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Abstract—Phonation mode detection predicts phonation modes
and their temporal boundaries in singing and speech, hold-
ing promise for characterizing voice quality and vocal health.
However, it is very challenging due to the domain disparities
between training data and unannotated real-world recordings.
To tackle this problem, we develop a disentangled adversarial
domain adaptation network, which adapts the phonation mode
detection model with the structure of the convolutional recurrent
neural network pre-trained on the source domain to the target
domain without phonation mode labels. Based on our curated
sung and spoken dataset for phonation mode detection, we
demonstrate that the subject and the singing-speech mismatches
cause performance decline. By disentangling domain-invariant
phonation mode and domain-specific embeddings, our method
greatly enhances the effectiveness and explainability of unsuper-
vised adversarial domain adaptation. Experiments show that the
performance drop caused by the subject mismatch is alleviated
via adaptation, resulting in 44.7% and 6.8% improvement of the
F-score for singing and speech, respectively. The singing and
speech domain adaptation experiment indicates that a model
trained on singing data can be adapted to speech, yielding an
F-score of 0.56, commensurate with the F-score of 0.59 achieved
using a model exclusively trained on speech data. By further
investigating the disentangled embeddings, we find that the
phonation mode feature shared by singing and speech is invariant
to pitch. These results inspire reliable and versatile applications in
voice quality evaluation and paralinguistic information retrieval.

Index Terms—Phonation mode detection, voice quality, unsu-
pervised domain adaptation, domain adversarial training.

I. INTRODUCTION

PHONATION modes or types, present in both singing and
speech, can serve as valuable indicators of sung/spoken

voice quality and overall vocal health. The research problem
addressed in this paper is phonation mode detection (PMD)
for multi-phonation audio in various application scenarios.
The three common phonation modes (PM) in singing and
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speech are analyzed: breathy, neutral, and pressed [1], [2].
A PMD system is expected to predict the onset time, offset
time, and label for each detected phonation mode. However,
lack of annotations and domain disparities in actual audio
can pose significant challenges for PMD. Phonation modes
provide insights into various types of vocalizations with a
practical PMD system, which can be used for evaluating the
performance and style of a singer in the music industry [3]–
[5], diagnosing potential voice disorders in clinical settings
[6], and retrieving paralinguistic information [7], [8].

To create a generalized PMD system, we address the re-
search gaps from three perspectives. First, existing PM datasets
[3], [4], [9]–[11] only contain segmented vowels, thus most
studies consider PMD a classification task, where the input
must be a steady vowel and the output is a PM label, and
is not applicable for evaluating real singing or speech. This
task is denoted as phonation mode classification (PMC) in
this paper. In addition, although extensive studies have been
conducted to find a representation for phonation modes, such
as glottal source excitation, acoustic parameters, and deep
learning embeddings [4], [12], [13], these features extracted
from the steady part of vowels can only be used for PMC that
neglects temporal dynamics. Therefore, we create a dataset for
the PMD task, and develop a model from the temporal-spectral
features to estimate phonation mode label sequences and
pinpoint the onset and offset timestamps for each phonation.

Second, in previous studies on PMC [3], [4], [9]–[13], it
is problematic to train and test a model using data collected
from a single individual, as this can lead to overfitting of
the dataset and poor performance on real-world data. The
discrepancy between the ideal testing data and the real test set
may be due to the lack of annotation and domain mismatch.
The manual annotation of phonation modes is a costly and
labor-intensive process requiring expert knowledge, making it
impractical to annotate each audio input to fine-tune the model
with labels. Additionally, in real-world application scenarios, it
is challenging to employ a PMD model across various unseen
domains, which may differ regarding user traits. On one hand,
the PMD model sees a severe performance drop when tested
on unseen data, as depicted in Fig. 1. On the other hand, fine-
tuning a pre-trained PMD model to a new domain requires
annotations of phonation modes labeled by experts. This
problem can be solved by unsupervised domain adaptation
(UDA) [14], which aims to provide an accurate prediction on
the target domain using only labeled data from the source
domain and unlabeled data from the target domain. Most
UDA methods are proposed for computer vision tasks, and



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, XX XXXX 2

some recent studies present domain mismatches for speaker
verification [15], [16], and sound event detection [17].

Lastly, although phonation modes in singing and speech
share similar glottal vibration patterns [2], most research has
primarily focused on either singing technique identification or
paralinguistic information recognition in speech. Few studies
consider phonation modes in both singing and speech together
[12], as the existing datasets for sung [3], [4], [9] and spoken
[10], [11] PMC have been collected separately. This motivates
us to investigate the relationship between singing and speech
by proposing a paired sung and spoken phonation mode dataset
and performing singing and speech domain adaptation.

To address the above issue, we develop a disentangled
adversarial domain adaptation network (DADAN) for PMD
based on unsupervised domain adaptation (UDA) applicable
in various practical scenarios. The unsupervised domain adap-
tation model consists of two stages. First, we build a PMD
system with a phonation mode encoder (PMEncoder) and a
phonation mode decoder (PMDecoder) based on the structure
of a convolutional recurrent neural network (CRNN) to detect
phonation modes and their boundaries as shown in Fig. 1.
Based on the temporal-spectral features, the PMD system can
evaluate not only static audio but also predict the phonation
modes presented in the transitional states of audio. The CRNN
predicts frame level output, which is then smoothed to provide
phonation level output, including phonation mode labels and
their onset/offset timestamps. In the second stage, a domain
classifier (DClassifier) is utilized to identify the source and
target domain. The pre-trained PMD system is adapted to the
unseen domain by minimizing the distance between the source
and target domain embeddings based adversarial training
strategy of UDA [18]. Unlike typical adversarial DA models,
DADAN is composed of a PMEncoder and a domain encoder
(DEncoder) to disentangle the input features and explore the
explainability of phonation mode representation. The DADAN
is applicable to various domain mismatches since it is a general
domain adaptation model. This paper focuses on two typical
domain adaptation scenarios: subject domain adaptation (SDA)
and content domain adaptation (CDA). We use the method
of controlling variables to study these two domain adaptation
issues by keeping the recording environment and equipment
constant. SDA is attributed to the unique voice quality of
different subjects. In this paper, CDA indicates the singing
and speech domain adaptation based on the inherent difference
between singing and speech voice rather than linguistics. Our
system greatly improves the PMD performance and outper-
forms other popular unsupervised domain adaptation models in
SDA experiments. In the CDA experiment, DADAN manages
to detect phonation modes in speech using only annotated
singing data. By further examining the disentangled domain
and phonation mode embedding, we demonstrate that the
common phonation mode embedding in singing and speech
is pitch-invariant.

Our main contributions are:

• We introduce PMD in singing and speech to estimate the
phonation modes and their boundaries and create the first
sung and spoken phonation mode dataset for PMD.

• We demonstrate domain mismatches for PMD in real
application scenarios and develop an unsupervised PMD
system, DADAN, applicable for new domains without
requiring annotated data.

