framework greatly
improves convergence and mitigates the misalignment issue of
AED models [29, 39].

Training state-of-the-art ASR models under supervised learning
framework requires a large amount of transcribed data, which is
too demanding for low-resource languages. In recent years, it has
become a trend to use self-supervised learning (SSL) techniques
to build ASR systems. By utilizing easy-to-access unlabeled data,
SSL models can learn general data representations to facilitate
downstream tasks. Models such as wav2vec 2.0 [4], autoregressive
predictive coding [16], and HuBERT [31] can learn very powerful
semantic representations of audio. These models can achieve im-
pressive results even with very limited labeled data, demonstrating
the feasibility of low-resource speech recognition.

It is convenient to incorporate multimodal input into E2E ASR
models, especially a simultaneous audio and video signal. Audio-
visual speech recognition (AVSR) brings machines closer to how
humans perceive speech. Lots of research supports the notion that
adding video input to the ASR systems has positive effects on recog-
nition performance, e.g., [45, 58, 66, 67, 77]. In particular, Audio-
Visual Hidden Unit BERT (AV-HuBERT) [65, 66] notably outper-
forms previous state-of-the-art models in both lipreading and AVSR
tasks by learning the joint representation of a synchronized speech
and audio signal.

2.2 Automatic Lyric Transcription
ALT is the counterpart problem of ASR in the field of music infor-
mation retrieval. The research of ALT started from [30], by adapting
an HMMmodel to build a Japanese lyric transcription system. Then,
Mesaros and Virtanen studied the influence of in-domain lyric lan-
guage models (LM) [49]. [47] leveraged musical structure to solve
the ALT problem by using the repetitive chorus of one song to im-
prove the consistency and accuracy of their ALT system. Afterward,
Kawai et al. first attempted a deep learning approach to ALT by a
DNN-HMM model [37]. In the baseline system constructed for the
DSing dataset [17], a contemporary state-of-the-art acoustic model
TDNN-F was used for ALT. Demirel et al. then utilized a convolu-
tional neural network (CNN) and time-restricted self-attention to
extract more robust features before feeding the input to the TDNN-
F [19]. Gupta et al. tried building a genre-informed acoustic model
for ALT systems directly on polyphonic singing audio [27]. Demirel
et al. also built a multi-stream TDNN-F model [20] that performed
better than the original version. More recent network architectures
such as Transformers have also been used in ALT systems [8].
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One reason for the slower progress in developing ALT systems
compared to advancements in ASR, is the inaccessibility of large-
scale singing datasets [75]. Therefore, some researchers have fo-
cused on providing basic support for the ALT problem from a data
standpoint. For example, Dabike et al. built a pipeline to preprocess
the DAMP Sing! 300x30x2 dataset [10] to form an utterance-level
dataset suitable for ALT [17], and Meseguer-Brocal et al. built a
large-scale popular music dataset, DALI, containing synchronized
audio, lyrics, and notes [50, 51].

Another approach to alleviate the problem of insufficient data
is data augmentation. For instance, Kruspe adjusted speech data
to make it more "song-like" by random time stretching and pitch
adjusting [40]. Basak et al. used a vocoder-based synthesizer to
generate singing voices according to natural speech [8]. Lastly,
Zhang et al. proposed aligning lyrics with melodies before adjusting
duration and pitch during data augmentation [75].

2.3 Multimodal Learning
Humans perceive the world via different modalities, e.g., vision,
sound, touch, and smell. These modalities have heterogeneous and
complementary information, enabling humans to understand their
surroundings better. Therefore, it is natural to design multimodal
systems to process and fuse multiple modalities’ high-dimensional
inputs simultaneously. Given recent advancements in deep learning
techniques, multimodal methods have surpassed their single-modal
counterparts in empirical applications. For example, [32, 63] com-
bined RGB and depth images to improve semantic segmentation;
[1, 45, 65, 66, 68] adopted video and audio modalities to boost the
performances of ASR and active speaker detection systems; [33, 69]
fused multi-view images or videos and IMU data to benefit 3D hu-
man pose estimation. Apart from empirical results in previous liter-
ature, Huang et al. proceeded to formalize the multimodal learning
problem into a theoretical framework. They proved that learning
with multiple modalities results in more accurate estimated repre-
sentations of latent spaces, which can achieve better performance
of learning than using its subset of modalities [34].

