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ABSTRACT
Phonation modes play a vital role in voice quality evaluation and

vocal health diagnosis. Existing studies on phonation modes cover
feature analysis and classification of vowels, which does not apply
to real-life scenarios. In this paper, we define the phonation mode
detection (PMD) problem, which entails the prediction of phonation
mode labels as well as their onset and offset timestamps. To ad-
dress the PMD problem, we propose the first dataset PMSing, and
an end-to-end PMD network (P-Net) to integrate phonation mode
identification and boundary detection, which also prevents the over-
segmentation of frame-level output. Furthermore, we introduce an
adapted P-Net model (AP-Net) based on an adversarial discrimina-
tive training process using labeled data from one singer and unla-
beled data from unseen singers. Experiments show that the P-Net
outperforms the state-of-the-art methods with an F-score of 0.680,
and the AP-Net also achieves an F-score of 0.658 for unseen singers.

Index Terms— Phonation mode detection, singer adaptation,
coarse-to-fine, CRNN, voice quality

1. INTRODUCTION

Phonation modes [1] are salient characteristics for vocal quality and
health. They are defined by the ratio between the subglottal pressure
and the glottal flow [2]. By identifying three widely used phonation
modes for amateur singers, namely breathy, neutral, and pressed,
the analysis of phonation modes can contribute to the assessment of
the singing performance [3, 4] and the vocal health condition [5, 6].

There is a wide range of studies on phonation modes, one of
which is the medical examination of the vocal condition. Med-
ical examinations use clinical equipment to measure the ratio be-
tween transglottal airflow and subglottal pressure by estimating the
glottogram, the open-closed quotient, and the laryngeal resistance
[3, 5, 7]. However, these methods require precise instruments and
qualified experts to perform invasive examinations. Therefore, most
researchers attempted to build an automatic phonation mode classifi-
cation (PMC) system using signal processing and machine learning
methods. Some PMC research focused on designing hand-crafted
features to differentiate phonation modes [3, 4, 8, 9, 10], while others
performed PMC with fused features [11, 12, 13]. Recently, [14] pro-
posed a residual attention neural network [15] for PMC and achieved
the state-of-the-art (SOTA) classification accuracy. Several singing
datasets have also been proposed for PMC experiments, which were
recorded by professional singers [4, 12, 13].

As introduced above, existing studies only address the PMC
task, where each input audio file only contains a single phonation
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Fig. 1. PMD to predict phonation modes and their boundaries.

mode. Besides, existing PMC models are all trained and tested on
the same singer’s data, and if we want to apply them on new singer’s
singing data, such models need to be fine-tuned or retrained with la-
beled data from that singer; otherwise, the PMC performance will
drop significantly. To address such limitations, we first define the
PMD task as depicted in Fig. 1, which is applicable to various real-
world applications, such as automatic singing evaluation [4, 16],
singing style identification [12, 17], and vocal disorder (nodules and
polyps) diagnosis [6]. Each input audio file contains multiple dif-
ferent phonation modes, and for each detected phonation mode, the
PMD system will predict an onset time, an offset time, and a label.
Since there is no existing singing dataset suitable for the PMD task,
a PMD dataset, PMSing, is collected in this work. Then we propose
an end-to-end encoder-decoder PMD model, namely P-Net, which
provides coarse-to-fine resolution outputs of the decoder to give less
fragmented predictions on the phonation mode labels and the corre-
sponding boundaries. Based on P-Net, we further propose a singer
adapted PMD model (AP-Net), which does not require labeled data
from unseen singers for training.

The main contributions of this paper include: 1) collecting the
first PMD dataset 1, 2) proposing the P-Net to address the PMD prob-
lem, and 3) proposing the AP-Net to improve the performance of
P-Net on unlabeled data from unseen singers 2.

