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ABSTRACT
Automatic lyric transcription (ALT) is a nascent field of study at-
tracting increasing interest from both the speech and music in-
formation retrieval communities, given its significant application
potential. However, ALT with audio data alone is a notoriously
difficult task due to instrumental accompaniment and musical con-
straints resulting in degradation of both the phonetic cues and the
intelligibility of sung lyrics. To tackle this challenge, we propose
the MultiModal Automatic Lyric Transcription system (MM-ALT),
together with a new dataset, N20EM, which consists of audio record-
ings, videos of lip movements, and inertial measurement unit (IMU)
data of an earbud worn by the performing singer. We first adapt the
wav2vec 2.0 framework from automatic speech recognition (ASR)
to the ALT task. We then propose a video-based ALT method and
an IMU-based voice activity detection (VAD) method. In addition,
we put forward the Residual Cross Attention (RCA) mechanism
to fuse data from the three modalities (i.e., audio, video, and IMU).
Experiments show the effectiveness of our proposed MM-ALT sys-
tem, especially in terms of noise robustness. Project page is at
https://n20em.github.io.

CCS CONCEPTS
• Applied computing→ Sound and music computing; • Infor-
mation systems → Music retrieval; Speech / audio search;
• Computing methodologies → Neural networks; • Human-
centered computing → Ubiquitous and mobile computing sys-
tems and tools.
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1 INTRODUCTION
Automatic lyric transcription (ALT) is the task of recognizing lyric
text from singing. The supplementing of textual information via
ALT often facilitates solutions to other music information retrieval
problems, such as lyric alignment [27], query by singing [30], audio
indexing [25], and music subtitling [24]. Additionally, ALT systems
can be augmented to appraise singing from various linguistic or mu-
sical aspects, such as word intelligibility and pronunciation[53]. Re-
cently, research inALT has become increasingly active, as evidenced
by the emergence of benchmark singing datasets, e.g., [17, 50, 51],
and further studies of advanced acoustic modeling techniques, e.g.,
[8, 20].

To our knowledge, ALT systems thus far are built with audio-
only data, which has arguably led to a plateau in research efforts
plagued by the following reoccurring challenges:

Difficulty of the ALT task. Since musicality distinguishes
singing from speech, a singer inevitably sacrifices some richness
of linguistic features such as word stress and articulation to com-
pensate for musical features such as melody, tempo, and timbre.
Consequently, singing is generally less intelligible than speech
[64]. This insufficient richness of linguistic features handicaps ap-
proaches adapted from automatic speech recognition (ASR) to ALT.
This might account for the performance gap (19.60% vs. 8.7% word
error rate) of the same acoustic model between ALT [17] and a
similar-scale ASR task [59].

Nonconformity with human perception patterns. The per-
ception of speech extends beyond the auditory realm, as observed
by the McGurk effect [46] that visual information can substan-
tially contribute to auditory perception. Studies have shown that
visual cues of speech play an essential role in language learning
[18, 48], lending further support to the notion that human auditory
perception relies on multimodal information.

Insufficient robustness. Given the two points above, it is rea-
sonable to surmise that attempting ALT on audio-only recordings in
challenging signal-to-noise ratio (SNR) environments would proba-
bly yield unsatisfactory results. Coupled with lowered intelligibility
over speech and the lack of external cues, the added factor of noise
(e.g., accompaniments) further increases the difficulty of retrieving
information from musical audio.
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Due to the interconnected relationship between sound produc-
tion and observable lip movements, it is clear that adding the modal-
ity of visual information to the ALT system is a promising prospect
at present. Recent advances in audio-visual speech recognition
(AVSR), e.g., [45, 66], show that audio-visual models perform better
than their audio-only counterparts, suggesting that including addi-
tional sensory information on top of the acoustic signal enhances
the overall performance of ALT systems by enriching the input to
the model. We assume that training an ALT system on multimodal
data is a viable solution to the challenges mentioned earlier.