One fundamental problem in multimodal learning is to integrate
multimodal data in a way that can exploit the complementary re-
lationship and redundancy of multiple modalities [7]. A common
technique is to fuse individual modality inputs or intermediate fea-
tures together. This fusion operation could be concatenation, e.g.,
[45, 65, 69, 71], addition, e.g., [32, 33, 63], or incorporation of an
attention mechanism, e.g., [12, 68, 73, 74, 76]. Given the success of
transformers in computer vision [22, 43], natural language process-
ing [21, 70] and speech processing [4, 31], transformers are now
widely used to learn multimodal representations. Among them,
Perceiver models iteratively distill multimodal inputs into a tight
latent bottleneck and build latent transformers to process these
latent features [9, 35, 36]. Nagrani et al. proposed the framework
of a Multimodal Bottleneck Transformer (MBT), which fuses the
multimodal data via attention bottlenecks [54].

3 DATASET
This section describes the construction process and the preprocess-
ing procedures of our N20EM dataset.

3.1 Corpus Curation
We adopted the same 20 songs used in [23] for practical reasons
of rich phonemic coverage, ease of learning, and variation in mu-
sical features like genre and tempo. Instead of excising repeated
lyrics and scat singing, we opted to preserve all utterances for
completeness of data and naturalness of singing from participants.
Seventeen males and thirteen females were recruited from a local
university, with musical backgrounds ranging from no formal vocal
training to amateur level exposure. Participants spoke English with
accents including North American, European, Indian, East Asian,
and Southeast Asian. Participants were free to choose songs they
were more familiar and comfortable with singing from the 20 songs.
However, we limited each song only to be selected by a maximum
of 10 participants to encourage a greater selection diversity within
each participant’s repertoire and achieve a more balanced dataset.

3.2 Data Collection Procedure
All data were recorded in a soundproof studio. Our setup consisted
of three main components:

• An Audio-Technica 4050 condenser microphone with a pop
filter was used to record audio data at 32-bit depth and 44.1
kHz sampling rate using Adobe Audition. A monaural head-
set was used for playback of musical accompaniment to
participants during singing.

• An earbud, eSense [38], containing several built-in compo-
nents, including an IMU sensor, a speaker, and a microphone,
was used to record the kinesthetic activity of the head, jaw,
and lips during recording at a sampling rate of 100 Hz.

• A Sony AX4 video camera and a ring light were placed
in front of participants, focused on the lower half of each
singer’s face, to capture footage of movements of oral articu-
lators (jaw, lips, tongue) at 1920x1080 pixels, at 50 Hz frame
rate.

Participants were instructed to minimize bodily movements such
as hand gestures and body swaying to reduce noise factors in data,
such as accidental obstruction of video footage or anomalous vari-
ance in the sensory data. Lyric sheets for all songs were printed
and placed on a music stand by the microphone for the subject’s
reference. The tempo and key of each song were predetermined.
For comfort in vocal range, participants were given the option of a
male-vocals arrangement or female-vocals arrangement for songs
with greater variance in melodic range. Although the backing tracks
fed to participants included vocals, participants were given some
freedom in the rendition of pitch and rhythm during singing. When
a track with all the lyrics clearly sung was obtained, the subject pro-
ceeded to the next song. A few pronunciation errors were allowed
as long as the utterance remained clear.

Since singing is often studied in tandem with speech, we also
collected read versions of the song lyrics for future comparative
studies. For each song, the selected lyrics were read first, then sung
with the aid of a backing track in a separate recording afterward.
We believe this is beneficial for future research on the quantitative
difference between singing and parallel speech1.