• Experiments report that DADAN outperforms other DA
models on singing and speech data with domain mis-
match. Additionally, the PMD model pre-trained on
singing data exhibits adaptability to speech. Further
experiments reveal the PMEncoder’s capacity to learn
a pitch-invariant representation shared in singing and
speech.

The rest of the paper is organized as follows: in Section II,
we review related work on phonation mode analysis in singing
and speech and unsupervised domain adaptation methods. In
Section III, we formulate the PMD problem and introduce
the domain adaptation scenarios of PMD. A description of
the Sung and Spoken Dataset for Phonation Mode Detection
(SSD4PMD) is illustrated in Section IV. The spectro-temporal
feature extraction and the proposed DADAN are presented in
Section V. Section VI provides the experimental setup and
Section VII discusses the results of the glottal source feature
comparison and the domain adaptation experiments. Finally,
conclusions are summarized in Section VIII.

II. RELATED WORK

A. Phonation mode definition in singing and speech

Most previous studies analyzed the phonation modes in
speech and singing separately. Early research inaugurated the
phonetic description of spoken voice quality, defined as the
quasi-permanent quality of a speaker’s voice [19]. A stan-
dardized system of phonetic description was first proposed by
Ladefoged, who introduced a continuum phonation type model
for speech based on the glottal stricture varying from the most
closed to the most open state in speech [1]. The near-closed
vocal folds vibration results in a creaky or tense phonation
type, and the open state of vocal folds leads to a breathy or
whispery phonation type, where the modal (neutral) type is
the optimal pronunciation state between the tight and loose
adduction [20]–[22]. Using a set of representative phonetic
labels, voice quality was described in terms of phonation types
such as breathy, normal (neutral), and pressed [11], [23],
[24]. In singing, voice qualities are described as phonation
modes attributed to vocal folds vibration, defined by the ratio
between transglottal airflow and subglottal pressure to identify
four essential laryngeal characteristics in a 2-D space: breathy,
neutral, pressed, and flow [2], [25].

Phonation types in speech and phonation modes in singing
reflect the perceived laryngeal voice quality [26]. Voice quality
is usually used to describe the perceived timbre resulting from
articulation activity. However, the voice quality label set varies
across different tasks. This work considers the two terms to
be equivalent under the constraint that only the three phonetic
labels shared by singing and speech are analyzed, which are
breathy, neutral, and pressed. These phonation modes are
similarly defined in both singing and speech. In the breathy
mode, loose vocal folds result in a more open state [1] and
a larger transglottal flow versus glottal pressure ratio than the
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Fig. 1. Phonation mode detection pipeline and two types of domain mismatches (subject and content domain) in real application scenarios.

neutral mode [25]. In contrast, for the pressed mode, tight
vocal folds result in a less open state and a lower ratio between
transglottal flow and glottal pressure. These phonation modes
reflect the voice quality attributed to vocal folds vibration. The
flow phonation mode defined in singing [25] is not considered
because it is seldom used in speech and involves both laryngeal
(vocal folds vibrations) and supralaryngeal (articulators and
resonators) systems [3], [12], [25]. Additionally, flow and
neutral cannot be distinguished using only the ratio between
glottal flow and subglottal pressure as demonstrated in [25].
Thus, this work focuses on the three common phonation modes
attributed to vocal tension, providing valuable information on
voice production [21].

B. The development of research on phonation modes

The development of phonation mode research has two main
phases. In the earlier phase, researchers used either clinical
or acoustic measurements to parameterize different phonation
modes. [27], [28] used clinical equipment to measure the
glottogram, open-closed quotient, and laryngeal resistance.
However, these methods require precise instruments and qual-
ified experts to perform invasive examinations. Then signal
processing was then mainly used for parameterization, and
statistical tests were often used to analyze the relation between
phonation modes and voice production.

In more recent research, automatic classification of phona-
tion modes from singing voice and speech was studied based
on signal processing and machine learning. Most studies on

PMC [3], [4], [9]–[13], employed a classical pipeline system
including two steps: feature extraction and classification.

The features used for PMC can be categorized into three
types: glottal source, acoustic, and general audio features.
Phonation modes are believed to be strongly related to glottal
source airflow based on the voice production mechanism. Most
works aimed to extract features from an estimated glottal
source signal using glottal inverse filtering (GIF) since the
features could not be measured directly [10]. Some temporal
features have been proposed to describe glottal adduction,
such as the open quotient (OQ), the closing quotient (ClQ),
and the amplitude quotient (AQ) [3], [10], [11], [29], [30],
normalized amplitude quotient (NAQ) [27], [31], and maxima
dispersion quotient (MDQ) [32]. Commonly used spectral
features include the difference of harmonics, the harmonics
richness factor (HRF), and the peak slope [3], [10], [11],
[33]. However, it is not always reliable to use the source-filter
model to decouple the impact of the glottal source and vocal
tract, especially for high-pitched voice and time-varying voice
production [34], [35]. For sung PMC, [4] compared the glottal
source features with the acoustics features and reported that
the acoustic feature set gave a higher classification accuracy
of 81.62% for soprano and 88.51% for baritone singers.
The acoustic features, also known as voice quality features
in speech evaluation, mainly contain harmonics, formants,
cepstral peak prominence (CPP), and harmonic-to-noise ratio
(HNR). Further studies [9], [36] reported that the overall
accuracy for PMC in singing and speech could be improved by
combining two types of features using the COVAREP features
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set [37], showing a PMC accuracy of 90.26% for singing and
79.97% for speech. Some of the latest PMC studies [12], [38]–
[40] addressed the problem of GIF-based methods for glottal
source extraction. Some excitation features were proposed
for singing and speech PMC based on the single frequency
filtering (SFF) [38], the zero-time windowing (ZTW) [39],
and the zero frequency filtering (ZFF) [40]. [12] compared
these three features and found that fusion of all feature sets
achieved the best classification accuracy of 85.24% in singing
and 78.71% in speech.

A simple classifier, such as the support vector machine
[3], [12], [32], [38], [39], is usually used in the classical
pipeline system. Recently, [13] reported that deep learning
methods could significantly improve PMC performance com-
pared to previous methods which used hand-crafted features
and basic classifiers. By adopting a residual attention neural
network [41], they achieved the highest classification accuracy
of 94.58% for singing. A limitation of the PMC studies is
that they only address the single-phonation classification task,
where each audio file contains only one phonation mode. A
recent work [5] looked into singing technique detection with
Mel spectrogram as input. Our previous work [42] studied
PMD for singing and discovered domain gaps between singers.
This study follows the classical pipeline system, but in contrast
to previous studies, this paper systematically examines the
SDA and CDA problems and evaluates the glottal source
features and UDA methods for PMD, which have not been
studied before.