Additionally, inertial measurement unit (IMU) data from wear-
able devices are an augmentation o�ering potential for improving
system performance. In the early stages of data collection, we ob-
served that participants tended to make rhythmic head movements
and facial expressions along with the music, in addition to regular
pronunciation e�orts during singing. This was especially obvious
for those who displayed higher levels of musicality. Furthermore,
the jaw movements of singers are highly correlated with the pronun-
ciation of lyrics. We assume that these additional cues are valuable
in improving lyric recognition and increasing system robustness.
We useeSense[38], an earbud augmented with inertial sensors, to
capture data of facial and head movements. This device has been
proven to reliably detect head-, jaw-, and mouth-related movements
[44, 60, 62], facial expression [41], speakers in conversations [52],
and even human emotions [60].

We conduct this work to validate our assumptions. The contri-
butions are summarized into three aspects:

� We present the MultiModal Automatic Lyric Transcription
system (MM-ALT), which utilizes three modalities of input:
audio, video, and signals from wearable IMU sensors. To fa-
cilitate building the system, we curate the N20EM dataset for
multimodal lyric transcription. We create a group of models
on this dataset that can perform multimodal lyric transcrip-
tion with varying combinations of modalities, obtaining a
minimum word error rate (WER) of 12.71%. We further reveal
an increase in system robustness by introducing additional
modalities. With severe perturbations of musical accompani-
ments (-10 dB SNR), our system can achieve 27.04% absolute
lower WER compared to its audio-only counterparts.

� We initialize two new tasks: lyric lipreading and IMU-based
voice activity detection (VAD). In the lyric lipreading task,
we attempt to recognize lyrics in singing utilizing only video
information. Our video encoder is the �rst attempt to re-
trieve language-related information from singing recordings
without the help of audio input. As to the IMU-VAD task, our
IMU encoder is the �rst attempt at building a frame-level
VAD system solely from motion data captured by a wear-
able IMU device. Our experiments elucidate the correlation
between the IMU and audio modalities.

� We propose Residual Cross Attention (RCA), a new feature
fusion method to better fuse the multimodal features using
self-attention and cross-attention mechanisms. We demon-
strate the e�ectiveness of this new modality fusion method
in our ALT system by comparing it with various feature
fusion methods.

2 RELATED WORK
2.1 Automatic Speech Recognition
The development of deep neural network (DNN) techniques has
revolutionized ASR by prompting a shift in paradigm from hidden-
Markov-model- (HMM-) based systems, to DNN-HMM hybrid mod-
els, and �nally, to end-to-end (E2E) models [42]. Compared to previ-
ous models, E2E ASR systems possess more consistent optimization
objectives, more simpli�ed pipelines, and more compact model
structures[42]. The Connectionist Temporal Classi�cation (CTC)
[26] and Attention-based Encoder-Decoder (AED) [5, 13] are two
mainstream E2E ASR models. Jointly optimizing the shared encoder
of AED and CTC models in a multitask learning framework greatly
improves convergence and mitigates the misalignment issue of
AED models [29, 39].

Training state-of-the-art ASR models under supervised learning
framework requires a large amount of transcribed data, which is
too demanding for low-resource languages. In recent years, it has
become a trend to use self-supervised learning (SSL) techniques
to build ASR systems. By utilizing easy-to-access unlabeled data,
SSL models can learn general data representations to facilitate
downstream tasks. Models such as wav2vec 2.0 [4], autoregressive
predictive coding [16], and HuBERT [31] can learn very powerful
semantic representations of audio. These models can achieve im-
pressive results even with very limited labeled data, demonstrating
the feasibility of low-resource speech recognition.

It is convenient to incorporate multimodal input into E2E ASR
models, especially a simultaneous audio and video signal. Audio-
visual speech recognition (AVSR) brings machines closer to how
humans perceive speech. Lots of research supports the notion that
adding video input to the ASR systems has positive e�ects on recog-
nition performance, e.g., [45, 58, 66, 67, 77]. In particular, Audio-
Visual Hidden Unit BERT (AV-HuBERT) [65, 66] notably outper-
forms previous state-of-the-art models in both lipreading and AVSR
tasks by learning the joint representation of a synchronized speech
and audio signal.

