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Drawlody: Sketch-Based Melody Creation with
Enhanced Usability and Interpretability

Qihao Liang, Ye Wang Member, IEEE

Abstract—Sketch-based melody creation systems enable people
to compose melodies by converting human-sketched melody
contours into coherent melodies that fit the depicted contours.
This remains one of the most intuitive approaches to interactive
music creation. However, previous studies are still stagnating in
limitations regarding usability and interpretability, which hinders
effective interactions between people and AI. For one thing,
these studies entail additional complex musical conditions as
auxiliary inputs (e.g. chord progressions, contextual melodies,
and predetermined rhythms), supporting only fixed-length and
rule-based melody generation. This makes existing systems less
usable, with generated melodies lacking diversity and coherence.
Moreover, users without enough musical expertise might find it
difficult to define appropriate inputs and to interpret the role
of these inputs in guiding melody generation. To address these
limitations, we present Drawlody, a novel sketch-based melody
creation system with enhanced usability and interpretability.
Specifically, Drawlody simplifies user input requirements by
excluding all complex musical conditions, using only a simpli-
fied melody contour representation named Generalised Melody
Contour (GMC) as input. This simplification clarifies the role
of user controls, making the system more usable for people
without musical training. To guide coherent melody generation
from GMC, we propose FlexMIDI music representation, which
simulates the tonal structure of melodies and faithfully explains
how human-sketched contours guide melody generation. We
employ a CNN-Transformer-based architecture as the foundation
model to achieve arbitrary-length melody generation. Drawlody is
evaluated by both objective and subjective music quality studies,
as well as a usability and interpretability study. The results
support its enhanced usability, interpretability, and high-quality
melody generation capabilities. Video demos of the system are
presented here.

Index Terms—Music Generation; Interactive Music Creation;
Melody Contour

I. INTRODUCTION

RECENT advances in artificial intelligence have signifi-
cantly progressed machine music composition through

the prowess of generative models, including Recurrent Neural
Networks (RNNs) [22], [34], [38], [50], Convolutional Neural
Networks (CNNs) [8], and different variants of attention-based
models [28], [29], [31], [53], [57], [60], [70]. To enhance the
usability and controllability of these complex architectures,
researchers have attempted to develop some interfaces [3],
[13], [15], [25], [55], [56], [59] that allow users to interact
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with generative models and guide them in composing music
that aligns better with users’ expectations.

Nonetheless, previous interactive music creation (IMC)
systems still stagnate in a trade-off between usability and
interpretability. Some of them prioritise user experience with
intuitive interfaces, such as emotion-based [12], [32], [71] and
picture style-based music generation frameworks [52]. While
these systems provide user-friendly interactions using easily
obtainable media as input, the effects of user controls are
often ambiguous, as generative models do not provide human-
understandable explanations of how these input controls guide
music generation. For instance, when using emotions or
pictures as input controls, users might find the generated
music less relevant or even contrary to their expectations, nor
can they interpret how the generated music relates to their
input. This is largely because the perception of emotions and
picture styles is highly subjective and incompletely formulated
by domain knowledge [26]. In contrast, other IMC studies
emphasise the integration of clearly defined domain knowledge
to make the AI music generation process more interpretable to
humans, meanwhile enhancing the “domain expertise” of gen-
erative models. Examples include but are not limited to melody
generation from chords [10], [14], the use of unfinished human
compositions to guide music generation [3], [45], [46], [62],
and Digital Audio Workstations (DAWs) that leverage digital
signal theories to process songs [11] for specific sound effects.
However, the excessive reliance on domain knowledge of these
systems can result in reduced usability, especially for amateur
users without sufficient expertise in music.
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Fig. 1. The general idea of Drawlody. Users can sketch a simple curve on
the canvas, without having to provide other musical conditions (e.g. chords,
contexts, etc.). The system takes this sketch and outputs a musically coherent
melody whose pitch motion also generally matches this curve.

To address these issues, we propose Drawlody—an in-
teractive music creation framework with enhanced usability
and interpretability. The framework is based on the notion
of melody generation from melody contour sketches. Unlike
previous sketch-based studies that (1) support only fixed-
length rule-based music creation and (2) involve other complex
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musical conditions as input [5], [36], [37], Drawlody supports
arbitrary-length melody generation from only melody contour
sketches (Figure 1). To cater to amateur users without suffi-
cient musical expertise, Drawlody excludes all complex music
theory-related input requirements (e.g. chords, melodies) and
indecipherable subjective attributes (e.g. emotions, picture
styles, video styles), using only the simplified generalised
melody contour (GMC) as human input. In addition, GMC is
a simplified version of melody contour. It omits the peripheral
details of melody contour and retains only the fundamental
pitch motion of melodies. This simplification enhances the sys-
tem usability by making the interaction more straightforward.
Furthermore, GMC is also a faithful visual indicator of the
general pitch motion of output melodies, thereby clarifying the
role of user controls when compared to using other ambiguous
attributes (e.g. emotions or images) as input.

Besides simplifying and clarifying user input, another chal-
lenge is to guide generative models to compose coherent
melodies that match the input sketches, and to help hu-
mans interpret how their sketches relate to the melodies.
To achieve this goal, we introduce FlexMIDI representation,
which simulates the tonal structure of melodies, where melodic
notes are perceived to revolve around a tonal centre [58].
Drawing from this concept, FlexMIDI represents a melody as
its general trend (viz. the tonal centres) and finer details (viz.
various pitches around tonal centres). This strategy facilitates
the alignment between input sketches and general trends of
melodies, while allowing for more finer details to sustain
melodic coherence and flexibility. With the implementation of
FlexMIDI, generative models can also learn to compose music
in a more human-like manner, meanwhile informing people
about how their sketches influence the generated melodies.

After modelling both sketches and melodies, we define
Drawlody as an end-to-end cross-modal sequence generation
task, employing a CNN-Transformer-based architecture as the
foundation model to generate arbitrary-length monophonic
melodies from melody contour sketch images.

To evaluate Drawlody, we conducted objective and sub-
jective music quality studies, as well as a usability and
interpretability study. For the evaluation of music quality,
we selected two sketch-based baselines: a rule-based genetic
algorithm [36] and a CNN-based [37] model. To understand
the effectiveness of our proposed GMC and FlexMIDI, we also
implemented another three baselines under raw melody con-
tours, vanilla MIDI and MuMIDI representation. All baseline
approaches were trained and validated on a synthetic dataset,
and tested on a human-grounded dataset. Both objective and
subjective evaluations advocate the advantage of Drawlody
over other baselines in generating higher-quality melodies.

For the usability and interpretability study, we employed
proxy-grounded and human-grounded tasks, two established
benchmarks from the field of interpretable machine learn-
ing [20]. We chose five representative systems in the field
of interactive music creation as baselines. The outcomes
demonstrate significantly higher improvement in usability and
interpretability of Drawlody against other IMC systems.