1Presently, the parallel speech recordings are not used in the study since the focus of
this paper is to build an ALT system.
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Table 1: Division of data into different sets for ALT system

Set Duration Number of Utterances

Total 5 h 23 min 5116
Train 4 h 1 min 3803 (74%)
Validation 35 min 616 (12%)
Test 47 min 697 (16%)

3.3 Data Preprocessing
Data from different modalities were first synchronized with 40 ms
precision. For video recordings, following the work of [65], we first
down-sampled videos to 25 Hz, then cut out 96 × 96 Regions-Of-
Interest (ROIs) centered around the mouth. Only cropped videos
containing lip areas will appear in the public dataset to protect
participant privacy. Audio data were down-sampled to 16 kHz to
match the input specification of wav2vec 2.0 [4].

We opted for an utterance-level annotation of lyrics. First, we
manually annotated the starting and ending timestamps of each
utterance. The standard of annotation was determined mainly by
natural factors such as musical cadence or practical aspects such as
preferring consonant boundaries over vowel boundaries between
utterances. The annotation was done using spectrogram informa-
tion and the marker function in Adobe Audition. Second, actually
sung words were transcribed to serve as the ground truth for ALT.
When they were different from the correct lyrics that should be
sung, we used a set of notations to mark different types of errors.
We believe this information will be helpful for future singing pro-
nunciation evaluation research on this dataset2. Please refer to
Appendix A for the annotation details.

After obtaining the annotation, the recordings of different modal-
ities were all segmented to utterance level according to the anno-
tation. If any, silence, breaths, or non-phonemic noise in between
utterances were excised from the data. Then, the dataset was split
into training, validation, and test sets. We ensure that no subset
contained utterances from the same song to test the generalization
abilities of the ALT systems. Table 1 shows the statistics of different
subsets.

4 MM-ALT SYSTEM
In this section, we first formalize the task of multimodal ALT and
then describe our proposed MM-ALT for addressing the problem.

4.1 Problem Formulation
We consider the multimodal setting for automatic lyric transcrip-
tion. More specifically, given the synchronized singing audio signal
x(a) , video signal x(v) , and IMU signal x(i) , our goal is to transcribe
the lyrics, i.e., obtain a word sequence𝑤1:𝑆 representing the corre-
sponding lyrics of the signal. As shown in Fig. 1, we propose theMM-
ALT system to solve this problem. The system𝐺 consists of a feature
representation learning frontend and automatic lyric transcription
backend. Firstly, modality-specific encoders 𝐺 (a)

enc,𝐺
(v)
enc,𝐺

(i)
enc are

adopted to extract the features for each modality of signal. Then
the feature fusion module𝐺fuse projects the features from different

2The error annotations are not utilized in the current system.

modalities into the same latent space and integrates them into more
representative features. Finally, the hybrid CTC-Attention backend
𝐺back transforms the sequence of fused features into the lyrics. The
whole system can be represented as:

𝑤1:𝑆 = 𝐺 (x(a) , x(v) , x(i) )

= 𝐺back (𝐺fuse (𝐺
(a)
enc (x(a) ),𝐺

(v)
enc (x(v) ),𝐺

(i)
enc (x(i) ))) (1)

4.2 Audio Encoder
The audio encoder𝐺 (a)

enc aims to learn acoustic representations from
the audio signal. Traditionally, the TDNN network and its variants
dominate the field of ALT [17, 19, 20]. In this paper, we propose
to utilize wav2vec 2.0 [4] as the audio encoder for ALT through a
transfer learning paradigm because wav2vec 2.0 generalizes well
into new domains with low-resource labeled data. From our experi-
ments, we notice that when accepting only the audio signal, our
system achieves state-of-the-art performance, exceeding the results
of all published approaches on the DSing dataset [17], one of the
mainstream lyric transcription datasets.

Wav2vec 2.0 consists of a feature encoder and a context network.
The feature encoder has seven blocks, each containing a temporal
convolution followed by a layer normalization and a GELU activa-
tion. It takes raw audio and outputs latent speech representations.
The context network contains 24 transformer blocks with model
dimension 1,024, inner dimension 4,096, and 16 attention heads.
It transforms latent speech representations into context represen-
tations by capturing global temporal information. Each frame of
final output f(a) is about 20 ms and has 1,024 dimensions. We refer
readers to Appendix B for the detailed implementations. To transfer
the knowledge of wav2vec 2.0 from the speech domain into the
singing domain, we remove the quantization module in the original
wav2vec 2.0 structure and fine-tune the model on singing datasets.