The development of the automatic PMD system has yielded
practical applications in potential vocal and neurological dis-
order evaluation [30], [40]. A PMD system can assist in the
diagnosis of vocal disorders by detecting abnormal or un-
healthy phonation modes like pressed and breathy, which may
cause vocal fold nodules and polyps [6]. In automatic singing
evaluation, a PMD system can serve as a basis for helping
identify the vocal characteristics and singing skills [3]–[5]. As
the perception of fear, anger, and neutral emotions primarily
depends on specific phonation types in speech [8], a PMD
system would play a crucial role in retrieving paralinguistic
information [43], [44].

C. Unsupervised domain adaptation (UDA)
Since manual annotation for audio data is laborious and

expensive, UDA is a promising approach to generalize a model
to an unseen domain without labeled data. The unseen domain
without labeled data is named as the target domain, and the
labeled data belong to the source domain. UDA assumes that
there is a gap between the data distribution of the source
and target domain. UDA mainly comprises two types of
methods. One type of UDA method aligns the source and
target domain distribution by minimizing the domain distance,
such as maximum mean discrepancy (MMD) [45]. Another
popular type of UDA method utilizes a domain adversarial
training strategy, which forces the encoder to learn a domain-
invariant representation. The adversarial learning method is
more widely used because it does not require identical source
and target domain data and can be easily applied to different
scenarios [18], [46], [47].

Recent research addressed the domain mismatch problem
for audio-related tasks, such as sound event detection [17],
speaker verification [15], [16], [48], and audio steganalysis
[49]. The domain mismatch for audio-related tasks can be
ascribed to subject traits (speaker/singer’s age, accent, voice
quality, etc.), acoustic environment, and recording conditions.

III. PROBLEM FORMULATION

A. Phonation mode detection (PMD)

In this work, we consider input audio consisting of M
phonation modes and aim to detect the phonation mode labels
and pinpoint their boundaries. Since we analyze the phonation
modes in singing and speech in tandem, three shared phonation
modes, namely, breathy, neutral, and pressed, as well as the
intervals between phonation modes, are to be detected.

The pipeline of PMD is shown in the left part of Fig. 1.
The input feature is denoted as X ∈ RT×K , where T is the
number of frames in an utterance, and K is the dimension of
the feature. The output phonation label set C = {c1, c2, c3, c4}
contains the three phonation modes and a rest class repre-
senting the silent pauses in an utterance. A PMD system
predicts a phonation mode sequence and the corresponding
onset and offset of each phonation. The predicted phonation
mode sequence is denoted as P̂ = {p̂1, ..., p̂M}, where pm ∈ C
is the m-th phonation mode label and M is the number of
phonation modes in an utterance. The boundaries sequence is
Ŝ = {(ô1, ê1), .., (ôM , êM )}, where ôm and êm are the onset
and offset timestamps calculated as the frame number of the
m-th phonation mode. ôm, êm ∈ [1, T ] and ôm < êm.

B. Domain adaptation scenarios of PMD

In real application scenarios, the mismatch between the
training and testing data may result in a severe performance de-
cay for a pre-trained system. We address domain mismatches
of PMD in singing and speech, as depicted in Fig. 1, which is
not investigated in previous phonation mode analysis studies.
It is demonstrated that a PMD model trained on one domain
fails to predict an unseen domain and thus necessitates the
following domain adaptation tasks:

1) Subject domain adaptation (SDA): to adapt a pre-trained
PMD model using label data of one subject (singer or speaker)
to an unseen subject without additional annotations. Given the
importance of generalization to various subjects, we address
the issue of SDA for the development of a practical and usable
PMD system that can be applied to a broad user base.

2) Content domain adaptation (CDA): is to generalize a
PMD model pre-trained with singing data to speech data
without phonation mode annotation, and vice versa. Given
that the sung and spoken phonation modes share similar voice
production mechanisms [25], this experiment aims to develop a
PMD system that can be used for both singing and speech and
to explore the underlying similarities and differences between
phonation mode representations in singing and speech, which
will contribute to a better understanding of voice quality.
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TABLE I
INFORMATION ABOUT THE SUNG AND SPOKEN DATASET FOR PHONATION MODE DETECTION (SSD4PMD). “F” AND “M” REPRESENT FEMALE AND

MALE SUBJECTS, RESPECTIVELY. THE NUMBERS IN THE LAST TWO COLUMNS ARE PRESENTED AS: MIN ∼ MAX (AVERAGE).

Domain Subject ID
(gender) Duration (hours:minutes:seconds) # of songs # of utterances # of phonation modes

in each utterance Duration of each phonation mode (s)

Singing

S (F) 0:11:32 7 112 1 ∼ 9 (5) 0.05 ∼ 4.72 (1.02)

V (F) 0:27:10 12 360 1 ∼ 12 (5) 0.02 ∼ 4.06 (0.71)

D (M) 0:38:27 16 470 1 ∼ 11 (4) 0.01 ∼ 6.89 (0.86)

M (M) 0:13:26 7 148 1 ∼ 14 (5) 0.02 ∼ 4.67 (0.71)

J (M) 0:30:55 11 357 2 ∼ 13 (7) 0.05 ∼ 3.19 (0.42)

Total 2:01:30 53 1347 1 ∼ 14 (5.5) 0.01 ∼ 6.89 (0.69)

Speech

S (F) 0:08:29 7 136 2 ∼ 11 (6) 0.02 ∼ 3.03 (0.46)

V (F) 0:15:27 12 341 1 ∼ 10 (5) 0.02 ∼ 1.9 (0.35)

D (M) 0:21:48 16 470 1 ∼ 19 (6) 0.02 ∼ 2.79 (0.3)

M (M) 0:08:53 7 178 1 ∼ 9 (5) 0.02 ∼ 2.38 (0.38)

J (M) 0:16:13 11 358 2 ∼ 12 (7) 0.03 ∼ 0.51 (0.17)

Total 1:10:51 53 1483 1 ∼ 19 (6) 0.02 ∼ 3.03 (0.31)

IV. DATA COLLECTION

A. Background and motivation

Previous phonation mode datasets for singing [3], [4], [9]
and speech [10], [11] are unsuitable for PMD, since each
utterance in the dataset contains only one vowel with one
phonation mode. For the PMD task, each audio should contain
more than one phonation mode with a label and boundary
timestamps. We are thus motivated to collect the first multi-
phonation dataset.

In addition, none of the existing voice quality datasets
address the domain adaptation problem. Since the subject traits
impact the voice quality evaluation, we collect this phonation
mode dataset for the SDA experiments.

Furthermore, despite extant studies [3], [4], [9]–[12], [27],
[30], [35], [38]–[40] on phonation modes using similar glottal
feature sets for singing and speech, only [12] investigates their
commonalities and differences. In consistent with the recent
research on sung and spoken phonation modes [12], our dataset
includes the three phonation modes shared by singing and
speech, which can contribute to more practical applications
for amateur singers since the flow mode is only defined in
the context of singing used by professional Bel Canto singers
[25]. With this new corpus, a quantitative comparison of the
singing voice and speech phonation modes can be conducted.