In summary, our main contributions include:

1. We present Drawlody, a sketch-based music creation
framework with enhanced usability and interpretability.

2. We propose generalised melody contour (GMC), a novel
concept that makes Drawlody accessible to amateur users
and can also effectively control the overall trend of machine-
generated melodies.

3. We propose FlexMIDI representation, helping generative
models compose coherent melodies from GMC with clearer
tonal structures and human-understandable explanations.

4. We leverage music domain knowledge to improve the
quality of sketch-based melody generation, meanwhile as-
sisting humans to interpret how their sketches control the
generated melodies.

5. We explore the interpretability of Drawlody with some
benchmarks from the field of interpretable machine learning.

II. RELATED WORK

In the context of Human-Computer Interaction (HCI), the
notion of interactive artificial intelligence has garnered signif-
icant attention in many recent studies [1], [63], [65], [66].
This trend has also prompted computer scientists and mu-
sicians to explore the incorporation of HCI principles into
automatic music generation frameworks. In this context, we
present a taxonomy of previous studies on Interactive Music
Creation (IMC) by categorising studies as usability-centred,
interpretability-centred and sketch-based.

Usability-centred studies seek to develop interaction meth-
ods that are user-friendly and limit user workload. Such
studies utilise easily-obtainable media as input to guide music
generation, but often stop short of explaining how user input
relates to the generated music. For example, prior work has
explored the use of emotions as input for machine-generated
music [2], [32], [33], [71], which often involves the analysis
of facial expressions [72], body movements [12] and emotion
models [19]. However, the computational analysis of emotions
in both humans and music remains challenging due to the
subjective and ambiguous nature of understanding emotions
[35], [68]. This inherent complexity poses difficulties in cre-
ating emotion-based interactions that are easily interpretable
to users. Another relevant example is music generation from
video [47], [52], text [9], [48], or image style [17], [64], which
also lacks interpretability due to opaque relationships between
the provided input and resulting music.

Interpretability-centred studies, in contrast, seek to lever-
age clearly-defined domain knowledge to make AI’s music
generation process more interpretable to humans and faithful
to music theory. One typical example is melody-to-chord gen-
eration [25], [40] and chord-to-melody generation [34], [49],
[54], where generative models are trained to capture the regu-
larity of melody-chord relationships. In addition, some schol-
ars have proposed using unfinished human compositions to
guide AI music generation, with a strategy similar to prompt-
based generation from natural language processing, which can
be easily implemented with [24], [28], [30]. Some commercial
products, such as digital audio workstations (DAW), leverage
many interpretable digital processing algorithms [7], [18], [27]
to process music for various sound effects. However, the
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use of excessive domain knowledge in these studies often
overwhelms non-expert users, resulting in reduced usability.

To the best of our knowledge, the notion of sketch-based
music composition has only appeared in a few recent studies.
The first instance is a music improvisation system [36], [37],
which allows users to improvise short melodies during the
playback of a given accompaniment. However, [36] generates
rhythms and pitches independently and considers only the
coherence between two pitches with bi-grams. The rhythms
are also monotonous due to the rule-based nature. Although
[37] further extends [36] with a CNN to improve melodic
diversity, it only supports fixed-length melody generation,
analogous to [42]. Furthermore, both [37] and [36] entail
chord progressions as conditional inputs, which non-expert
users cannot provide. Another relevant work is a VAE-based
melody inpainting system [5], where users can fill a blank
measure between two contextual measures by drawing a pitch
curve and a note density curve. However, this system is
limited to measure-long music composition and requires two
context melodies that can be unobtainable to amateur users.
Additionally, the use of note density curves might appear
somewhat counterintuitive, since human perception of rhythm
is often associated with movement-based concepts [4], [39],
which cannot be adequately represented by wavy curves.

III. PROBLEM FORMULATION

Different from previous systems that condition melody
generation on melody contours and other music-related con-
straints, our notion of sketch-based IMC comes from the
basic element analysis of music [21], [41], which decomposes
a melody into pitches and rhythms. Drawlody focuses on
controlling the pitch motion of output melodies with human-
sketched curves, while allowing for the flexible generation of
various rhythmic patterns learnt from training data.

Let D = {(G(i),M(i))Ci=1} denote the corpus with C paired
sketch-melody samples, where each G(i) ∈ Rw×h represents a
w×h sketch image, and each M(i) = {m(i)

0 ,m
(i)
1 , ...,m

(i)
t−1} is

a sequence of melody symbols. Drawlody employs an end-to-
end generative model Dθ parameterised by θ, which generates
symbolic melodies from given sketch images and some user-
specified metadata U(i) (e.g. tempo, length of melody, etc.):

M(i) = Dθ(G
(i),U(i)) (1)

At the t-th timestep, D builds the conditional probability pt:

pt = P (m
(i)
t |m(i)

0:t−1; G(i); U(i); θ) (2)

We aim to optimise θ by reducing the cross-entropy loss:

θ̂ = argmin
θ

Ltrain := −1

t

t−1∑
j=0

rijm
(i)
j log(pj) (3)

where rij represents the loss weight for the symbol m(i)
j .

IV. METHOD

In this section, we first present a brief overview of the
Drawlody system. Then, we describe the motivation and
details of representing melody contour sketches and their cor-
responding melodies. Finally, we delve into the technicalities
of Drawlody architecture and how the architecture leverages
and interacts with these representations.

A. System Overview

As shown in Figure 2, Drawlody adopts an encoder-decoder
architecture as the foundation model (Figure 2). The encoder
(Figure 2(A)) first employs a sketch image splitter to process
each input image as sequential data. The sequence is then
passed through an input processing module (Figure 2(B)),
where a CNN Feature Extractor, a General Pitch Extractor
and Positional Encoding are applied to enhance the feature
representation. The outputs of these three components are
concatenated and linearly projected as conditional inputs to a
4-layer Transformer-XL [16] encoder. The hidden states from
the encoder are taken by another 4-layer Transformer-XL to
sample musical symbols, which are processed by an output
module as a MIDI melody.

Output: A musical MIDI melody that fits the user sketch

Input: A user sketch image of generalised melody contour

Bar
Position

Basic Pitch
Pitch Flex

Duration
Velocity

Transformer-XL Decoder

Output Module

······ ······

(C) FlexMIDI Decoder

(A) Generalised Melody Contour Encoder

CNN Hiddens
General Pitch Emb.