4.3 Video Encoder
The video encoder 𝐺 (v)

enc seeks to learn visual representations of
speech from cropped lip videos. Since this is the first attempt to
transcribe lyrics from video modality, there are currently no bench-
mark models. We propose adopting the Audio-Visual Hidden Unit
BERT (AV-HuBERT) [65] in our system, which is the state-of-the-art
approach in the task of lip reading for speech recognition.

AV-HuBERT consists of an image encoder and a backbone trans-
former encoder. The image encoder is built by a 3D convolutional
layer followed by a ResNet-18 block [28]. Similar to the context
network in wav2vec 2.0, the transformer encoder has 24 blocks,
each of which has a model dimension of 1,024, a feed-forward di-
mension of 4,096, and 16 attention heads. Each frame of resulting
representations f(v) is about 40 ms and has 1,024 dimensions. We
remove the audio layer in the original structure and only feed the
video modality into AV-HuBERT.

4.4 IMU Encoder
To validate the assumption that IMUmotion data correlates with the
audio signal, and further exploit such correlation to help the lyric
transcription, the IMU encoder𝐺 (i)

enc converts IMU signal to features
that correspond to speaking. We utilize a convolutional-recurrent
neural network (CRNN) containing 1D convolutional layers and
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Figure 1: An overview of the MM-ALT system.

Figure 2: Structure of IMU CRNN.

bi-directional Gated Recurrent Unit (GRU) layers, resembling the
best-performing network CNN-BiLSTM in [55]. Fig. 2 shows the
structure of our IMUCRNN. The input of CRNN contains 8 channels,
including three axes of accelerometer data, three axes of gyroscope
data, and the quadratic sums of different channels of the two sensors,
respectively. When incorporated into the ALT system, the output
of the last GRU layer f(i) is used as the IMU features. Each f(i) has
20 ms frame length and 120 dimensions.

4.5 Feature Fusion Module
The feature fusion module 𝐺fuse is designed to exploit the com-
plementary relationship and redundancy of different modalities.
As illustrated in Fig. 3, the dimensions of features from different
modalities are firstly unified. We up-sample the video to the same
time resolution as the features of audio and IMU. Then we pad or
truncate the features of the other two modalities to standardize the
number of frames amongst the three modalities before the fusion
operation. For IMU features, we adopt a linear layer following a
GELU activation to increase its dimensions from 120 to 1024.

We propose a new attention module named Residual Cross At-
tention (RCA). RCA is built upon Transformer block architecture.
An RCA block accepts inputs from multiple modalities. One input
is regarded as the source, providing keys and values, while other
inputs are considered as the reference, which provides queries. Be-
sides the multi-head self-attention (MHSA) [70] operation on the
source, RCA adds extra shortcuts by computing the multi-head
cross-attention (MHCA) operation between the source and each
reference. RCA can be represented by Eq. 2 and Eq. 3:

f′ = LN(fsrc +MHSA(fsrc) +MHCA(fsrc, fref1)
+MHCA(fsrc, fref2))

(2)

f = LN(FFN(f′) + f′) (3)

where LN refers to a layer normalization layer, and FFN is a positional-
wise feed forward network the same as the one in a Transformer
block [70]. There are three RCA modules during the feature fusion,
and each modality’s input serves as the source in one of the mod-
ules. Finally, we add the output together and obtain the final fused
features f.

The motivations behind the proposal of RCA in multimodal sce-
narios are explained as follows. Firstly, RCA adopts self-attention
and residual shortcuts to extract global relationships among fea-
tures of all frames and reserves information of source modality.
Secondly, RCA takes advantage of complementary information
from reference modalities through its cross-attention mechanism.
Specifically, the queries from reference modalities help downstream
modules delve into missing relationships between time frames that
are not attended to when using only self-attention.