B. Dataset curation

To explore the difference between singing and speech re-
garding voice quality, we adopt the sung and spoken lyrics
in [50] for a parallel phonation mode recording collection.
Institutional Review Board (IRB) approval was granted for
our data collection (NUS IRB Reference No. SOC-21-08).
Five subjects (three males and two females) with formal vocal
training backgrounds are recruited from a university choir.
Participants select the number of songs from a provided list
[50] in their preferred key, and they have the autonomy to

determine the sequence of phonation modes within each utter-
ance. For the sake of label balance, subjects are asked to use
three phonation modes iteratively in each song. Participants
first note down the phonation mode sequence on the lyrics
sheet placed on a music stand. Then, both singing and speech
audio using the same lyrics are recorded consecutively.

The data is collected in a sound-proof recording studio (STC
50+) using an Audio-Technica 4050 condenser microphone
with a pop filter. The audio files are all saved in WAV format
with 48 kHz sampling rate and 32-bit depth. The annotation
files are generated by Adobe Audition from singers’ annotation
and saved in CSV format. A phonation mode label and its
onset and offset timestamps are marked for each vowel.

C. Dataset description
Our sung and spoken dataset for PMD comprises 2.03

hours sung and 1.18 hours spoken utterances from the same
collection of songs. Due to the disparate punctuation in singing
and speech, the number of utterances is slightly different.
The sung vowels usually have a longer duration than spoken
vowels. Hence there are more spoken phonation modes in
each utterance than sung phonation modes for the same lyrics.
The ratio of phonation mode classes are breathy : neutral :
pressed = 53 : 56 : 40. Detailed information on the
SSD4PMD is shown in Table I.

V. METHODOLOGY

In this section, we first introduce spectro-temporal feature
extraction. Then we present the disentangled adversarial do-
main adaptation network (DADAN) for PMD. The model
consists of two stages: pre-training of the phonation mode
detection system, as shown in Fig. 2 (a), and adversarial do-
main adaptation, as shown in Fig. 2 (b). As [12] demonstrated
good PMC performance using glottal source features such as
SFF and ZTW, we adopt these features as spectro-temporal
input features for the PMD task in comparison with Mel-
spectrogram.
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Fig. 2. Overview of the Disentangled Adversarial Domain Adaptation Network (DADAN), which comprises two stages: supervised pre-training and
unsupervised domain adaptation. The target input for adaptation is from a new subject or domain with different singing or speech content.

A. Spectro-temporal feature extraction
Previous GIF-based features capture averaged spectral char-

acteristics on the steady part of the voice, which is only
suitable for classification tasks rather than detection. The time-
varying characteristics play a pivotal role in voice production.
Therefore we utilize the glottal source and Mel spectrogram
features for PMD.

1) Single frequency filtering (SFF) spectrogram [51]:
is proposed to discriminate between speech and nonspeech.
SFF represents glottal excitation to depict harmonics in the
spectrum with high temporal and spectral resolution without
using the inverse filtering method and prior knowledge of
fundamental frequency. This method assumes that the glottal
impulse signal has a flat spectrum and extracts the amplitude
envelope at each frequency step.

The steps involved in calculating an SFF spectrogram are
as follows. The input audio is pre-emphasized and framed into
T segments s[n]. Then s[n] is modulated to a frequency fk,
a sampled frequency in a range of the whole spectrum with
step ∆f , where fk = k∆f, k = 1, 2, ...,K. ∆f = 10 Hz in
this study. The modulated signal u[n, k] is given by

u[n, k] = s[n, k] exp(−j2πnf̄k) (1)

where f̄k is the selected frequency (i.e. f̄k = fs/2− fk) and
fs is the sampling frequency. The signal is passed through a
single-pole filter with a transfer function of H(z) = 1

1+rz−1 .
We choose r = 0.995, the same value in [12]. The amplitude
envelope of the filtered signal v[k] at frequency fk is obtained

x[n, k] =
√
(vRe[n, k])2 + (vIm[n, k])2 (2)

where vRe[n, k] and vIm[n, k] are the real and imaginary
components of v[n, k]. The SFF spectrogram x[n, k] ∈ RT×K

is obtained for each frame.
2) Zero time windowing (ZTW) spectrogram [35]: is pro-

posed to extract instantaneous spectral vocal excitation char-
acteristics with high spectro-temporal resolution. The essence
of ZTW is to use a decaying window to emphasize the
values at the beginning of the window, which is regarded as
“zero-time”; hence, the windowed signal renders an impulse-
like vocal excitation maintaining a good temporal resolution.
Meanwhile, the group-delay function highlights the formants
showing vocal resonance.

The input audio is first framed into T segments s[n] of
length L point, where n = 0, 1, 2, ..., L − 1 and multiplies a
decaying window ω2

1 [n]ω2[n], which are

ω1[n] =

{
0, if n = 0,

1
4sin2(πn/2L) , if n = 1, ..., L− 1

(3)

ω2[n] = 4cos2(πn/2L), n = 1, ..., L− 1 (4)

The spectrum of each windowed segment (i.e., of u[n] =
ω2
1 [n]ω2[n]s[n]) is estimated as the numerator of group delay

(NGD) function
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ngd[k] = URe[k]VRe[k] + UIm[k]VIm[k], k = 0, 1, ...,K − 1
(5)

where U [k] and V [k] are the K-point discrete-time Fourier
transform (DTFT) of u[n] and v[n] (v[n]=nu[n]), and URe[k],
VRe[k] and UIm[k], VIm[k] correspond to the real and imag-
inary part of U [k] and V [k], separately. In this work, we
use K = 1024. The ZTW spectrogram x[n, k] ∈ RT×K/2

is calculated from the NGD of each segment.

B. Phonation mode detection system pre-training

The PMD system is pre-trained on each source domain
with phonation mode label sequence P = {p1, ..., pM} and
the corresponding boundaries S = {(o1, e1), .., (oM , eM )}.
The backbone network consists of a PMEncoder Ep and a
PMDecoder Dp, as shown in Fig. 2 (a). The PMEncoder
is a convolutional recurrent neural network (CRNN), which
is commonly used in sound event detection [17], [52] as
convolutional layers are often used to capture local phonation
mode features, and recurrent layers can deal with the long-
term temporal connection of audio with varied lengths. CRNN
is also the state-of-the-art of singing technique detection [5].
Supposing the PMEncoder can learn an effective phonation
mode representation, the PMDecoder only contains fully-
connected layers to map the embedding to frame-level phona-
tion mode sequence P̂ ′ = {p̂′1, ..., p̂′T }, where T is the num-
ber of frames in an utterance. Finally, the frame level output
is grouped and smoothed to provide phonation-level labels
P̂ = {p̂1, ..., p̂M} as well as their onset and offset timestamps
in frame Ŝ = {(ô1, ê1), .., (ôM , êM )}. Specifically, in the
output smoothing procedure, after eliminating the segments
labeled as rest, phonation mode segments that are shorter than
five frames are disregarded. Then, segments with the same
label that are adjacent to each other are merged if the interval
between them is less than two frames. This is done to achieve
a more precise and reliable phonation-level output sequence.
The PMD system is trained to predict the phonation mode
label for each frame so that the time boundaries will also be
aligned. Thus, we define the PM loss LPM as the cross-entropy
loss between P̂ and the frame-level ground-truth.