Positional Emb.
······ ······

Feedforward Layer (Projection)

······ ······Feature Inputs

Transformer-XL Encoder

Sketch Image Splitter

······ ······
Conv2D
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MaxPool2D

BatchNorm
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Embeddings

Positional 
Embedings
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General Pitch 
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Positional 
Encoding
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Conv1D

Mean

Embedding 
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(B) Input Processing Module

Previous
Timesteps

Fig. 2. The pipeline of Drawlody architecture. Firstly, the input image is
split into sub-images, which are then processed by a CNN to extract relevant
features. Next, a General Pitch Extractor and Positional Encoding are applied
to further enhance the feature representation. The outputs of these three
components are concatenated and linearly projected to create the feature inputs
to the encoder. Conditioned on the input, the decoder then generates FlexMIDI
symbols, which are converted into MIDI files by the output module.

B. Input Representation: Melody Contour and Generalised
Melody Contour

A melody contour is the visual representation of pitch
motions in its corresponding melody. It resembles a wavy
curve that chronologically follows the pitch of each melodic
note. Figure 3 displays three basic types of melody contour.
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Three Basic Types of Melody Contour
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Fig. 3. Three basic types of melody contour (ascending, descending and
repeated)

However, the raw form of a melody contour is complex: It
forms a frequently undulating curve by strictly following each
pitch in the melody (Figure 4A). Therefore, using this complex
curve as the input condition can be impractical: interaction-
wise, drawing a detailed, wavy pitch curve is overwhelming
for users. Algorithmically, raw melody contours can mislead
generative models due to numerous intricate features (e.g.
subtle changes and fluctuations in contours).

To address this challenge, we introduce generalised melody
contour (GMC), which omits the peripheral details of raw
melody contours and describes the most fundamental pitch
trend of a melody (Figure 4(C)). Compared to raw melody
contours, GMC is far simpler in form and more understandable
to both machines and non-experts without an extensive music
background, greatly enhancing system usability.

C. Synthesising Generalised Melody Contour

The synthesis of a generalised melody contour includes
two steps: (1) Basic melody extraction, which extracts the
most fundamental pitch developments in the melody; and
(2) interpolation, where the identified basic melody notes are
interpolated to form a smooth curve that reflects the general
pitch motion of the melody. Figure 4 illustrates the stages
in generalising a raw melody contour, where the generalised
melody contour perfectly matches the extracted basic melody
(Figure 4(B)), and reflect the general trend of the original
melody as well (Figure 4(C)).

(A) The raw melody contour and original melody of a song

(B) The basic melody and generalised melody contour of a song

(C) The generalised melody contour and original melody of a song

Fig. 4. Melody contour (A) and generalised melody contour (B, C). (A)
follows each pitch in a melody and forms a wavy curve with many details,
while (B) and (C) only follow the basic trend of a melody and remain simpler.

1) Basic Melody Extraction: Basic melody is an abstraction
of the raw melody that retains only its most fundamental
pitches (Figure 5B). This concept originates from Dai et al.’s
research [14], where the authors select the most frequent pitch
in each 2-beat segment of the original melody as its basic
melody. However, this approach has certain limitations that
result in failures during the extraction of basic melodies:

• Outlier Failure: It fails to process longer notes whose
durations exceed 2 beats, and notes whose starts and ends
fall in two different 2-beat segments. For example, the
yellow frames in Figure 5 (A).

• Same Frequency Failure: It does not consider the case
where all pitches in a 2-beat segment have the same
frequency 1, for example, the blue frames in Figure 5
(A), where we need to establish priority rules to decide
the most representative pitch.

Time

Window Size

(A)

(B) 

(C) 

Windows

(I)

(II) (III) (IV)

(V)

(VI)

Fig. 5. Melody (A), original basic melody (B, [14]) and self-adaptively
extracted basic melody (C, ours). The blue and yellow frames in (A) highlight
the same frequency failures and outlier failures, respectively. The self-adaptive
windows in (C) can handle longer notes and notes that fall out of the 2-
beat size-invariable windows in (B), and also applies more priority rules to
selecting the most representative pitches. For example, the outlier in (I) is a
long note, so the algorithm splits another window to process this long note
independently in (C); In (V), the outlier is a short note, so the algorithm
resizes the window to incorporate this note.

Based on Schenker’s theory [51] and some related work
on the importance of melodic notes [61], [69], we propose
a two-step self-adaptive basic melody extraction algorithm,
leveraging music domain knowledge to process multiple note
durations and their importance in deciding the melodic mo-
tion. The algorithm first employs a size-variable window to
partition a melody into different segments. Then, within each
window (segment), priority rules are applied to select the most
representative pitch.

Self-Adaptive Melody Windowing: Technically, the initial
size and stride of this window are two beats, following [14].
Then, the window begins to chronologically scan the melody
notes from the left to the right. If the window encounters a
long note (Equation 9) outlier, it automatically splits itself into
two sub-windows to handle inliers and outliers separately. If a
short note starts within the window but ends outside of it, the
window resizes itself slightly to accommodate this short note.
This self-adaptive windowing strategy addresses the outlier
failure, enabling the algorithm to handle various melodies.
More details of this algorithm are shown in a schematic graph
in Section I of our supporting documents.

Priority Rule-based Basic Pitch Detection: After defining
how melody notes are grouped into segments by self-adaptive

1Note that frequency here does not refer to the frequency of a pitch. It
means the number of times a pitch appears in a melody segment, i.e. the
occurence frequency.
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windows, we discuss the priority rules that the algorithm
applies to decide the most significant pitch in each segment.
Let m(i)

t .s, m(i)
t .e and m

(i)
t .p denote the start, end and pitch

of a note m
(i)
t in a melody M(i), respectively, and Bs, Bu,

Bw denote the strong, substrong and weak beats respectively:
• In-tune Notes refer to notes that fall in the scale of the

melody’s key.

Nτ = {m(i)
t |m(i)

t .p%12 ∈ S} (4)

where S represents the scale of the current key.
• Off-tune Notes, contrastly, refer to notes that fall out of

the scale of the melody’s key.

No = {m(i)
t |m(i)

t .p%12 ∈ C − S} (5)

where C is the chromatic scale. It is evident that both
Nτ ∪No = C and Nτ ∩No = Ø hold on these definitions.

• Downbeat Notes refer to notes starting from the strongest
beats (namely, the first beat of a bar).

Nd = {m(i)
t |m(i)

t .s ∈ Bs;m
(i)
t ∈ M(i)} (6)

• Substrong Beat Notes refer to notes starting from the
substrong beats.

Nu = {m(i)
t |m(i)

t .s ∈ Bu;m
(i)
t ∈ M(i)} (7)

• Syncopations refer to notes that are emphasised on a
weak beat, but last till the next strong or substrong beat.

Ns = {m(i)
t |m(i)

t .s ∈ Bw∧m(i)
t .e ∈ Bs∪Bu;m

(i)
t ∈ M(i)}

(8)
• Long Notes refer to the longest note within its temporal

proximity ∆T (viz., a melody segment) 2.