2.2 Automatic Lyric Transcription
ALT is the counterpart problem of ASR in the �eld of music infor-
mation retrieval. The research of ALT started from [30], by adapting
an HMM model to build a Japanese lyric transcription system. Then,
Mesaros and Virtanen studied the in�uence of in-domain lyric lan-
guage models (LM) [49]. [47] leveraged musical structure to solve
the ALT problem by using the repetitive chorus of one song to im-
prove the consistency and accuracy of their ALT system. Afterward,
Kawai et al. �rst attempted a deep learning approach to ALT by a
DNN-HMM model [37]. In the baseline system constructed for the
DSing dataset [17], a contemporary state-of-the-art acoustic model
TDNN-F was used for ALT. Demirel et al. then utilized a convolu-
tional neural network (CNN) and time-restricted self-attention to
extract more robust features before feeding the input to the TDNN-
F [19]. Gupta et al. tried building a genre-informed acoustic model
for ALT systems directly on polyphonic singing audio [27]. Demirel
et al. also built a multi-stream TDNN-F model [20] that performed
better than the original version. More recent network architectures
such as Transformers have also been used in ALT systems [8].
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One reason for the slower progress in developing ALT systems
compared to advancements in ASR, is the inaccessibility of large-
scale singing datasets [75]. Therefore, some researchers have fo-
cused on providing basic support for the ALT problem from a data
standpoint. For example, Dabike et al. built a pipeline to preprocess
the DAMP Sing! 300x30x2 dataset [10] to form an utterance-level
dataset suitable for ALT [17], and Meseguer-Brocal et al. built a
large-scale popular music dataset, DALI, containing synchronized
audio, lyrics, and notes [50, 51].

Another approach to alleviate the problem of insu�cient data
is data augmentation. For instance, Kruspe adjusted speech data
to make it more "song-like" by random time stretching and pitch
adjusting [40]. Basak et al. used a vocoder-based synthesizer to
generate singing voices according to natural speech [8]. Lastly,
Zhang et al. proposed aligning lyrics with melodies before adjusting
duration and pitch during data augmentation [75].

2.3 Multimodal Learning
Humans perceive the world via di�erent modalities,e.g., vision,
sound, touch, and smell. These modalities have heterogeneous and
complementary information, enabling humans to understand their
surroundings better. Therefore, it is natural to design multimodal
systems to process and fuse multiple modalities' high-dimensional
inputs simultaneously. Given recent advancements in deep learning
techniques, multimodal methods have surpassed their single-modal
counterparts in empirical applications. For example, [32, 63] com-
bined RGB and depth images to improve semantic segmentation;
[1, 45, 65, 66, 68] adopted video and audio modalities to boost the
performances of ASR and active speaker detection systems; [33, 69]
fused multi-view images or videos and IMU data to bene�t 3D hu-
man pose estimation. Apart from empirical results in previous liter-
ature, Huang et al. proceeded to formalize the multimodal learning
problem into a theoretical framework. They proved that learning
with multiple modalities results in more accurate estimated repre-
sentations of latent spaces, which can achieve better performance
of learning than using its subset of modalities [34].

One fundamental problem in multimodal learning is to integrate
multimodal data in a way that can exploit the complementary re-
lationship and redundancy of multiple modalities [7]. A common
technique is to fuse individual modality inputs or intermediate fea-
tures together. This fusion operation could be concatenation, e.g.,
[45, 65, 69, 71], addition, e.g., [32, 33, 63], or incorporation of an
attention mechanism, e.g., [12, 68, 73, 74, 76]. Given the success of
transformers in computer vision [22, 43], natural language process-
ing [21, 70] and speech processing [4, 31], transformers are now
widely used to learn multimodal representations. Among them,
Perceiver models iteratively distill multimodal inputs into a tight
latent bottleneck and build latent transformers to process these
latent features [9, 35, 36]. Nagrani et al. proposed the framework
of a Multimodal Bottleneck Transformer (MBT), which fuses the
multimodal data via attention bottlenecks [54].

3 DATASET
This section describes the construction process and the preprocess-
ing procedures of our N20EM dataset.

3.1 Corpus Curation
We adopted the same 20 songs used in [23] for practical reasons
of rich phonemic coverage, ease of learning, and variation in mu-
sical features like genre and tempo. Instead of excising repeated
lyrics and scat singing, we opted to preserve all utterances for
completeness of data and naturalness of singing from participants.
Seventeen males and thirteen females were recruited from a local
university, with musical backgrounds ranging from no formal vocal
training to amateur level exposure. Participants spoke English with
accents including North American, European, Indian, East Asian,
and Southeast Asian. Participants were free to choose songs they
were more familiar and comfortable with singing from the 20 songs.
However, we limited each song only to be selected by a maximum
of 10 participants to encourage a greater selection diversity within
each participant's repertoire and achieve a more balanced dataset.