2. DATASET

Existing phonation mode datasets [4, 12, 13] are only suitable for
PMC but not for PMD, because their audio samples are relatively
short (around one second) and each sample only contains one phona-
tion mode. Therefore, we propose the first PMD dataset, named as
PMSing.

The song list in [18] is adopted to collect PMSing for a wide
range of pitches and a variety of phonemes. Two male and two fe-
male participants who both have received professional vocal training

1We release the dataset at https://doi.org/10.5281/zenodo.7657058
2The code is available at: https://github.com/aliceyixin/PMD-Singing



Singer ID Total duration
(hours:minutes:seconds) # of songs # of utterances # of phonation modes

in each utterance Duration of each phonation mode (s)

DM 0:38:27 16 470 1 ∼ 11 (4) 0.01 ∼ 6.89 (0.86)

MM 0:13:26 7 148 1 ∼ 14 (5) 0.02 ∼ 4.67 (0.71)

SF 0:11:32 7 112 1 ∼ 9 (5) 0.05 ∼ 4.72 (1.02)

VF 0:27:10 12 360 1 ∼ 12 (5) 0.02 ∼ 4.06 (0.71)

Total 1:30:35 42 990 1 ∼ 14 (5) 0.01 ∼ 6.89 (0.83)

Table 1. Information about the PMSing dataset. The numbers in the last two columns are presented as: min ∼ max (average)

are selected from the choir of our university. The participants are
asked to sing a song using the three phonation modes iteratively and
note down these phonation modes. They are free to choose the num-
ber of songs they can sing within the list. The dataset is recorded in
a sound-proof studio using an Audio-Technica 4050 condenser mi-
crophone with a pop filter and saved in WAV format with a 48kHz
sampling rate and 32-bit depth. Each song is annotated using Adobe
Audition and the annotations are saved in CSV format.

Detailed information of the PMSing is presented in Table 1. The
total duration of PMSing is 1.51 h, containing 42 songs with an av-
erage duration of 2.16 min. Compared to existing PMC datasets, the
PMSing dataset contains a longer duration, and the duration of the
phonation modes varies from 0.01 to 6.89 s. Additionally, all the
audio files in PMSing contain multiple phonation modes.

3. METHODS

A PMD model aims to identify the phonation mode labels in the
singing voice and pinpoint their corresponding onsets and offsets.
Since we only analyze phonation modes for amateur singers, three
classes of phonation modes are detected in this paper, namely
breathy, neutral, and pressed. The flow (resonant) phonation mode
is usually produced by professional singers in classical singing as
reported in [4]. As for the intervals between two phonation modes,
we introduce a rest class to denote the quasi-silent parts.

The PMD problem is formulated as follows. The audio input
feature is denoted as X ∈ RT×M , where T is the total number of
frames and M is the dimension of the feature. The four phonation
classes (including rest) are denoted as C = {c1, c2, c3, c4}. Then
there are two PMD outputs: 1) the predicted phonation labels P̂ =
{p̂1, . . . , p̂N}, where p̂n ∈ C, n ∈ [1, N ], and N is the number
of detected phonation modes, and 2) their corresponding onsets and
offsets Ŝ = {(ô1, ê1), . . . , (ôN , êN )}, where ôn, ên ∈ [1, T ] (ôn <
ên) denote the onset and offset of the n-th detected phonation mode.

3.1. P-Net

P-Net consists of three components: an encoder, a decoder, and an
output ensemble module (see Fig. 2).
Phonation mode encoder The encoder contains B sequential con-
volutional neural network (CNN) blocks, followed by a bottleneck
embedding layer. It takes the audio feature X as input and outputs
the embedding result Z .
Phonation mode decoder Being symmetric to the encoder archi-
tecture, the decoder contains B sequential blocks. Each decoder
block comes with a transposed convolutional module and a recur-
rent neural network (RNN) module. The output of the b-th decoder
block is denoted as QD

b .

Output ensemble
module

Encoder Decoder

Output Input

Fig. 2. Architecture of P-Net.