LPM =− 1

T

T∑
t=1

4∑
i=1

(
1p′

t=ci logP (p̂′t = ci)

+ (1− 1p′
t=ci) logP (p̂′t ̸= ci)

)
,

(6)

where p′t and ci ∈ C are the predicted phonation mode label
and ground-truth at frame t, respectively.

C. Adversarial domain adaptation

The PMD model pre-trained on one domain usually does
not fit data from an unseen domain, and fine-tuning the model
on a new domain also requires the annotation of the target
domain. To tackle this problem, we introduce an unsupervised
domain adaptation method that can effectively generalize a
model to the unseen domain without additional annotation.

The scheme of the proposed DADAN is shown in Fig. 2.
The input utterances used to pre-train the PMD model are
denoted as source domain input X src = {x1, ..., xT src}, while
the target domain input X tgt = {x1, ..., xT tgt} is used to
predict PM without the ground-truth label, where xT src and
xT tgt are the number of frames in the source and target
utterances, respectively.

1) Adversarial PM embedding alignment: is implemented
to further ensure the PMEncoder would learn a domain-
invariant feature from X src and X tgt. An adversarial discrim-
inator (Discriminator) D takes the PM embedding Zsrc and
Ztgt from the source and target domain as input and predicts
the possibility of each frame being from the source domain.
The adversarial loss is written as:

Ladv =− 1

T src

T src∑
t=1

logD(Ep(X src
t ))

− 1

T tgt

T tgt∑
t=1

log(1−D(Ep(X tgt
t )),

(7)

Note that when D is trained to distinguish the domain given
the PM embedding, the PM system is learned to minimize
phonation mode loss simultaneously to encourage Ep to learn
a domain-invariant representation. This min-max process is
achieved by gradient reversal layers (GRLs) [18], which do
not contain trainable parameters and just inverts the sign of
gradient during back-propagation.

2) Mutual Information Minimization: is exploited to en-
hance the feature disentanglement performance, by integrat-
ing the mutual information minimization constraint into the
training process of PMEncoder Ep and DEncoder Ed. Mutual
information is defined as quantifying the information shared
by two random variables (X,Y ) and calculated by the Kull-
back–Leibler divergence (i.e., I(X,Y ) = DKL(P(X,Y )||PX⊗
PY )), where P(X,Y ) is the joint distribution, and PX ⊗ PY

is the product of marginal distributions. Recent work [53]
leverages deep learning to propose a mutual information neural
estimator (MINE) for high-dimensional continuous random
variables, which is used for learning latent representation in
domain adaptation [54], [55]. Therefore, the mutual informa-
tion can be estimated by maximizing:

I(X;Y ) = sup
θ∈Θ

EP(X,Y )
[MIθ]− log(EPX⊗PY

[eMIθ ]) (8)

where MIθ is a deep neural network parameterized with θ ∈ Θ.
In this work, it is composed of two linear layers of 64 neurons.

To disentangle the PM embedding and domain embedding,
the PMEncoder Ep and DEncoder Ed are trained to minimize
the mutual information between their latent representation.
Hence, the mutual information loss is written as the min-max
optimization function:

LMI

= min
Ep,Ed

max
MI

max(T src
t ,T tgt

t )∑
i=1

I(Ep(X src
t ,X tgt

t );Ed(X src
t ,X tgt

t ))

(9)
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3) Domain disentanglement: is proposed to disentangle
the domain-related information from the input feature and
encourage the PMEncoder to learn a domain-invariant rep-
resentation. A CRNN-based DEncoder Ed is used to extract a
domain-specific embedding Z from both the source and target
domain, and the embedding passes a DClassifier Dd with two
fully-connected layers for domain classification. The domain
disentanglement model is optimized by a binary cross entropy
(BCE) loss:

LD =− 1

T src

T src∑
t=1

logDd

(
Ed(X src

t )
)

− 1

T tgt

T tgt∑
t=1

logDd

(
1− Ed(X tgt

t )
)
,

(10)

VI. EXPERIMENTAL SETUP

A. Metrics

In our work, each audio sample contains multiple phonation
modes, and the number of detected phonation modes may
differ from the number of phonation modes in the ground truth.
Additionally, the evaluation metrics must consider not only
the accuracy of the predicted labels but also the correctness
of boundaries.

Therefore, we propose to exploit a set of evaluation metrics
similar to the those proposed in [56]. In the context of PMD,
we define three intermediate metrics as follows:

• True positive (TP): a phonation mode in the ground
truth has both the same phonation label and onset/offset
boundaries, with a time difference tolerance (e.g., 20ms)
allowed for the boundaries.

• False positive (FP): a phonation mode in the ground
truth does not have both the same phonation label and
onset/offset boundaries.

• False negative (FN): the model fails to predict a phona-
tion mode with both the correct phonation label and
onset/offset boundaries.

Afterward, the precision, recall, and F-score [57] can be
calculated as usual. Using different averaging methods, macro-
averaged and micro-averaged precision, recall, and F-score can
also be computed [58]. Macro-averaged metrics are obtained
by taking the average of the metrics (precision, recall, and
F-score) for each class, whilst micro-averaged metrics are
calculated by aggregating TP, FP, and FN over all test data
and then computing the precision, recall, and F-score based
on the aggregated numbers. Since the micro-averaged method
puts equal importance on each instance, the class with more
instances has great impact on the final score. While curating
the dataset, we have taken the class balance into consideration
by iteratively using each phonation mode. However, it is not
possible to strictly ensure a balance in the distribution of
classes. As a result, we present macro-averaged metrics as
default, unless otherwise stated explicitly. This is done for
providing an overall performance of the model across all
classes, regardless of any potential imbalances in the class
distribution.

Aside from the F-score, the error rate (ER) is computed
based on the number of three types of errors: insertion (I),
deletion (D), and substitution (S), following the convention
of sound event detection [56]. The ER is defined as: ER =
(I+D+S)/N , where N is the number of phonation modes in
the ground truth. Insertion is defined as I = max(0, FP−FN),
which evaluates the number of phonation modes in the pre-
dicted output but does not appear in the ground truth. Deletion,
i.e., D = max(0, FN−FP), measures the number of phonation
modes in the ground truth that does not appear in the predicted
output. Substitution S = min(FN, FP) measures the number
of phonation modes in the ground truth that are detected as
something else.

To evaluate the boundary detection performance, the seg F-
score and seg ER are calculated adhering to a similar approach,
where a TP is counted when the system successfully detects
the onset and offset of a segment, regardless of the label
assigned to that segment.