3.2 Data Collection Procedure
All data were recorded in a soundproof studio. Our setup consisted
of three main components:

� An Audio-Technica 4050 condenser microphone with a pop
�lter was used to record audio data at 32-bit depth and 44.1
kHz sampling rate using Adobe Audition. A monaural head-
set was used for playback of musical accompaniment to
participants during singing.

� An earbud,eSense[38], containing several built-in compo-
nents, including an IMU sensor, a speaker, and a microphone,
was used to record the kinesthetic activity of the head, jaw,
and lips during recording at a sampling rate of 100 Hz.

� A Sony AX4 video camera and a ring light were placed
in front of participants, focused on the lower half of each
singer's face, to capture footage of movements of oral articu-
lators (jaw, lips, tongue) at 1920x1080 pixels, at 50 Hz frame
rate.

Participants were instructed to minimize bodily movements such
as hand gestures and body swaying to reduce noise factors in data,
such as accidental obstruction of video footage or anomalous vari-
ance in the sensory data. Lyric sheets for all songs were printed
and placed on a music stand by the microphone for the subject's
reference. The tempo and key of each song were predetermined.
For comfort in vocal range, participants were given the option of a
male-vocals arrangement or female-vocals arrangement for songs
with greater variance in melodic range. Although the backing tracks
fed to participants included vocals, participants were given some
freedom in the rendition of pitch and rhythm during singing. When
a track with all the lyrics clearly sung was obtained, the subject pro-
ceeded to the next song. A few pronunciation errors were allowed
as long as the utterance remained clear.

Since singing is often studied in tandem with speech, we also
collected read versions of the song lyrics for future comparative
studies. For each song, the selected lyrics were read �rst, then sung
with the aid of a backing track in a separate recording afterward.
We believe this is bene�cial for future research on the quantitative
di�erence between singing and parallel speech1.

1Presently, the parallel speech recordings are not used in the study since the focus of
this paper is to build an ALT system.
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Table 1: Division of data into di�erent sets for ALT system

Set Duration Number of Utterances

Total 5 h 23 min 5116
Train 4 h 1 min 3803 (74%)
Validation 35 min 616 (12%)
Test 47 min 697 (16%)

3.3 Data Preprocessing
Data from di�erent modalities were �rst synchronized with 40 ms
precision. For video recordings, following the work of [65], we �rst
down-sampled videos to 25 Hz, then cut out 96� 96 Regions-Of-
Interest (ROIs) centered around the mouth. Only cropped videos
containing lip areas will appear in the public dataset to protect
participant privacy. Audio data were down-sampled to 16 kHz to
match the input speci�cation of wav2vec 2.0 [4].

We opted for an utterance-level annotation of lyrics. First, we
manually annotated the starting and ending timestamps of each
utterance. The standard of annotation was determined mainly by
natural factors such as musical cadence or practical aspects such as
preferring consonant boundaries over vowel boundaries between
utterances. The annotation was done using spectrogram informa-
tion and the marker function in Adobe Audition. Second, actually
sung words were transcribed to serve as the ground truth for ALT.
When they were di�erent from the correct lyrics that should be
sung, we used a set of notations to mark di�erent types of errors.
We believe this information will be helpful for future singing pro-
nunciation evaluation research on this dataset2. Please refer to
Appendix A for the annotation details.

After obtaining the annotation, the recordings of di�erent modal-
ities were all segmented to utterance level according to the anno-
tation. If any, silence, breaths, or non-phonemic noise in between
utterances were excised from the data. Then, the dataset was split
into training, validation, and test sets. We ensure that no subset
contained utterances from the same song to test the generalization
abilities of the ALT systems. Table 1 shows the statistics of di�erent
subsets.

4 MM-ALT SYSTEM
In this section, we �rst formalize the task of multimodal ALT and
then describe our proposed MM-ALT for addressing the problem.