N+ =

m
(i)
k

∣∣∣∣∣∣
k = argmax

t

(
{(m(i)

t .e−m
(i)
t .s)}

)
;

m
(i)
t .s ∈ ∆T, m

(i)
t ∈ M(i)


(9)

• Short Notes refer to the remaining non-long notes.

N− = N i −N+ (10)

where N i denotes all note events in the melody M(i).
Within each segment, the algorithm first filter out all off-

tune notes. If there is only one note in the segment, or all
notes are off-tune, the algorithm tweaks the pitch to be in tune
along the pitch flow. Namely, if a note forms a decreasing
(or increasing) pitch trend with its neighbouring notes, the
algorithm shifts this pitch downward (upward). The algorithm
finally picks one pitch following the priority chain shown in
Equation 11, where notes with higher priority are considered
more important in music theory [51].

Nτ ∩N+∩Nd ≻ Nτ ∩Ns∩N+ ≻ Nτ ∩Nd ≻ Nτ ∩N+∩Nu

(11)
If there are multiple candidate pitches with the same priority,
the algorithm favours the one with the highest frequency in
the current window. If their frequencies are the same, the
algorithm favours a higher pitch. Figure 5 compares a melody,
its basic melody and its self-adaptively extracted basic melody.

2In this paper, we employed ∆T as two bars for 4/4 time music.

2) Interpolation: With a basic melody sequence of discrete
basic notes, we first process these notes as paired data points
{st, bt}nt=0, where bt and st denote the basic pitch value and its
start. Then, a cubic spline interpolation algorithm is applied
to these data points to obtain a smooth curve, resulting in
the synthetic generalised melody contour. We chose cubic
spline interpolation because it (1) is more suitable for mildly
changing data points (like the basic melody) and the data
magnitude of our model input; (2) can ensure that the output
curve passes every data point smoothly, maximally sustaining
faithfulness to the melody [23].

D. FlexMIDI Melody Representation

In the symbolic music domain, scholars have proposed
many effective strategies to represent music in notation-based
formats that can be parsed by computers, e.g. MIDI. Despite
their impressive performance in many downstream tasks [44],
[49], existing representation strategies use only MIDI note
numbers to denote pitches in melodies, without considering
the general melody trend information that is essential for our
study. Therefore, we propose FlexMIDI representation, which
integrates general melody trend information into symbolic mu-
sic. Specifically, FlexMIDI uses two sequences to represent the
pitch progression in a melody: (1) general trend information,
namely the basic melody; and (2) pitch flex information. By
introducing these two sequences, generative models can com-
pose a basic melody trend while simultaneously elaborating
its finer details with pitch flex. This facilitates the alignment
between the shapes of GMCs and the generated melody trends,
while still allowing for some level of aesthetic flexibility. The
following parts will elaborate on the details of FlexMIDI.

1) Pitch Flex and Note Representation: Pitch flex is the
signed interval between the actual pitches and the pitch of
their basic melody note (basic pitch). The notion of pitch flex
stems from the tonal analysis of music, where all melodic
notes are perceived to be built around a tonal centre [58].
To simultaneously sustain the general trend and details of a
melody, we treat notes in basic melody as local tonal centres
in each segment (window), and use pitch flexes to describe the
detailed melodic motion around basic notes, which forms a
hierarchy shown in Figure 6. Technically, we use the same
window as in self-adaptive basic melody extraction to scan a
pair of melody and its basic melody from left to right. In each
window, denote the pitches of all notes as {p(i)0 , p

(i)
1 , . . . , p

(i)
k }

and the selected basic pitch in this window as b. The pitch flex
sequence is defined as:

Nf = {p(i)0 − b, p
(i)
1 − b, . . . , p

(i)
k − b} (12)

To encode both general melody trend information and the
details of melodies, FlexMIDI uses two symbols, Basic Pitch
and Pitch Flex, to represent the pitch of a single melodic note.
We also involve other two note-related attributes, Duration and
Velocity, compressing these four symbols into a compound
word that represents a note:

<BPitchb,Flexf ,Durd,Velv> (13)
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Time

Actual Melodic Notes Basic Melodic Notes Pitch Flex (viz. the intervals between actual and basic melodic notes)
Fig. 6. An illustration of pitch flex, which is the interval between original (green) and basic (blue) melodic notes. In this figure, we overlap two different
kinds of notes for an intuitive illustration of their relations.

where b, f, d and v indicate the actual value of basic pitch, pitch
flex, duration and velocity, respectively. It is worth noting that
the value of a duration symbol is determined by the type of its
corresponding note. To exemplify, a 16th note is denoted by a
<Dur16> symbol, and a full note corresponds to a <Dur1>
symbol, by analogy.

2) Bar and Position Symbols: We use bar and position
symbols [44] to notate the positional information of melody
events. Specifically, a bar symbol represents the beginning
of a new bar, followed by other symbols in that bar.
A position symbol further elaborates a concrete position
within that bar, followed by other symbols appearing at that
position. Technically, we use <Barm> to represent the
m-th bar, and <Posn> to denote the n-th location within
the corresponding. In this paper, each bar is quantified as
32 equidistant positions, following [49]. The combination
of bar and position symbols together marks the positions
of their following symbols. For instance, the sequence
<Bar3><Pos31><BPitch65,Flex−2,Dur16,Vel80>
notates a 16th note at the 31st position in the 3rd bar.

3) User-Specified Meta-Symbols: Users can customise the
metadata of generated melodies with meta-symbols, which are
special symbols that carry meta-information, such as the tempo
(in beats per minute, BPM) and length (in bars) of the music.
These meta-symbols are passed to the output module, which
converts all symbols into MIDI files. The output MIDI files
thus follow the meta-constraints given by users.

E. Model Architecture: Generalised Melody Contour Encoder

The overall architecture of Drawlody is illustrated in Fig-
ure 2, where we employ an encoder-decoder model to guide
sketch-based melody generation. The generalised melody
contour (GMC) encoder takes a GMC sketch image and
process it as high-dimensional conditional information. To
handle GMC images of different sizes, the encoder first split
a GMC image into a sequence of sub-images of the same
size. After being processed by some feature extraction models,
all sub-image features are serialised by a sequence model, to
capture their dependencies. Specifically, the model utilises:

• a convolutional neural network (CNN), to extract features
from GMC sub-images;

• an original general pitch extractor (GPE), to extract the
general pitch information contained in GMC sub-images;

• a Transformer-XL (XFMR-XL), to capture the dependen-
cies among different GMC sub-image.

These three parts reciprocally interact with each other. GPE
refines a GMC image into a general pitch motion, while CNN
extracts local details (e.g. rising trend or falling trend) from
images and adds more flexibility to the pitch motion. The
combination of GPE and CNN (1) reduces the sequence length
of input and (2) simultaneously sustains multi-granularity
features. Their hidden states at different timesteps are further
serialised through an XFMR-XL with positional embeddings.
Figure 7 displays the three key components of a GMC sub-
image. The following subsections will describe the details of
data preparation and model input.
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Fig. 7. Three key components of a GMC sub-image. The general pitch
information reflects the overall pitch distribution of this sub-image; the contour
details (e.g. falling trend) are indicated in the sub-image itself; the positional
encodings inform the sequence model with the position of this sub-image.