B. Ablation study

• Source Only is a model trained only on the source data,
presenting the model without domain adaptation. The Source
Only result is obtained by directly testing the pre-trained
model on the target domain.
• Domain Adversarial Neural Network (DANN) [18] is

a typical unsupervised adversarial domain adaptation model,
in which a discriminator is trained to distinguish target from
source features. A PMEncoder is trained to generate domain-
invariant features to fool this discriminator. The GRLs are
first introduced to train the discriminator and encoder simul-
taneously. It is an ablated model of DADAN without the
DEncoder-DClassifier and MINE modules.
• DADAN without MINE module (DADAN−) is an

ablated DADAN model without the MINE module.

C. UDA Baselines

• Maximum Mean Discrepancy (MMD) [45] is a non-
adversarial unsupervised domain adaptation method based on
domain alignment. By minimizing the MMD distance of em-
beddings from the source and target domain, the distribution
of the source and target feature space is aligned so that the
model achieves better performance by diminishing the domain
gap.
• Conditional Domain Adversarial Networks (CDAN)

[46] involves using two techniques to enhance the performance
of unsupervised adversarial domain adaptation for classifica-
tion. These techniques include incorporating the classifiers’
predictions and feature embeddings to improve discriminabil-
ity and quantifying the output prediction’s uncertainty through
entropy.
• Minimum Class Confusion (MCC) [47] is an unsu-

pervised adversarial domain adaptation model designed to
improve classification accuracy. By leveraging the class con-
fusion matrix of the source data, an MCC loss function is
proposed to minimize classification error. The MCC loss func-
tion works by converging the binary class confusion values
of the predictions, resulting in a matrix in which the values
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TABLE II
COMPUTATIONAL COMPLEXITY OF DADAN AND OTHER UDA MODELS.

Model #Parameters (M) #MACs (G)

DANN [18] 5.44 21.86

MMD [45] 5.44 21.86

CDAN [46] 5.71 22.64

MCC [47] 5.44 21.86

DADAN 10.89 18.46

on the diagonal represent the confusion of each class with
itself. This allows the model to make more stable predictions
on unlabeled data. The MCC method is versatile and has
been shown to improve performance in a variety of domain
adaptation scenarios significantly.

D. Implementation details

We calculate three feature maps for the input audio signal:
SFF, ZTW, and Mel spectrogram. For SFF and ZTW features,
we downsample the input audio to 16 kHz to speed up
the calculation. The Mel spectrogram is calculated from the
128-dimension Mel filterbank, as well as its derivatives and
second derivatives, to keep the balance of the input feature
dimension. Each frame of Mel, ZTW, and SFF has 384, 512,
and 400 spectral dimensions separately. All the features are
extracted using a 25-ms window and a 10-ms hop length
from the audio. For the SDA experiments, we divide different
utterances into training, validation, and test sets. To evaluate
the generalization ability of the PMD system and the CDA
performance, we split the PM dataset into the three sets and
ensure each set contains different subjects.

The pre-trained PMEncoder consists of three convolutional
blocks of 3×3 kernel, two recurrent layers of 256 dimensions,
and a fully-connected layer of 256 dimensions. The PMDe-
coder only contains two fully-connected layers with inner
dimensions 64 to map each frame to 4-dimensional output.
The DEncoder has the same architecture as the PMEncoder,
while the DClassifier and the Discriminator have two fully-
connected layers of inner dimension 64 and an activation layer
for the binary outputs.

For adversarial training, we use the weight of the adversarial
loss λadv = 0.5, domain loss λD = 0.2, and the mutual
information loss λMI = 0.2. The weight of MCC loss is 0.2,
and the temperature scaling is 2.5. The Adam optimizer [59]
is applied with a learning rate of 1e-4, together with a Newbob
scheduler using an initial value of 1e-4 and an annealing
factor of 0.8. The model is built on Pytorch library [60]
with SpeechBrain toolkit [61] and trained on an RTX2080Ti
GPU for 30 epochs with a batch size of 4. Table II reports
the number of parameters and multiply-accumulate operations
(MACs), which are commonly used metrics for evaluating the
spatial and time complexity of deep neural networks. Although
DADAN requires more storage than other models, it reduces
the time complexity because of fewer input neurons in the
dense layer of the classifier. The epoch with the best PMD

performance on the validation set is selected to evaluate the
model. Our implementation is available online1.

VII. RESULTS AND DISCUSSION

A. Performance of PMD system with different features

In this experiment, the effectiveness of the proposed PMD
system is evaluated with regard to the overall detection perfor-
mance and the segmentation boundaries based on the metrics
mentioned in Section VI-A. We divide the subjects such that
three are in the training set, one is in the validation set, and
one is in the test set. The PMD pipeline without domain
adaptation, depicted in the left block of Fig. 1, is used in
this experiment. As shown in Table III, the proposed system
manages to detect phonation modes in both singing and speech
with an F-score of 0.54 and 0.53, respectively. We compare
three input features used for PMC to investigate whether they
can keep the temporal dynamic characteristic of phonation
modes. The result shows that the Mel spectrogram outperforms
other features for all metrics, and it specifically achieves
a lower segmentation error rate on SSD4PMD compared
with the ZTW and SFF features. Although the two features
perform better on PMC, they are not sensitive to the onset
and offset boundaries. This may be explained by that the
annotators may refer to the Mel spectrogram for phonation
mode annotation. Notably, although the segmentation result
of the SFF spectrogram with the segment F-score of 0.70 and
0.62 in singing and speaking, separately, is not as good as the
Mel spectrogram with the segment F-score of 0.79 and 0.64
in singing and speaking, the macro F-scores of the former are
fairly higher. The results indicate that the SFF spectrogram
can capture useful static phonation modes features, hence
demonstrating the best performance on PMC [12]. Due to the
overall superiority of Mel spectrogram, we extract it as the
input feature for the following SDA experiments.

Fig. 3 shows the confusion matrices of the proposed PMD
tested on the SSD4PMD with three types of input features.
The proposed system demonstrates strong class-wise perfor-
mance for both singing and speech. By looking into the three
columns, it is shown that the three features perform well in
classifying breathy and neutral. Although the pressed mode is
prone to be classified as neutral, SFF outperforms the other
two methods for both singing and speech data.