4.1 Problem Formulation
We consider the multimodal setting for automatic lyric transcrip-
tion. More speci�cally, given the synchronized singing audio signal
x ¹aº , video signalx ¹vº , and IMU signalx ¹iº , our goal is to transcribe
the lyrics, i.e., obtain a word sequenceF 1:( representing the corre-
sponding lyrics of the signal. As shown in Fig. 1, we propose the MM-
ALT system to solve this problem. The system� consists of a feature
representation learning frontend and automatic lyric transcription
backend. Firstly, modality-speci�c encoders� ¹aº

enc• � ¹vº
enc• � ¹iº

enc are
adopted to extract the features for each modality of signal. Then
the feature fusion module� fuseprojects the features from di�erent

2The error annotations are not utilized in the current system.

modalities into the same latent space and integrates them into more
representative features. Finally, the hybrid CTC-Attention backend
� back transforms the sequence of fused features into the lyrics. The
whole system can be represented as:

F 1:( = � ¹x ¹aº•x ¹vº•x ¹iºº

= � back¹� fuse¹�
¹aº
enc¹x

¹aºº• � ¹vº
enc¹x

¹vºº• � ¹iº
enc¹x

¹iºººº (1)

4.2 Audio Encoder
The audio encoder� ¹aº

encaims to learn acoustic representations from
the audio signal. Traditionally, the TDNN network and its variants
dominate the �eld of ALT [17, 19, 20]. In this paper, we propose
to utilize wav2vec 2.0 [4] as the audio encoder for ALT through a
transfer learning paradigm because wav2vec 2.0 generalizes well
into new domains with low-resource labeled data. From our experi-
ments, we notice that when accepting only the audio signal, our
system achieves state-of-the-art performance, exceeding the results
of all published approaches on the DSing dataset [17], one of the
mainstream lyric transcription datasets.

Wav2vec 2.0 consists of a feature encoder and a context network.
The feature encoder has seven blocks, each containing a temporal
convolution followed by a layer normalization and a GELU activa-
tion. It takes raw audio and outputs latent speech representations.
The context network contains 24 transformer blocks with model
dimension 1,024, inner dimension 4,096, and 16 attention heads.
It transforms latent speech representations into context represen-
tations by capturing global temporal information. Each frame of
�nal output f ¹aº is about 20 ms and has 1,024 dimensions. We refer
readers to Appendix B for the detailed implementations. To transfer
the knowledge of wav2vec 2.0 from the speech domain into the
singing domain, we remove the quantization module in the original
wav2vec 2.0 structure and �ne-tune the model on singing datasets.

4.3 Video Encoder
The video encoder� ¹vº

enc seeks to learn visual representations of
speech from cropped lip videos. Since this is the �rst attempt to
transcribe lyrics from video modality, there are currently no bench-
mark models. We propose adopting the Audio-Visual Hidden Unit
BERT (AV-HuBERT) [65] in our system, which is the state-of-the-art
approach in the task of lip reading for speech recognition.

AV-HuBERT consists of an image encoder and a backbone trans-
former encoder. The image encoder is built by a 3D convolutional
layer followed by a ResNet-18 block [28]. Similar to the context
network in wav2vec 2.0, the transformer encoder has 24 blocks,
each of which has a model dimension of 1,024, a feed-forward di-
mension of 4,096, and 16 attention heads. Each frame of resulting
representationsf ¹vº is about 40 ms and has 1,024 dimensions. We
remove the audio layer in the original structure and only feed the
video modality into AV-HuBERT.

4.4 IMU Encoder
To validate the assumption that IMU motion data correlates with the
audio signal, and further exploit such correlation to help the lyric
transcription, the IMU encoder� ¹iº

encconverts IMU signal to features
that correspond to speaking. We utilize a convolutional-recurrent
neural network (CRNN) containing 1D convolutional layers and
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Figure 1: An overview of the MM-ALT system.

Figure 2: Structure of IMU CRNN.

bi-directional Gated Recurrent Unit (GRU) layers, resembling the
best-performing network CNN-BiLSTM in [55]. Fig. 2 shows the
structure of our IMU CRNN. The input of CRNN contains8channels,
including three axes of accelerometer data, three axes of gyroscope
data, and the quadratic sums of di�erent channels of the two sensors,
respectively. When incorporated into the ALT system, the output
of the last GRU layerf ¹iº is used as the IMU features. Eachf ¹iº has
20 ms frame length and 120 dimensions.