Output ensemble module For the detection task, the model’s out-
puts are sequential labels and their boundaries. However, directly
using the last layer’s output often suffers from the over-segmentation
problem. Inspired by a study on video segmentation [19], a course-
to-fine (C2F) output ensemble module is proposed for PMD to get a
smooth and accurate prediction result. It first projects the outputs of
the decoder to probabilities and then upsamples them to the input’s
temporal size T . Next, the upsampled probabilities are summarized
by applying a weight term αb to produce the frame-level output F .
More specifically, the ensemble output F is computed by:

F =

B∑
b=1

αb ∗Upsample
(
softmax(QD

b ), T
)
, (1)

where αb is the ensemble weight of each output (i.e., αb >
0,
∑

b αb = 1), and the upsampling function Upsample(·, T )
maps the input to temporal size T using linear interpolation.

Based on the ensemble output F , the frame-level prediction
P̂ ′ = {p̂′1, . . . , p̂′T } can be obtained by choosing the class label
yielding the maximum probability for each frame:

p̂′t = argmax
ci∈C

Ft,ci , 1 ≤ t ≤ T, (2)

where Ft,c is the ensemble output of the t-th frame for class ci.
By grouping frame-level outputs {p̂′1, ..., p̂′T } and removing

the rest segments, the predicted sequence of phonation labels
{p̂1, ..., p̂N} can be obtained, along with their onsets and offsets
Ŝ = {(ô1, ê1), . . . , (ôN , êN )}.
Optimizing P-Net When training the P-Net model, the frame-level
ground truth P ′ = {p′1, ..., p′T } is used to compute the cross-entropy
loss LCE:
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Fig. 3. AP-Net: Adversarial discriminative singer adaptation train-
ing and test stages.

LCE =− 1

T

T∑
t=1

4∑
i=1

(
1p′t=ci

log P(p̂′t = ci)

+ (1− 1p′t=ci
) log P(p̂′t ̸= ci)

)
,

(3)

where 1p′t=ci
is the indicator function, and it equals to one when

p′t = ci and equals to zeros otherwise.
To reduce over-segmentation errors, the smoothing loss [20]

LSM is introduced to smooth the frame-level output by minimizing
the difference of log-probability within the range of τmax between
adjacent frames, where τmax is a smoothing threshold parameter:

LSM = − 1

T

T∑
t=1

||min(τt, τmax)||2,

τt = | logFt,c − logFt−1,c|,

(4)

The final loss to optimize P-Net is

LPMD = LCE + λLSM, (5)

where λ controls the weight of the smoothing loss.

3.2. AP-Net

The PMD model trained on one singer usually does not fit other
singers. When adapting the model to an unseen singer, we have to
fine-tune the model with labeled data of the new singer.

To address this problem, inspired by [21], we propose the AP-
Net based on P-Net, which can generalize well to unseen singers
without using additional labels. As shown in Fig. 3, the singer who
comes with labeled data is the source singer. The input audio fea-
ture and the phonation label sequence of the source singer are de-
noted as X src = {x1, ..., xTsrc} and P . Meanwhile, the unseen
singer is the target singer, whose audio feature is denoted as X tgt =
{x1, ..., xT tgt}, where T src and T tgt are the number of frames.
Singer discriminator A singer discriminator D is introduced in
AP-Net to perform singer classification. The source audio feature
X src and the target audio feature X tgt are both fed into the encoder
to get the source and target embedding outputs Zsrc and Ztgt. Then
the discriminator takes the embedding outputs as input and predicts
the possibility that each frame is from the source singer. The outputs
of the discriminator are denoted by D(Zsrc) and D(Ztgt).