As for segmentation performance, a column named un-
detected in the confusion matrix is added to present the
detection errors, where a phonation segment in the ground
truth is considered undetected if the prediction does not
provide a correct timestamp pair of the onset and offset.
The PMD system manages to detect voiced segments (e.g.,
neutral, pressed) which show strong periodicity; however,
breathy segments are not easy to distinguish by their periodic
variation in amplitudes, which may result in more segmen-
tation errors. Furthermore, phonation boundary detection for
singing demonstrates a better performance than speech. It
can be explained by spoken lyrics usually having shorter
vowels compared to sung lyrics, demonstrated by comparing

1https://github.com/aliceyixin/PMD-SingingSpeech
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TABLE III
EXPERIMENT RESULTS OF PMD SYSTEM WITH DIFFERENT FEATURES

Feature Singing Speech

macro F-score
↑

micro F-score
↑

ER
↓

seg F-score
↑

seg ER
↓

macro F-score
↑

micro F-score
↑

ER
↓

seg F-score
↑

seg ER
↓

Mel 0.54 0.63 0.56 0.79 0.40 0.53 0.60 0.58 0.64 0.53

ZTW 0.44 0.53 0.71 0.79 0.47 0.39 0.571 0.74 0.54 0.78

SFF 0.48 0.57 0.71 0.70 0.48 0.57 0.59 0.70 0.62 0.70
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Fig. 3. The confusion matrix of our proposed PMD in singing (first row) and speech (second row). The undetected class stands for the phonation modes in
the ground truth not being detected by the model with the onset and offset timestamps. (a) PMD in singing with Mel input. (b) PMD in singing with ZTW
input. (c) PMD in singing with SFF input. (d) PMD in speech with Mel input. (e) PMD in speech with ZTW input. (f) PMD in speech with SFF input.

the average phonation mode duration between singing and
speech in Table I, making it more difficult to pinpoint the
transition between different phonation mode patterns.

B. Performance on SDA

The necessity of subject domain adaptation is demonstrated
by a 45% and 46% drop in average F-score for singing
and speech, respectively, when testing the pre-trained PMD
model on a new subject. The difficulty of SDA, evidenced by
varying F-scores for different subjects as shown in Table IV
and Table V, can be attributed to individual differences in
the distribution of breathy, neutral, and pressed phonation
modes. For example, subjects D and M have similar phonation
modes label distributions, resulting in high domain adaptation
F-scores for D-M and M-D, while subjects D and J pronounce
differently, resulting in a low F-score. Therefore, we employ
DADAN to address this problem.

As shown in Table IV and Table V, the proposed model
surpasses all the baselines, achieving an average F-scores of
0.55 for singer adaptation, and 0.47 for speaker adaptation,
accordingly. Compared to the Source Only result, the proposed
domain adaptation model significantly improves the F-score
with 44.7%. MMD is a non-adversarial method and is less
effective than the adversarial models in this task since the
PMEncoder would learn a PM embedding including domain
knowledge from the source and target domain. CDAN, MCC,
and DADAN are all improved adversarial methods based on
DANN. The performance of DANN, CDAN, and MCC are
nearly identical, because CDAN and MCC exploit the inter-
class discrimination property, which is suitable for tasks with
more categories. The classic DANN is better than CDAN and
MCC for only four classes in this task. In the ablation study,
compared with DANN and DADAN−, DADAN obtains the
highest performance as a result of the utilization of DEncoder-
DClassifier and MINE, which effectively removes irrelevant
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TABLE IV
PHONATION LEVEL MACRO F-SCORE FOR SDA IN SINGING. MODEL “D-J” DENOTES THE TEST F-SCORE WHEN ADAPTING A MODEL PRE-TRAINED ON

“D” (SOURCE SUBJECT ID) TO “J” (TARGET SUBJECT ID).

Model D-J D-M D-S D-V J-D J-M J-S J-V M-D M-J M-S M-V S-D S-J S-M S-V V-D V-J V-M V-S Avg

Source Only 0.39 0.59 0.35 0.42 0.25 0.37 0.36 0.31 0.35 0.32 0.26 0.39 0.24 0.25 0.30 0.40 0.52 0.42 0.57 0.53 0.38

DANN 0.41 0.70 0.58 0.74 0.45 0.40 0.39 0.40 0.34 0.29 0.61 0.79 0.53 0.33 0.61 0.46 0.74 0.40 0.81 0.65 0.53

DADAN− 0.45 0.71 0.54 0.72 0.44 0.45 0.39 0.41 0.33 0.28 0.59 0.77 0.46 0.52 0.36 0.61 0.70 0.44 0.83 0.68 0.53

MMD 0.49 0.50 0.26 0.45 0.40 0.39 0.35 0.43 0.36 0.34 0.34 0.45 0.20 0.36 0.21 0.54 0.51 0.39 0.63 0.56 0.41

CDAN 0.40 0.66 0.58 0.75 0.41 0.42 0.40 0.42 0.35 0.30 0.64 0.73 0.56 0.35 0.64 0.42 0.72 0.43 0.80 0.64 0.53

MCC 0.43 0.73 0.57 0.74 0.33 0.40 0.34 0.35 0.45 0.31 0.59 0.77 0.57 0.24 0.66 0.35 0.75 0.36 0.81 0.60 0.52

DADAN 0.43 0.73 0.72 0.73 0.32 0.44 0.37 0.37 0.31 0.26 0.66 0.77 0.67 0.30 0.68 0.45 0.76 0.38 0.82 0.75 0.55

TABLE V
PHONATION LEVEL MACRO F-SCORE FOR SDA IN SPEECH. MODEL “D-J” DENOTES THE TEST F-SCORE WHEN ADAPTING A MODEL PRE-TRAINED ON

“D” (SOURCE SUBJECT ID) TO “J” (TARGET SUBJECT ID).

Model D-J D-M D-S D-V J-D J-M J-S J-V M-D M-J M-S M-V S-D S-J S-M S-V V-D V-J V-M V-S Avg

Source Only 0.52 0.50 0.42 0.72 0.62 0.41 0.42 0.48 0.31 0.30 0.28 0.34 0.42 0.47 0.43 0.29 0.50 0.36 0.51 0.42 0.44

DANN 0.56 0.50 0.38 0.61 0.60 0.40 0.29 0.45 0.34 0.49 0.25 0.36 0.48 0.51 0.32 0.32 0.58 0.50 0.49 0.45 0.44

DADAN− 0.57 0.47 0.41 0.71 0.65 0.41 0.36 0.40 0.43 0.39 0.34 0.32 0.49 0.53 0.48 0.32 0.57 0.49 0.52 0.40 0.46

MMD 0.65 0.56 0.38 0.52 0.66 0.36 0.40 0.54 0.50 0.51 0.28 0.33 0.41 0.56 0.40 0.28 0.59 0.36 0.53 0.46 0.46

CDAN 0.54 0.49 0.46 0.76 0.60 0.34 0.28 0.37 0.41 0.40 0.27 0.28 0.36 0.48 0.42 0.42 0.55 0.49 0.47 0.22 0.43

MCC 0.52 0.72 0.36 0.28 0.62 0.43 0.35 0.67 0.48 0.34 0.31 0.33 0.40 0.21 0.23 0.24 0.49 0.34 0.43 0.41 0.41

DADAN 0.57 0.49 0.41 0.67 0.65 0.40 0.37 0.44 0.32 0.33 0.28 0.40 0.48 0.54 0.55 0.36 0.56 0.58 0.53 0.45 0.47

information and enhances the PMEncoder.