4.6 Hybrid CTC-Attention Backend
Inspired by [72], we design a hybrid CTC-Attention backend to map
a sequence of fused features f1, f2, ..., f𝑇 ∈ R1024 into a sequence
of tokens 𝑤1,𝑤2, ...,𝑤𝑆 ∈ V, where V is the vocabulary. In our
implementations, V has 31 tokens including 30 character targets
and a word boundary token.

Firstly, we adopt a 2-layer MLP as the encoder to further en-
code the fused representations f1:𝑇 into e1:𝑇 ∈ R𝑇×1024. Then we
design two branch networks, one of which is used to output CTC

Figure 3: An illustration of the feature fusion module and
the proposed Residual Cross Attention (RCA) algorithm.
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predictions and another is used as the decoder to output Sequence-
to-Sequence (S2S) predictions. Specifically, a projection layer is used
to map e1:𝑇 into the output probabilities for each frame 𝑝 (𝜋𝑡 |e𝑡 ),
where the CTC predictions 𝜋𝑡 ∈ V. e1:𝑇 are also fed into the S2S de-
coder, which is parameterized via a location-aware attention-based
GRU [14], to be autoregressively decoded into target probabilities
𝑝 (𝑤𝑐 |𝑤1:𝑐−1, e1:𝑇 ). 𝑝 (𝜋𝑡 |e𝑡 ) and 𝑝 (𝑤𝑐 |𝑤1:𝑐−1, e1:𝑇 ) are used for two
different training and inference schemes, which will be elaborated
in the next section.

4.7 Training and Inference
The whole system is trained with cross-entropy loss of outputs
from both connectionist temporal classification (CTC) [26] and
sequence-to-sequence (S2S) [6] attention-based decoder. Suppose
the ground truth transcription is𝑤1,𝑤2, ...,𝑤𝑆 . The CTC loss can
then be written as:

LCTC = − log𝑝CTC (𝑤1:𝑆 |e1:𝑇 )

= − log
∑︁

𝜋1:𝑇 ∈B−1 (𝑤1:𝑆 )

𝑇∏
𝑡=1

𝑝 (𝜋𝑡 |e𝑡 ) (4)

Here, B is an operation mapping an alignment sequence 𝜋1:𝑇
to𝑤1:𝑆 by removing repeated tokens and word boundary tokens.
B−1 (𝑤1:𝑆 ) refers to all the CTC paths mapped from𝑤1:𝑆 .

The S2S loss can be written as:

LS2S = − log 𝑝S2S (𝑤1:𝑆 |e1:𝑇 )

= − log
𝑆∏
𝑐=1

𝑝 (𝑤𝑐 |𝑤1:𝑐−1, e1:𝑇 ) (5)

The overall loss function is the addition of the two loss terms
above. We introduce a hyper-parameter, 𝛼 , to balance both losses.

L = (1 − 𝛼)LS2S + 𝛼LCTC (6)

During inference, the most likely lyrics will be predicted con-
sidering the output of CTC, S2S, and language model (LM), by the
following equation:

𝑤∗
1:𝑆 = argmax

𝑤1:𝑆
𝛽 log 𝑝CTC (𝑤1:𝑆 |e1:𝑇 )

+(1 − 𝛽) log𝑝S2S (𝑤1:𝑆 |e1:𝑇 ) + 𝛾 log𝑝LM (𝑤1:𝑆 ) (7)

Here, 𝛽 and 𝛾 are two hyper-parameters used to balance three
log-probability terms during the beam search. When 𝛾 > 0, the
LSTM language model is enabled. Beam size is set as 512.

5 EXPERIMENTS
In this section, we evaluate our proposed MM-ALT system us-
ing curated N20EM dataset. Specifically, we firstly conduct single-
modality experiments to evaluate the modality-specific representa-
tion learning. Then we evaluate the whole system in multimodal
scenarios to demonstrate its effectiveness. Finally, we simulate the
realistic environments by adding musical accompaniments as per-
turbations to test the robustness of our MM-ALT system.

5.1 Implementation Details
Webuild ourMM-ALT system using the PyTorch library and Speech-
Brain toolkit [61]. As for more detailed model configurations, please
refer to Appendix B. We apply data augmentation during training:

Table 2:WER(%) of ALT systems on Singing datasets.We com-
pare different methods on DSing dataset and build bench-
marks for N20EM dataset. “w. DSing” refers to adding DSing
to the training data.