Optimizing AP-Net With a pre-trained P-Net, the AP-Net training
stage aims at optimizing the singer discriminator and further tuning
the P-Net encoder to fit the target singer’s data while the decoder is
frozen. The adversarial training strategy is adopted that the discrim-
inator and encoder are optimized in an alternating way. For the dis-
criminator, the following loss is minimized to obtain a better singer
classification performance:

LD =− 1

T src

Tsrc∑
t=1

logD(Enc(X src
t ))

− 1

T tgt

T tgt∑
t=1

log(1−D(Enc(X tgt
t )),

(6)

For optimizing the encoder, the following loss is used:

LEnc = − 1

T tgt

T tgt∑
t=1

logD(Enc(X tgt
t ))− LPMD. (7)

where the first term is to maximize singer classification errors to
allow the encoder to produce similar embedding outputs for both the
source and target singers’ data, and the second term, PMD loss of
the source singer, could stabilize the training process [22, 23].
Testing AP-Net During the test stage, the optimized encoder and
the P-Net decoder are used to test the AP-Net’s performance on both
the source and the target singer’s data.

3.3. Implementation details

For the input audio signal, we calculate the 128-dimension Mel filter-
bank feature as well as its derivatives and second derivatives, using
25-ms window size and a 10-ms hop length from the audio. Both the
encoder and the decoder contain five blocks (i.e., B = 5), each of
which has two convolutional / transposed convolutional layers with
a kernel size of 5.

For training losses, we use τmax = 16 and the weight of smooth-
ing loss λ = 0.15. The Adam optimizer [24] is applied with a learn-
ing rate of 1e-4, together with a Newbob scheduler using an initial
value of 1e-4 and an annealing factor of 0.8. The model is built on
Pytorch library [25] with SpeechBrain toolkit [26] and trained on an
RTX2080Ti GPU for 50 epochs with a batch size of 16. The epoch
with the best PMD performance on the validation set is selected to
evaluate the model.

4. EXPERIMENTS

4.1. Evaluation Metrics

Previous PMC studies [10, 14] only use accuracy as their evaluation
metric for the reason that they do not predict time boundaries. In
our PMD work, each audio sample contains more than one phona-
tion mode, and the number of detected phonation modes may not be
the same as the number of the ground truth phonation modes. More-
over, evaluation metrics need to measure not only the accuracy of the
predicted label but also the correctness of the detected onset and off-
set boundaries. A time tolerance of 0.1 s is permitted for detecting
boundaries in this work.

Therefore, we use evaluation metrics similar to those for sound
event detection [27]. Under the context of PMD, three intermediate
statics are defined as follows:



Model F-score Error rate Training time
per epoch (s)

VD-RANN 0.645 0.37 434

Smoothing-CRNN 0.539 0.68 14

P-Net (ours) 0.680 0.47 9

Table 2. Experiment results for P-Net.

• True positive (TP): there is a phonation mode in the ground
truth with both the same phonation label and boundaries in
the prediction.

• False positive (FP): there is no phonation mode in the ground
truth with both the same phonation label and boundaries in
the prediction.

• False negative (FN): the model fails to predict a phonation
mode with both the correct phonation label and boundaries.

Afterwards, a class-based F-score is computed by taking the av-
erage of F-score on each class (F-score = 2×TP

2×TP+FP+FN ). The er-
ror rate (ER) is calculated by averaging the numbers of substitution
(S), deletion (D), and insertion (I) errors. Substitution is defined as
S = min(FN, FP), which measures the number of phonation modes
in the ground truth that are detected as something else. Deletion, i.e.,
D = max(0, FN − FP), evaluates the number of phonation modes
in the ground truth that does not appear in the predicted output. In-
sertion I = max(0, FP − FN) evaluates the number of phonation
modes in the predicted output but does not appear in the ground truth.

4.2. Baselines

Because there is no existing work on PMD, we construct two base-
lines using PMC models:
VD-RANN is a combination of the vowel detection algorithm [28]
and the SOTA PMC model based on the residual attention network
(RANN) [14]. It first detects vowel segments from a song and then
predicts a phonation mode for each segment with RANN.
Smoothing-CRNN is a convolutional recurrent network (CRNN)
model with a frame-level smoothing post-processing step.