4.5 Feature Fusion Module
The feature fusion module� fuse is designed to exploit the com-
plementary relationship and redundancy of di�erent modalities.
As illustrated in Fig. 3, the dimensions of features from di�erent
modalities are �rstly uni�ed. We up-sample the video to the same
time resolution as the features of audio and IMU. Then we pad or
truncate the features of the other two modalities to standardize the
number of frames amongst the three modalities before the fusion
operation. For IMU features, we adopt a linear layer following a
GELU activation to increase its dimensions from 120 to 1024.

We propose a new attention module named Residual Cross At-
tention (RCA). RCA is built upon Transformer block architecture.
An RCA block accepts inputs from multiple modalities. One input
is regarded as the source, providing keys and values, while other
inputs are considered as the reference, which provides queries. Be-
sides the multi-head self-attention (MHSA) [70] operation on the
source, RCA adds extra shortcuts by computing the multi-head
cross-attention (MHCA) operation between the source and each
reference. RCA can be represented by Eq. 2 and Eq. 3:

f 0 = LN¹fsrc ¸ MHSA¹fsrcº ¸ MHCA¹fsrc•f ref1º

¸ MHCA¹fsrc•f ref2ºº
(2)

f = LN¹FFN¹f 0º ¸ f 0º (3)

where LN refers to a layer normalization layer, and FFN is a positional-
wise feed forward network the same as the one in a Transformer
block [70]. There are three RCA modules during the feature fusion,
and each modality's input serves as the source in one of the mod-
ules. Finally, we add the output together and obtain the �nal fused
featuresf .

The motivations behind the proposal of RCA in multimodal sce-
narios are explained as follows. Firstly, RCA adopts self-attention
and residual shortcuts to extract global relationships among fea-
tures of all frames and reserves information of source modality.
Secondly, RCA takes advantage of complementary information
from reference modalities through its cross-attention mechanism.
Speci�cally, the queries from reference modalities help downstream
modules delve into missing relationships between time frames that
are not attended to when using only self-attention.

4.6 Hybrid CTC-Attention Backend
Inspired by [72], we design a hybrid CTC-Attention backend to map
a sequence of fused featuresf1•f2• ”””•f) 2 R1024into a sequence
of tokensF 1•F2• ”””•F( 2 V, whereV is the vocabulary. In our
implementations,V has 31 tokens including 30 character targets
and a word boundary token.

Firstly, we adopt a 2-layer MLP as the encoder to further en-
code the fused representationsf1:) into e1:) 2 R) � 1024. Then we
design two branch networks, one of which is used to output CTC

Figure 3: An illustration of the feature fusion module and
the proposed Residual Cross Attention (RCA) algorithm.
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predictions and another is used as the decoder to output Sequence-
to-Sequence (S2S) predictions. Speci�cally, a projection layer is used
to mape1:) into the output probabilities for each frame?¹cCjeCº,
where the CTC predictionscC 2 V. e1:) are also fed into the S2S de-
coder, which is parameterized via a location-aware attention-based
GRU [14], to be autoregressively decoded into target probabilities
?¹F2jF 1:2� 1•e1:) º.?¹cCjeCº and?¹F2jF 1:2� 1•e1:) º are used for two
di�erent training and inference schemes, which will be elaborated
in the next section.

4.7 Training and Inference
The whole system is trained with cross-entropy loss of outputs
from both connectionist temporal classi�cation (CTC) [26] and
sequence-to-sequence (S2S) [6] attention-based decoder. Suppose
the ground truth transcription isF 1•F2• ”””•F( . The CTC loss can
then be written as:

L CTC = � log?CTC¹F 1:( je1:) º

= � log
Õ

c1:) 2B � 1¹F1:( º

)Ö

C=1

?¹cCjeCº (4)

Here,B is an operation mapping an alignment sequencec1:)
to F 1:( by removing repeated tokens and word boundary tokens.
B � 1¹F 1:( º refers to all the CTC paths mapped fromF 1:( .