Method Dataset Validation Test

TDNN-F [17] DSing 23.33 19.60
CTDNN-SA [19] DSing 17.70 14.96
MSTRE-Net [20] DSing - 15.38
Ours Dsing 13.26 14.56

Ours N20EM 12.74 19.68
Ours w. DSing N20EM 9.65 13.00

for the audio signal, we perform SpecAugment [57] in the time
domain; for the video signal, we randomly flip and crop face images
with the size of 88 following [65]. All models are trained using the
Adam optimizer. For the ALT task, we report the Word Error Rate
(WER) as evaluation metrics.

5.2 Single-Modality Tasks
5.2.1 Automatic Lyric Transcription. We evaluate the performance
of audio encoder together with the automatic lyric transcription
backend on the curated N20EM dataset and DSing [17] dataset,
one of the mainstream ALT datasets. Firstly, wav2vec 2.0 [4] is
pretrained on LibriVox (LV-60k) and loaded into our audio encoder3.
Then we train the models on training split, validate/test the ALT
performance on validation/test split. In inference, we use CTC-S2S-
LM to decode the lyrics. For the DSing dataset, we train an LSTM
LM only on text corpus from DSing training split, which is a subset
of text corpus used by other baselines. While for the N20EM dataset,
we train an LSTM LM on text corpus from LibriSpeech [56], DSing
[17] and the N20EM dataset. We keep this LM configurations for
other experiments on the N20EM dataset. Besides, we enable the
training of the fusion module and set f(𝑣) and f(𝑖) as zero tensors
for a fair comparison with the multimodal settings.

The evaluation results are summarized in Table 2. We observe
that our proposed system achieves 13.26% and 14.56% WER on the
DSing dataset, outperforming TDNN and its variants [17, 19, 20]
by at least 4.44% on the validation split and 0.40% on the test split.
The performance of our system indicates that we can successfully
adapt the pre-trained model from the speech domain to the singing
domain by exploiting the similarities between speech and singing.

Since our proposed ALT system displays great capability on
the DSing dataset, we adopt it as a strong baseline for the N20EM
dataset. To begin with, we train the system using only the N20EM
dataset and observe 12.74% WER on the validation split and 19.68%
WER on the test split. When adding the DSing dataset to the train-
ing data, performance is improved to 9.65% and 13.00% WER on
validation and test splits respectively, demonstrating that having
more singing data during the training enhances the ability of the
system to generalize.

5.2.2 Lyric Lipreading. We initialize a new task in this section,
named as lyric lipreading. This task aims to recognize lyrics only
3https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self

https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
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Table 3: WER(%) of lyric lipreading on N20EM dataset. We
compare different decoding configurations.

CTC S2S LM Validation Test
√ × × 63.52 78.20
× √ × 55.72 74.10√ √ × 55.80 72.70√ √ √

47.91 68.45

Table 4: Results of frame-level classification for VAD using
IMU signal.

Metric (%) Validation Test

Accuracy 69.63 74.36
F1-score 79.72 82.86
Macro F1-score 62.71 67.09

through video modality. Since this is the very first attempt, we
train our video encoder together with automatic lyric transcription
backend to build a benchmark system. Firstly, AV-HuBERT [65] is
pretrained on LRS3 [2] and VoxCeleb2 [15], and then loaded into
our video encoder4. Afterwards, we train the models on the N20EM
dataset. Unlike the original implementation of unigram tokenizer in
[65], we adopt a character tokenizer as mentioned in Section 4.6 to
facilitate feature fusion and comparison among different modalities.

During experiments, we evaluate different decoding configura-
tions. As shown in Table 3, we observe that the performance of the
S2S model exceeds the CTC model by a large margin. Furthermore,
adopting a trained language model can also enhance system per-
formance. Our best model achieves 47.91%WER on the validation
split and 68.45% WER on the test split.