1) GMC Image Split: Given a fixed-size sliding window
W ∈ Rs×h, a GMC image G(i) ∈ Rw×h is split into a chain
of fixed-size sub-images G ∈ R⌈w

s ⌉×s×h, indexed by T =
{t|0 ≤ t ≤ ⌈w

s ⌉ − 1∧ t ∈ N}, each corresponding to an input
timestep. This can be formulated as a split function fs:

G = fs(G
(i),W ) = {G(i)

t ∈ Rs×h |t ∈ T } (14)

where w is the width of G(i); s denotes the width and stride
of W ; and h represents the height of both W and G(i).

Then, we encode each sub-image G
(i)
t into a vector Vi ∈

Rdmodel with a CNN for feature extraction: Rs×h → Rdmodel ,
where dmodel denotes the dimension of XFMR-XL.

2) Extra Music-related Information: To allow for more
controls from the user side, we also incorporate music-related
information into inputs, such as general pitch information
from GMC images, and user-specified metadata. Here, we
mainly elaborate on the general pitch information extracted
from GMC images.

In a Generalised Melody Contour (GMC) image, the contour
is rendered black on a white canvas (e.g., see Figure 4B).
The x-dimension (horizontal) of a GMC image represents
time, while the y-dimension (vertical) represents pitch-related
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Fig. 8. The embedding overview of a FlexMIDI sequence <Bar0><Pos0><BPitch69,Flex0,Dur16,Vel127><Pos12><BPitch71,Flex0,
Dur32,Vel125><Bar1><Pos0><BPitch72,Flex−2,Dur16,Vel126><Pos12><BPitch74,Flex0,Dur32,Vel125>

information. However, capturing every black pixel in the image
can result in redundant information, particularly when con-
tours have higher contour thickness, leading to many adjacent
pixel points. To address this issue, we propose a refinement
technique for the y-coordinates of black pixels on the contour,
aiming to capture only the most general pitch progression.
This process reduces unnecessary details while preserving the
essential melodic information. Specifically, we extract one
general pitch for each GMC sub-image. General pitch refers
to a representative pitch value (or y-coordinate in the image)
that characterises the overall pitch distribution conveyed by
a GMC sub-image. By obtaining a sequence of such general
pitches, we effectively capture the pitch progression of the
input contour.

Technically, we first scan the columns of a GMC sub-image
G

(i)
t and retrieve a position yk for every single column ck. yk

is determined by the mean of the y-coordinates of all black
pixels in ck:

yk =

∑ν
j=0 yj

ν
(15)

where ν is the number of black pixels within ck. This step
ensures that each column of the image has only one black
pixel y-coordinate. We then collect the positions retrieved
from all columns as Y = {(yk)sk=1}, and the general pitch
(pg) information is the mean of 1D convolution of Y , which
summarises the general pitch distribution within G

(i)
t . We

build a dictionary that incorporates all possible values of pg
after rounding, which are mapped as embedding vectors.

3) GMC Feature Embedding: After the feature extraction
from CNN and GPE, the final input to Transformer-XL forms
a vector that incorporates (1) the melody contour information
from CNN; (2) the pitch-related information, viz. the embed-
dings of tokenised events from the GPE; and (3) the relative
positional embeddings [57]. We adopt a strategy similar to
[49], concatenating three vectors and using a feedforward layer
for dimensional reduction.

F. Model Architecture: Melody Decoder

The melody decoder takes the conditional information from
GMC encoder, and decodes FlexMIDI symbols timestep-by-
timestep. At the first timestep, a bar symbol < Bar0 > is input
as the proxy for the beginning-of-sequence symbol to initiate
decoder generation. Then, the decoder outputs one FlexMIDI
symbol at a timestep through the corresponding probability
distribution over the dictionary.

1) FlexMIDI Sequence: Before being input to decoders,
raw MIDI data are first quantised and processed as sequences
of FlexMIDI symbols. Specifically, bar, position, and note
symbols are chronologically ordered on the first hierarchy,
while note symbols can be further expanded as basic pitch
symbols, pitch flex symbols, velocity symbols, and duration
symbols to form the second hierarchy. Figure 8 illustrates an
excerpt of the FlexMIDI representation of an input MIDI item.

2) FlexMIDI Embedding: We use a dictionary to incorpo-
rate all FlexMIDI symbols. Each symbol is tokenised and
embedded as a vector before being input to the decoder.
At each timestep, if there is a basic pitch token, we first
concatenate basic pitch and pitch flex embeddings as, which
a linear layer further maps to a pitch embedding. Then, the
embeddings of all symbols are concatenated as a longer vector,
which is then mapped as a vector in the model dimension
through another linear layer. Figure 9 shows the embedding
strategy at a note symbol timestep.
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Fig. 9. The embedding strategy of a FlexMIDI note symbol. The pitch flex
embedding (Flex−2) and basic pitch embedding (Pitch72) are first concate-
nated and linearly projected into a pitch embedding. This pitch embedding
is then concatenated with other attribute embeddings, the output of which is
projected as the final input embedding (Embed.).

3) Output Module: At each timestep, the hidden states of
the decoders are processed through a softmax layer, which
produces a probability distribution over the FlexMIDI symbol
dictionary. The output module utilises beam search to sample
FlexMIDI symbols from the dictionary and generate MIDI
melodies based on the sampled Flex-MIDI symbols. It is
important to note that when a note symbol is sampled, the
module also samples all its attributes, namely basic pitch, pitch
flex, velocity, and duration.

V. EXPERIMENTAL SETUP

A. Dataset

1) Synthetic Dataset for Training and Validation: While
the generalised melody contour (GMC) is a simple and under-
standable abstraction of melodic motions, manually collecting



LIANG & WANG: DRAWLODY: SKETCH-BASED MELODY CREATION WITH ENHANCED USABILITY AND INTERPRETABILITY 8

GMC data can be a time- and energy-consuming task, espe-
cially on large datasets with long music samples. Inspired by
the back-translation technique [43] from machine translation,
we found that synthetic data is an effective strategy to alleviate
the shortage problem of paired data. Therefore, we used the
automatic pipeline described in subsection IV-C to instantly
synthesise GMC representations from MIDI inputs.

In total, our dataset comprises 1,328,542 bars of MIDI
melody data, equivalent to approximately 738 hours at a
tempo of 120 bpm, all in 4/4 time and the C Major key,
sourced from the Lakh LMD dataset [6]. This dataset includes
18,091 different songs in MIDI format, with the lengths of
single MIDI files ranging from 15 to 499 bars, an average
length of 48.58 bars, and a standard deviation of 30.11. We
processed this dataset through the described pipeline (c.f.
subsection IV-C), resulting in a collection of GMC-MIDI pairs
used for both training and validation sets. More information on
the dataset statistics is detailed in our supplemental materials.