The S2S loss can be written as:

L S2S= � log?S2S¹F 1:( je1:) º

= � log
(Ö

2=1

?¹F2jF 1:2� 1•e1:) º (5)

The overall loss function is the addition of the two loss terms
above. We introduce a hyper-parameter,U, to balance both losses.

L = ¹1 � UºL S2Ş UL CTC (6)

During inference, the most likely lyrics will be predicted con-
sidering the output of CTC, S2S, and language model (LM), by the
following equation:

F �
1:( = arg max

F1:(
Vlog?CTC¹F 1:( je1:) º

¸¹ 1 � Vº log?S2S¹F 1:( je1:) º ¸ Wlog?LM¹F 1:( º (7)

Here,VandWare two hyper-parameters used to balance three
log-probability terms during the beam search. WhenW¡ 0, the
LSTM language model is enabled. Beam size is set as 512.

5 EXPERIMENTS
In this section, we evaluate our proposed MM-ALT system us-
ing curated N20EM dataset. Speci�cally, we �rstly conduct single-
modality experiments to evaluate the modality-speci�c representa-
tion learning. Then we evaluate the whole system in multimodal
scenarios to demonstrate its e�ectiveness. Finally, we simulate the
realistic environments by adding musical accompaniments as per-
turbations to test the robustness of our MM-ALT system.

5.1 Implementation Details
We build our MM-ALT system using the PyTorch library and Speech-
Brain toolkit [61]. As for more detailed model con�gurations, please
refer to Appendix B. We apply data augmentation during training:

Table 2: WER(%) of ALT systems on Singing datasets. We com-
pare di�erent methods on DSing dataset and build bench-
marks for N20EM dataset. �w. DSing� refers to adding DSing
to the training data.

Method Dataset Validation Test

TDNN-F [17] DSing 23.33 19.60
CTDNN-SA [19] DSing 17.70 14.96
MSTRE-Net [20] DSing - 15.38
Ours Dsing 13.26 14.56

Ours N20EM 12.74 19.68
Ours w. DSing N20EM 9.65 13.00

for the audio signal, we perform SpecAugment [57] in the time
domain; for the video signal, we randomly �ip and crop face images
with the size of 88 following [65]. All models are trained using the
Adam optimizer. For the ALT task, we report the Word Error Rate
(WER) as evaluation metrics.

5.2 Single-Modality Tasks
5.2.1 Automatic Lyric Transcription.We evaluate the performance
of audio encoder together with the automatic lyric transcription
backend on the curated N20EM dataset and DSing [17] dataset,
one of the mainstream ALT datasets. Firstly, wav2vec 2.0 [4] is
pretrained on LibriVox (LV-60k) and loaded into our audio encoder3.
Then we train the models on training split, validate/test the ALT
performance on validation/test split. In inference, we use CTC-S2S-
LM to decode the lyrics. For the DSing dataset, we train an LSTM
LM only on text corpus from DSing training split, which is a subset
of text corpus used by other baselines. While for the N20EM dataset,
we train an LSTM LM on text corpus from LibriSpeech [56], DSing
[17] and the N20EM dataset. We keep this LM con�gurations for
other experiments on the N20EM dataset. Besides, we enable the
training of the fusion module and setf ¹Eº andf ¹8º as zero tensors
for a fair comparison with the multimodal settings.

The evaluation results are summarized in Table 2. We observe
that our proposed system achieves 13.26% and 14.56% WER on the
DSing dataset, outperforming TDNN and its variants [17, 19, 20]
by at least 4.44% on the validation split and 0.40% on the test split.
The performance of our system indicates that we can successfully
adapt the pre-trained model from the speech domain to the singing
domain by exploiting the similarities between speech and singing.

Since our proposed ALT system displays great capability on
the DSing dataset, we adopt it as a strong baseline for the N20EM
dataset. To begin with, we train the system using only the N20EM
dataset and observe12”74%WER on the validation split and19”68%
WER on the test split. When adding the DSing dataset to the train-
ing data, performance is improved to9”65%and13”00%WER on
validation and test splits respectively, demonstrating that having
more singing data during the training enhances the ability of the
system to generalize.

5.2.2 Lyric Lipreading.We initialize a new task in this section,
named as lyric lipreading. This task aims to recognize lyrics only
3https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
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