5.2.3 Voice Activity Detection from IMU. From our experiments, it
is difficult to obtain a functional IMU feature extractor by directly
training the IMU encoder on the ALT task, because IMU signal is
not as informative as acoustic data when the goal is to predict words.
To maximize the use of IMU data, rather than immediately tackling
the problem of ALT with only IMU data, we first attempt a relevant
task of lower complexity: voice activity detection (VAD), the task of
detecting zones of vocal activity. VADwith audio as inputs is usually
an essential step to preprocess data for ASR systems to lower the
downstream processing latency [3, 11]. Inspired by this, we hope
to provide additional meaningful inductive bias for consequent
transcription modules by performing VAD training on the IMU
encoder. We integrate the IMU encoder into our multimodal ALT
system after it is well-trained on the VAD task.

The annotation of VAD is obtained from audio recordings. For
each recording, we select a loudness threshold that is slightly higher
than the loudness of the sound of breaths. We get a rough VAD
annotation by treating all frameswith a volume above this threshold
as voiced and the rest as unvoiced. Afterward, IMU signals of songs
are segmented into 5-second clips for training.

4https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/vsr/self_large_vox_433h.pt

−0.10
−0.05

0.00
0.05
0.10

Au
di

o
w

av
ef

or
m

0 1 2 3 4 5
time (s)

0.3
0.4
0.5
0.6
0.7

VA
D

 o
ut

pu
t

pr
ob

ab
ilit

y

Figure 4: An audio clip and the corresponding IMU VAD’s
output. Highlighted area represents actual/predicted voiced
segments. The orange horizontal line in the VAD output
figure is the classification threshold.

Table 4 shows the results of our IMU VAD model. On the test
split, we achieve an accuracy of 74.36%, an F1 score of 82.86%, and
a 67.09% macro F1. These results suggest the correlation between
the wearable IMU sensor and microphone recording data, and our
model can successfully capture this correlation. Fig. 4 shows the
relationship between audio waveform and IMU VAD output in a
more intuitive way. We can find that VAD output probabilities are
low at unvoiced frames while becoming higher when audio frames
contain voice activities.

5.3 Multi-Modality ALT
We evaluate our multimodal ALT system in Fig. 1 on the N20EM
dataset. Before training the whole system, we adopt a transfer learn-
ing strategy by loading the modality-specific encoders trained in
single-modality experiments. Unlike in section 5.2, we also simulate
realistic environments by adding corresponding musical accompa-
niments to the audio signal with different signal-to-noise ratios
(SNRs). We train and evaluate our system on the mixed data above
to test system robustness. We compare different modality combi-
nations in −10,−5, 0, 5, 10 dB SNRs, as well as clean scenarios (no
accompaniments).

5.3.1 Quantitative Analysis. Quantitative results are reported in
Table 5. Firstly, we compare the audio-only system with the audio-
visual system. We notice that the audio-visual system performs
much better than audio-only in low SNR scenarios. For example,
in −10 dB, the audio-visual system significantly outperforms the

Table 5: WER(%) of various modality combinations in dif-
ferent SNR scenarios on N20EM dataset. A: Audio-only ALT,
A-V: Audio-Visual ALT, A-V-I: Audio-Visual-IMU ALT.

SNR (dB) Validation Test
A A-V A-V-I A A-V A-V-I

-10 74.33 42.50 41.87 90.96 64.83 63.92
-5 45.45 36.91 36.91 63.02 54.68 54.68
0 25.28 22.70 22.81 35.70 34.42 34.44
5 16.06 15.57 15.06 22.19 22.38 22.89
10 12.37 12.96 12.51 17.41 17.41 17.03

∞ (clean) 9.65 9.56 9.45 13.00 12.81 12.71

Avg. 30.52 23.37 23.10 40.38 34.42 34.27

https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/vsr/self_large_vox_433h.pt
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Table 6: Qualitative Results. Insertions are marked in
underline and red, and substitutions are marked in italics
and cyan.