C. Performance on CDA

To further investigate the correlation between sung and
spoken phonation modes and develop a unified PMD model,
we conduct CDA experiment on SSD4PMD, and show a
significant improvement utilizing domain adaptation compared
to the Source Only results in singing and speech. Note that
the same dataset split as in Table III is used in this CDA
experiment, with results reported in Table VI.

For singing to speech domain adaptation, the proposed
method with the SFF feature shows an F-score of 0.56 on
speech data, which is close to the F-score of 0.57 supervised
trained on the speech data, as shown in Table III. For the Mel
spectrogram, the proposed method also improves the PMD
results on the target domain with an F-score of 0.49 compared
to 0.53 which is supervised trained. Although the ZTW feature
obtains an F-score of 0.39 with supervised training, which is
not as good as the other two methods, our proposed method
still improves PMD performance on the target domain with an
F-score of 0.34. Among all the domain adaptation baselines,
the proposed DADAN achieves the best result since it ad-
dresses the domain gaps using an extra DEncoder-DClassifier
branch. Compared with the non-adversarial domain adaptation
model MMD, the adversarial models show a more stable
performance for different input features. This experiment also
indicates that a similar phonation mode pattern is shared by

both singing and speech so that a singing PMD system can
help to identify the phonation modes in speech.

However, for the speech to singing adaptation, we observe
an evident performance decline with all domain adaptation
models as shown in the right part of Table VI, with an average
F-score degrade of 0.42, 0.60, and 0.45 for Mel, ZTW, and
SFF inputs, respectively. We attribute this to two factors: 1)
singing data exhibits a broader range of pitch levels than
speech, and 2) singing typically involves a diversity of vowel
lengths. Therefore, we conclude that a PMD model that has
been pre-trained with singing data can be effectively applied
to PMD in speech. In ablation study of DADAN for these
two adaptations, we conclude that the adversarial structure
and the DEncoder-DClassifier significantly contribute to the
overall performance by improving the discriminability of a
domain adaptation model.

D. Explainability of DADAN on CDA
In the context of singing and speech adaptation, singing

encompasses a broader pitch range than speech [50], [62], as
demonstrated by the pitch distribution of our phonation mode
dataset shown in Fig. 4. It prompts the investigation of whether
the phonation mode representation shared by singing and
speech is pitch-invariant. To further explore the relationship
between singing and speech based on the explainability of
DADAN, we conduct a monophonic pitch tracking experiment
to compare the embeddings learned by the PMEncoder and
DEncoder. The architecture of our pitch tracker consists of a
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TABLE VI
COMPARISION OF MACRO F-SCORE FOR DIFFERENT DOMAIN ADAPTATION

METHODS BETWEEN THE SINGING AND SPEECH DATA

Model Feature Singing → Speech Speech → Singing

Source Only
MEL 0.12 0.08

ZTW 0.0 0.0

SFF 0.08 0.04

DANN
MEL 0.39 0.30

ZTW 0.31 0.17

SFF 0.55 0.23

DADAN−
MEL 0.46 0.21

ZTW 0.23 0.20

SFF 0.49 0.23

MMD
MEL 0.44 0.27

ZTW 0.16 0.16

SFF 0.29 0.30

CDAN
MEL 0.47 0.31

ZTW 0.33 0.16

SFF 0.52 0.26

MCC
MEL 0.43 0.36

ZTW 0.24 0.16

SFF 0.29 0.31

DADAN
MEL 0.49 0.32

ZTW 0.34 0.22

SFF 0.56 0.22
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Fig. 4. Pitch distribution of the sung and spoken phonation mode dataset.

pre-trained encoder and a dense output layer of 360 nodes. The
output dimension indicates the pitch level from C1 to B7 with
20-cent intervals. The CREPE [63] estimation is regarded as
ground truth. The pitch tracker is trained to minimize binary
cross-entropy loss, with the parameters in the encoder remain-
ing frozen during training. Both PMEncoder and DEncoder are
trained using Adam optimizer for 10 epochs with a learning
rate of 1e-5. We utilize the raw pitch accuracy (RPA) with 50
cent thresholds [64], which measure the accuracy of frames
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Fig. 5. Average raw pitch accuracy of pitch tracker using pre-trained
PMEncoder and DEncoder.

with a quarter-tone error tolerance and are widely used to
evaluate the performance of pitch tracker. We refer to the
python implementation in [65].

Fig. 5 show the RPA results on source and target data
using PMEncoder and DEncoder of DADAN. Here we denote
the embedding learned from the PMEncoder as PMEmbed-
ding, while the embedding learned from the DEncoder as
DEmbedding. From the figure, the DEmbedding obtained
better results than PMEmbedding on both source and target
domains. During domain adversarial training, the DEncoder
is trained to learn domain-related information, meanwhile, the
PMEncoder is able to learn domain-invariant PMEmbedding.
This experiment demonstrates that DEmbedding contains more
pitch information than PMEmbedding. In addition, it is worth
mentioning that the source domain embedding result in a lower
RPA performance than the target domain. It can be attributed
to that the source domain is trained to learn PM representation
using ground-truth labels, whereas the target domain is trained
through unsupervised methods. The presence of labeled data
in the source domain allows for more accurate PM prediction
resulting in a lower RPA than the unlabeled target domain,
which can account for the observed difference in performance.
This supports the previously reported observation that a gen-
eralized phonation mode representation in singing and speech
is trained to be pitch-invariant.

VIII. CONCLUSION

Detecting phonation modes for multi-phonation sung songs
and speeches is challenging due to lack of the annotated data
and the various domain mismatch of recordings. To address
the challenges, we create the first sung and spoken phonation
mode dataset SSD4PMD and propose a two-step PMD system
consisting of a basic PMD model and an unsupervised domain
adaptation model, DADAN. The SSD4PMD can be a valuable
resource for phonation mode analysis and domain adaptation
research. The basic model with the structure of CRNN is
pre-trained to detect PM labels and pinpoint their boundaries
from temporal-spectral features of singing or speech data by
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grouping and smoothing the frame level output, yielding an
F-score of 0.54 and 0.53 for PMD in singing and speech,
respectively. The proposed DADAN effectively adapts the
PMD model to an unannotated target domain and outperforms
other DA methods by disentangling the domain-invariant PM
feature from the domain-specific feature. Experiments show
that the DADAN demonstrates strong SDA performance on
both sung and spoken datasets, with an average F-score of
0.55 and 0.47 for singing and speech, respectively. Finally, for
CDA, we adopt a PMD model trained with singing data for
PMD in speech and show that the common PM representation
between singing and speech is trained to be pitch-invariant.
These results demonstrate the effectiveness of the DADAN
for PMD by disentangling a domain-invariant embedding and
offer preliminary insights into the relation between sung and
spoken voice quality. A generalized PMD system will inspire
real-world applications in the emerging fields of medical, art,
and AI assistants, such as voice disorder diagnosis, singing
performance evaluation, and emotion recognition in speech
and singing.
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