4.3. Experiment results

P-Net results We first compare the PMD results of our proposed
P-Net with the baselines on the PMSing dataset. Table 2 shows that
the P-Net outperforms the VD-RANN and the Smoothing-CRNN
baselines with an overall F-score of 0.680.

The VD-RANN achieves relatively good results by combining
the vowel detection algorithm and the SOTA PMC model. The vowel
detection method works well on detecting boundaries and therefore
yields a low error rate. However, it takes about quadruple more time
than the end-to-end methods because of the intensive signal process-
ing calculation. In addition, the proposed P-Net shows higher F-
score than VD-RANN because the RNN layers can capture the tem-
poral dynamics for long audio whereas the RANN only deals with
short and steady audio. Thus, the RANN model is less effective for
the PMD task in a real singing scenario.

We also compare the P-Net with the Smoothing-CRNN, which
is an intuitive method with easy implementation. It has the same
numbers of CNN and RNN layers as P-Net. It is found that with-
out the coarse-to-fine output ensemble module, the onset and offset
detection performance degrades significantly, resulting in a lower F-
score and a higher error rate than those of P-Net. Furthermore, we

Model Source singer Target Singer

F-score Error rate F-score Error rate

VD-RANN 0.645 0.37 0.523 0.49

Smoothing-CRNN 0.539 0.68 0.320 0.74

P-Net (ours) 0.680 0.47 0.289 0.75

AP-Net (ours) 0.668 0.45 0.658 0.46

Table 3. Experiment results for AP-Net.

Model Breathy Neutral Pressed

P-Net 0.065 0.425 0.182

AP-Net 0.625 0.574 0.601

Table 4. Class-wise F-score for the target singer.

trained a similar Smoothing-CRNN model without RNN layers, and
the overall F-score decreases by 67%. It demonstrates that CNNs
could capture phonation mode features of fixed length audio but can-
not deal with longer and unstable audio with variable length. RNN
is an essential part of PMD model to deal with temporal dynamics,
we thus only consider CRNN as one of the baselines.
AP-Net results A crucial problem in the previous setting is to test
on the data of the same singer as the training set. When adapting the
pre-trained model to a new singer, we can see that the performance
of the first three pre-trained models drops severely, as reported in Ta-
ble 3. In this case, our proposed AP-Net greatly surpasses the base-
lines, achieving the F scores of 0.668 and 0.658 on the source and the
target singers, respectively. The pre-trained VD-RANN, Smoothing-
CRNN, and P-Net could fit the source singer well, but could not gen-
eralize well to an unseen singer. This indicates that the adversarial
training process helps to learn a more singer-generalized embedding.
Note that the VD-RANN shows better results than the Smoothing-
CRNN because the vowel detection step is singer-independent.
Class-wise results Table 4 reports the F-score for each phonation
mode class. The source and target data are from two different male
singers. Compared to the non-adapted model (P-Net), the AP-Net
can significantly improve the class-wise results on the target singer,
especially for the breathy and pressed classes. As for the neutral
class, AP-Net outperforms P-Net by a small margin, because the
feature patterns of neutral phonation mode are fairly common among
same-gender singers.

5. CONCLUSION

Previous work on PMC tries to classify the phonation modes with
prior knowledge of segmentation, which only considers the ideal cir-
cumstance and neglects the application gap. In this paper, we intro-
duce the PMD task to detect phonation modes and their boundaries
for real singing data and create a dataset, PMSing, accordingly. To
address this problem, we first propose the P-Net whose performance
surpasses the baselines built on SOTA PMC approaches with respect
to training efficiency and detection performance. Moreover, we pro-
pose the AP-Net which is trained in an unsupervised and adversarial
way so that it can generalize well on unseen singers’ data. The exper-
imental results of our proposed AP-Net show superior performance
on unseen singers’ data compared with all baseline PMD models.
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