2) Human Dataset for Testing: For testing, the model took
human-sketched GMC data as input. If these sketches can still
guide the model to generate coherent melodies, we deem the
synthetic dataset effective.

B. Technical Implementation Details

The structure of Drawlody is shown in Figure 2. For the
GMC encoder, we implemented a simple CNN architecture for
image feature extraction and a General Pitch Extractor (GPE)
for pitch-related feature retrieval. The extracted features are
then input into a four-layer Transformer-XL [16] encoder after
concatenation with relative positional encodings and a linear
projection. The FlexMIDI Decoder consists of a four-layer
Transformer-XL decoder and an output module for FlexMIDI
decoding and off-tune note reduction. During decoding, we
employed three different temperatures (0.8, 1.0, 1.2) to sample
output tokens, and randomly selected melodies as the test data.

The Drawlody architecture was trained on three NVIDIA
RTX A5000 GPUs, each with 20GB of memory. It took
approximately 1.5 days for the model to converge on the loss
function.

Ltrain = αℓ(zBar;Θ) + βℓ(zPos;Θ) + γℓ(zToken;Θ)

+ωℓ(zFlex;Θ) + δ(ℓ(zDur;Θ) + ℓ(zV el;Θ))
(16)

where α, β, γ, ω, δ are hyper-parameters, and ℓ is the cross-
entropy defined as ℓ(zsymbol;Θ) = − 1

l

∑l−1
t=0 zsymbol log(pt :=

P (m
(i)
t |m(i)

0:t−1; G(i); U(i); Θ)), for each input G(i), U(i),
and the ground truth FlexMIDI symbol zsymbol, where the
symbol subscript indicates a specific type of symbol in
FlexMIDI representation.

In the experiment, we adopted α = 0.1, β = 0.1, γ = 1.0,
ω = 1.0, and δ = 0.85. Here, γ, ω, and δ are parameters
for token (FlexMIDI symbol) losses and token attribute (e.g.
duration and velocity) losses, while α and β are losses for
position information. We chose higher γ, ω, and δ than α and
β, as the model was expected to optimise the token and token
attribute losses more, which determine the shape of output
melodies. We also found that slightly optimise ℓ(zBar; Θ) and
ℓ(zPos; Θ) could already yield good results.

C. Music Quality Evaluation

1) Objective Music Quality Evaluation: For an objective
analysis of the quality of machine-generated melodies, we
used six computational metrics from [67], including four pitch-
based features and two rhythm-based features. We calculated
the overlapping area (OA) [67] between the feature values of
the machine-generated samples and those of human-composed
ones. A larger OA indicates a higher degree of similarity
to human-composed melodies, which is deemed as being of
higher quality by objective metrics. The pipeline of OA calcu-
lation is listed in Section VIII of our supplemental materials.
For more details, readers may refer to the original paper [67].

Pitch-based Metrics
• Pitch Count (PC): PC describes the number of different

pitches within a melody sample;
• Pitch Class Histogram (PCH): the octave-independent

chromatic quantisation of the frequency continuum;
• Pitch Class Transition Matrix (PCTM): a histogram-

like matrix including pitch transitions for each ordered
pair of notes. It implies useful information related to the
melodic progression of music.

• Average Pitch Interval (PI): the mean of intervals (in
semi-tones) between two consecutive pitches in each
melody sample.

Rhythm-based Metrics
• Note Count (NC), which represents the number of

different notes in a sample. Different from PC, NC
excludes pitch information within notes and only focuses
on rhythmic patterns.

• Note Length Transition Matrix (NLTM), which, anal-
ogous to PCTM, implies useful information related to
rhythmic patterns of melodies.

Faithfulness to the Sketch (F2S): We also proposed a
metric named Faithfulness to the Sketch (F2S) score to assess
the degree to which generated melodies align with their
respective input sketches. This metric is based on the distance
between the generated melody notes and the input sketch
curve. Let all note events in a generated melody sample M(i)

be denoted as N (i) = {m(i)
0 ,m

(i)
1 , . . . ,m

(i)
t }, and the input

sketch as G(i). The F2S score is determined by:

F2S = λ
|N (i)|∑|N(i)|−1

t=0 |m(i)
t .pitch−G(i)(m

(i)
t )|

(17)

where m
(i)
t .pitch denotes the pitch of the note m

(i)
t ; |N (i)|

is the length of N (i); G(i)(m
(i)
t ) denotes the y-coordinate of

the sketch curve at the start time of m(i)
t ; λ is a normalisation

factor. In this paper, we selected λ = 104 considering the
data magnitude. F2S measures the reciprocal of the average
distance between the generated melody notes and the input
sketch curve. A higher F2S score can indicate a closer sketch-
melody alignment.

2) Subjective Music Quality Evaluation: We also conducted
subjective tests to further assess the perceptual quality and
the sketch-melody matching degree of generated samples. For
each generated melody, we presented human participants with
(1) the generated melody rendered in piano audio; (2) the
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piano roll visualisation of this melody, overlapped with the
input sketch. Participants were required to rate these shuffled
samples on the following criteria:

• Faithfulness assesses the degree to which output
melodies can match input sketches;

• Stability reflects the extent to which generated melodies
can stably match user sketches over time;

• Musicality reflects the overall perceptual pleasantness of
generated melodies;

• Rhythmicity measures how reasonable the rhythmic pat-
tern of melodies sounds;

• Richness measures the overall aesthetic richness of gen-
erated melodies, instead of only rigidly fitting the input
sketch or repeating some pitches, etc.

3) Sketch-based Baselines for Music Quality Evaluation:
Previous studies on sketch-based melody composition [5], [37]
only support fixed-length melody generation, or entail other
musical conditions (e.g. chords, context melodies) as addi-
tional input. To make them directly comparable to Drawlody,
we tweaked [36] and [37] as Rule-based and CNN-based
baselines, respectively. We also propose a MIDI-based baseline
as the contrast group to assess the effectiveness of FlexMIDI.