Text

Reference Son of god love’s pure light

Clean A The son of god loves pure life
A-V Son of god loves pure life
A-V-I Son of god loves pure ligh

Reference Wonder how I got along

Noisy A What is how I got a lot
A-V Wander how I got a long
A-V-I Wonder how I got a long

audio-only system by about 30%WER. As the SNR level increases,
the performance of the two systems gradually converges. When
there are no accompaniments, an audio-visual system achieves
9.56% WER on the validation split and 12.81% WER on the test
split, which exceeds the performance of an audio-only system. We
also report the average WER on the above six scenarios and find
that the audio-visual system outperforms the audio-only system
by 7.15% and 5.96% on the validation and test splits respectively,
demonstrating its superior robustness.

After adding the IMU modality, we notice that our 3-modal MM-
ALT system achieves the best results in the majority of scenarios.
The MM-ALT system achieves 23.10% and 34.27% WER on the
validation and the test splits on average, surpassing both audio-
only and audio-visual configurations. Without accompaniments,
our multimodal system achieves 9.45% WER on the validation split
and 12.71% WER on the test split, which is the best result obtained
for the N20EM dataset. Admittedly, the improvements brought by
IMU modality is not significant, which indicates that IMU modality
is not as promising as video modality. However, its effectiveness
is still not negligible. We leave it for future work to maximize the
effectiveness of the IMU modality.

5.3.2 Qualitative Analysis. Apart from the quantitative analysis,
we also show the qualitative results in Table 6. We show one case
from the clean scenario and one from a noisy (mixed with accom-
paniments) scenario. More quantitative results are displayed in
Appendix C. In the clean case, the audio-only system has three
word errors, including one insertion and two substitutions. Both
audio-visual and audio-visual-IMU models misspell “love’s” and
“light”, but for the word “light” the three-modal system’s output
has fewer character-level errors (only one missing character). Like-
wise, in the noisy case, the MM-ALT system also performs better
than its audio-only and audio-visual counterparts by correcting the
substitutions of "What" and "Wander" as well as the insertion of
"is". Although the word "along" in reference is not fully recovered,
the transcription from the MM-ALT system is closer to the ground
truth than the transcription from the audio-only system.

5.3.3 Ablation Study. To validate the effectiveness of our proposed
RCA mechanism, we conduct an ablation study for the feature fu-
sion module in our MM-ALT system. The results are summarized
in Table 7. To magnify the differences, we evaluate the ALT perfor-
mance in −10 dB SNR scenario. We find that without cross attention

Table 7: Ablation study of the Residual Cross Attention (RCA)
in -10dB scenario of three modalities. CA: Cross Attention,
SA: Self Attention.

Method Validation Test

w/o CA 42.47 66.93
w/o SA 42.67 64.47
RCA 41.87 63.92
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Figure 5: Visualization of self-attention and cross-attention
weights in RCA module of audio modality. We use brighter
colors to highlight stronger attention.

shortcuts, the ALT performance will drop 0.6% and 3.01% WER on
the validation and test splits. Without a self-attention mechanism,
the ALT performance will decrease by 0.8% and 0.55%WER respec-
tively. These results suggest that RCA contributes to better feature
fusion.

To further prove the effectiveness of the RCA mechanism, we
visualize the attention maps in the RCA module when audio modal-
ity serves as the source, including self-attention and cross atten-
tion maps, as shown in Fig. 5. We observe that these three atten-
tion maps have captured common attention patterns. Furthermore,
audio-video cross attention and audio-IMU cross attention can also
extract missing relationships between time frames that are not
captured by self-attention.

6 CONCLUSION
In this paper, we proposed a multimodal lyric transcription system,
MM-ALT. Firstly, we curated a multimodal ALT dataset N20EM
to facilitate building the system. Then, we presented an audio-
based transcription method that surpasses existing state-of-the-art
approaches. Next, we built modality-specific encoders based on
video and IMU modalities. For video, we attempted the new task of
lyric lipreading. For the IMU modality, we made the first attempt
at frame-level VAD, which showed promising results and demon-
strated the correlation between IMU and audio data. Finally, we
used RCA, our proposed feature fusion method, to fuse informa-
tion from different modalities to obtain the final transcription. Our
series of attempts revealed that introducing additional modalities
improves transcription performance and makes the model more
robust to perturbations of musical instruments.
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