Rule-based (RB): This baseline is adapted from JamSketch
[36], which uses a bi-gram-based genetic algorithm to generate
music from human-sketched contours. Specifically, given a
GMC image G ∈ Rw×h and a pre-determined rhythm template
Tr = (si, ei) where si and ei mark the start and end of a
note respectively, we split G into sub-images S = {Gi ∈
Rwi×h|wi = ei−si} following Tr as boundaries. This rhythm
template is pre-generated by another rhythm bi-gram trained
on the same dataset. RB aims to generate one pitch for one
sub-image using the fitness function Equation 18. We excluded
the chord-dependent term from the original fitness function to
make this baseline comparable to Drawlody:

F (N) = ω0sim(N)+ω1seq1(N)+ω2seq2(N)+ω3ent(N)
(18)

where N = {n0, n1, . . . , nL−1} denotes a sequence of notes
in the generated melody.

sim(N) measures the distance on y-coordinate (pitch)
between notes and the input sketch curve:

sim(N) = −
L−1∑
i=0

(ni − g)2 (19)

where g is the y-coordinate of the pixel at the onset of ni.
seq1(N) represents the pitch bi-gram probability between

two consecutive pitches:

seq1(N) =

L−1∑
i=i

logP (ni|ni−1) (20)

seq2(N) represents the interval bi-gram probability be-
tween two consecutive pitch intervals:

seq2(N) =

L−1∑
i=2

logP (ni − ni−1|ni−1 − ni−2) (21)

ent(N) measures the similarity between the entropy of all
selected notes (H(N)) and that of a melody corpus (Hmean):

ent(N) = −(H(N)−Hmean − ϵ)2 (22)

where ϵ is the controller of entropy, and lower ϵ tends to result
in more complex melodies by influencing the entropy.

For more technicalities regarding these functions, readers
may refer to the original paper [36]. In this paper, we had
ϵ = 0, ω0 = 3 and ω1 = ω2 = ω3 = 1, following [5].

CNN-based: This baseline tweaks the CNN-based JamS-
ketch Deep-α [37] to fit our arbitrary-length and chord-free
problem setting. We used an LSTM after CNN to handle inputs
of different sizes and excluded all chord inputs.

D-MIDI and D-MuMIDI, which keep the same model
structure as Drawlody, but use MIDI 3 and MuMIDI [49]
during training and inference, respectively.

D-Raw, which uses raw (ungeneralised) melody contour
data as input to train and validate the model.

D. Usability and Interpretability Evaluation

After the music quality evaluation, we also assessed the us-
ability and interpretability of Drawlody against several existing
interactive music creation systems. The usability evaluation is
a human-grounded subjective evaluation 4, where participants
needed to score the usability of each system on some metrics.
For the interpretability evaluation, we employed both proxy-
grounded evaluation and human-grounded evaluation from
interpretable machine learning [20].

1) Proxy-Grounded Interpretability Evaluation: Proxy-
grounded tasks interpret a black-box model against an inher-
ently interpretable model, and study if there exist any similari-
ties between them. We employed the rule-based baseline (RB)
as the proxy model, which employs an interpretable genetic
algorithm that step-by-step aligns the melody notes with the
contour. For a similarity study, we compared objective feature
scores and human music quality ratings to study similarities
between their generated melodies.

2) Human-Grounded Evaluation of Usability and Inter-
pretability: We also invited human participants to score the
usability and interpretability based on some explanations of
the generated music. For Drawlody, we presented participants
with text- and visual-based explanations. Each visual-based
explanation (e.g. Figure 10) is a music score consisting of (1)
the generated melody; (2) the generated basic melody trend;
and (3) the user-sketched contour. The text-based explanation
further explains this visualisation, that “Drawlody leverages
the user-sketched contour to control the basic trend of the gen-
erated melody, meanwhile elaborating this trend into various
pitches as the output melody to maintain coherence and flex-
ibility”. For other baselines, we used texts to briefly describe
their methodologies as explanations. For example, “the chord-
to-melody generation system learns the dependency between
melodic notes and chords, such that the generated melodic
notes are perceptually consonant with their accompanying

3https://en.wikipedia.org/wiki/MIDI
4This study has been approved by the Department Ethics Review Committee

(DERC) at the National University of Singapore under SOC-23-29.
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Generated
Melody

Basic Trend

Fig. 10. Visual-based explanation of a melody generated by Drawlody. It
can be seen that the basic trend (viz. the basic melody) aligns with the user-
sketched contour (in blue), and the generated melody is an elaboration of the
basic trend that also has a generally same direction as the contour.

chords”. Based on these explanations 5, participants were
asked to rate these systems on the following three metrics:

• User Friendliness: I feel the system is easy-to-use,
without too much expert knowledge required.

• User Engagement: I feel I can be well engaged in the
process of guiding generative models to generate music.

• Interpretabillity: From the given explanations, I can
understand how my input guides melody generation.

3) Baselines for Usability and Interpretability Evaluation:
We selected the following five interactive music creation sys-
tems as baselines for usability and interpretability evaluation.

Usability-Centred Baselines:
• Emotion-based Music Generation (Emotion-based)

[71], which generates music from user-specified emo-
tional styles.

• Music Inpainting (Inpainting) [5], which infills a short
blank between two contextual measures with a pitch curve
and a note density curve. We pre-set some default sets of
contextual melodies to make this system not require any
other music-related input, and classify this as a usability-
centred baseline.

Interpretability-Centred Baselines:
• Music Continuation (Continuation), an extension of

[30] that continues writing user-given short melodies.
• Chord-based Melody Generation (Chord-based) [36],

which generates melodies from user-given chord progres-
sions.

• Professional Digital Audio Workstation (DAW). We
use Logic Pro 10.6.2 6, a professional music production
software widely employed in the industry.

E. Human Participants

We recruited 18 participants for all human-grounded studies,
including 6 males and 12 females. 6 participants had some mu-
sical expertise with an average music training (or performing)
experience of 8.5 years, while the remaining 12 are music

5More explanation examples are attached to our supplemental materials.
6https://www.apple.com/logic-pro/

lovers who listen to varied genres of music for more than 3
hours a day.

F. Ablation Study

To understand the contribution of the Convolutional Neural
Network (CNN) and our General Pitch Extractor (GPE) to
the entire Drawlody architecture, we propose three ablation
variants of Drawlody, each corresponding to the removal of
specific components:

w/o-CNN, where only the CNN architecture is removed;
w/o-GPE, where only the GPE is removed;
w/o-CG, where both CNN and GPE are removed.

G. Experimental Procedure

Participants were asked to complete the subjective music
quality assessment first and then the usability and inter-
pretability evaluation. They were allowed to take breaks during
experiments to counterbalance possible influences of fatigues.

For the subjective music quality evaluation, each participant
was asked to draw ten sketch curves following some instruc-
tive examples. Then, their sketches were pre-processed to
smooth the stroke weight and keep their formats in accordance
with our synthetic dataset. Melody samples were generated
from these sketches through seven different models (including
baselines and ablation variants) and shuffled with human-
composed melodies (viz. ground truth) before being scored
by the participants on a 5-point Likert scale.

VI. RESULTS

A. Objective Music Quality Evaluation

Table I lists the objective scores of Drawlody and other
baselines. The percentages represent the overlapping areas
(OAs) between the objective score distributions of machine-
generated melodies and those created by humans.

In terms of pitch-related metrics, while w/o-CNN narrowly
outperforms Drawlody on PCTM, Drawlody exhibits the best
overall performance with the highest OAs on PC, PCH, and
PI compared to other groups. The advantage of w/o-CNN on
PCTM (Pitch-Class Transition Matrix) may be attributed to its
sole reliance on GPE for conditional input, which may tend
to generate pitch transitions that are more similar to human-
composed melodies after model optimisation.

Rhythm-wise, no significant differences in NC are ob-
served among all FlexMIDI- and MuMIDI-based groups (viz.,
Drawlody, w/o-CNN, w/o-CPE, w/o-CG, CNN-based, and
D-MuMIDI) due to their utilisation of bar-position rhythm
representation. Despite this, FlexMIDI still surpasses MuMIDI
on NLTM. This could be attributed to the involvement of basic
pitch information, which considers the rhythmic importance
of melody notes and can potentially guide the model to better
capture the rhythm transitions. While the RB baseline achieves
a similar OA on NC to FlexMIDI-based groups, its perfor-
mance on NLTM remains the poorest. This is because RB
uses fixed bi-grams learned directly from human-composed
data, and is highly likely to exhibit high OA on NC, as
NC only considers the number of different note lengths (e.g.
16th, 32nd notes, etc.). However, rhythmic bi-grams struggle
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TABLE I
THE OBJECTIVE ANALYSES OF DRAWLODY, BASELINES AND ITS THREE ABLATION VARIANTS. THE PERCENTAGES ARE THE OVERLAPPING AREAS (OA)

BETWEEN THE SCORES OF MACHINE-GENERATED MELODIES AND HUMAN-COMPOSED GROUND TRUTH MELODIES. LARGER OAS MEAN HIGHER
CLOSENESS TO HUMAN-COMPOSED MELODIES, WHICH IS DEFINED AS HIGHER QUALITY IN OBJECTIVE EVALUATIONS.

Ablation Variants Baselines

Drawlody w/o-CNN w/o-GPE w/o-CG Rule-based
(JamSketch)

CNN-based
(JamSketch Deep-α) D-MIDI D-Raw D-MuMIDI

PC 93.08% 91.71% 87.07% 85.95% 79.60% 55.66% 63.12% 82.17% 61.65%
PCH 96.30% 95.55% 93.68% 91.79% 44.02% 90.43% 85.15% 89.38% 80.05%

PCTM 89.45% 91.24% 88.77% 86.55% 85.04% 89.33% 82.53% 60.52% 84.93%
PI 83.18% 76.13% 75.19% 60.06% 51.95% 76.73% 80.50% 60.72% 44.71%

NC 89.50% 88.99% 90.80% 89.88% 89.07% 88.86% 84.80% 43.45% 90.09%
NLTM 90.06% 89.29% 90.52% 89.49% 62.23% 92.06% 87.13% 60.28% 86.45%

F2S
(w/ p-value) 10.74 9.22

(0.025)
9.91

(0.045)
6.65

(1.02e−8)
30.67

(2.10e−15)
5.95

(1.51e−10)
3.63

(9.53e−17)
5.56

(9.55e−15)
8.91

(0.0011)

TABLE II
THE SUBJECTIVE ANALYSES OF DRAWLODY, BASELINES, AND ITS THREE ABLATION VARIANTS. MOSS REPRESENT THE MEAN OPINION SCORES ON
EACH METRIC ON A 5-PT SCALE, AND THE P-VALUES ARE OBTAINED FROM MANN-WHITNEY U TESTS BETWEEN DRAWLODY AND OTHER MODELS.

Drawlody
Ablation Variants Baselines Human

(Ground Truth)w/o-CNN w/o-GPE w/o-CG Rule-based
(JamSketch)

CNN-based
(JamSketch Deep-α) D-MIDI D-Raw D-MuMIDI

MOS MOS p-value MOS p-value MOS p-value MOS p-value MOS p-value MOS p-value MOS p-value MOS p-value MOS p-value
Faithfulness ↑ 4.21 3.71 2.73e−10 3.58 3.94e−15 3.07 1.07e−32 4.27 0.16 2.42 1.54e−42 2.38 1.64e−43 2.89 3.68e−35 2.14 1.02e−47 4.29 0.16

Stability ↑ 4.20 3.70 2.12e−10 3.59 2.05e−13 2.88 2.04e−35 4.12 0.30 2.64 1.82e−37 2.59 1.11e−34 2.72 1.86e−37 2.13 1.97e−46 4.36 0.025
Musicality ↑ 4.02 3.31 2.49e−16 3.40 1.66e−12 3.16 5.46e−22 2.33 1.89e−41 3.36 2.93e−14 3.40 3.83e−12 2.35 1.54e−41 2.28 6.00e−41 4.22 0.0036

Rhythmicity ↑ 4.01 3.26 2.05e−15 3.39 9.07e−13 3.22 5.20e−19 3.01 3.93e−25 3.23 4.39e−17 3.01 2.32e−23 2.51 2.19e−38 2.76 2.07e−32 3.88 0.10
Richness ↑ 3.71 3.14 1.16e−10 3.26 3.04e−7 3.13 4.56e−11 2.57 4.23e−26 3.06 4.87e−12 2.91 3.17e−14 2.48 1.47e−26 2.08 9.59e−37 3.93 0.039

to handle long-term rhythm coherence over the entire song,
thereby resulting in a notably low OA on NLTM.

Regarding faithfulness to the sketch, the RB baseline lever-
ages a genetic algorithm to find the closest-to-curve pitch at
each timestep, achieving the highest F2S score. However, this
strict constraint often results in overfitting to the sketch and
less pleasing melodies accordingly, as indicated by markedly
lower scores on other metrics. In contrast, Drawlody relaxes
the constraint with basic melody, allowing for more flexibility
in generated melodies. This balanced approach ensures faith-
fulness to the sketch and musical pleasantness simultaneously.

B. Subjective Music Quality Evaluation

Table II presents analyses of subjective responses from both
expert and amateur participants. For each metric, we calculated
the mean opinion score (MOS) for each model, using Mann-
Whitney U tests for statistical comparisons between models.
From the overview, it is evident that Drawlody outperforms
all its ablation variants and baselines significantly in terms
of musicality, rhythmicity, and richness (with p ≤ 2.73e−10).
This advantage becomes even more noticeable when compar-
ing Drawlody to RB, D-Raw, and D-MuMIDI, all of which
exhibit significantly lower MOSs on these three metrics.

For the RB baseline, its poorer performance can be at-
tributed to two factors. First, RB uses two separate bi-grams
to generate pitches and rhythms independently. This strategy
(1) tends to lose the long-term conherence, as bi-grams only
consider the coherence between two consecutive elements;
(2) can result in dissonance between pitches and rhythms, as
they are generated separately. Second, RB employs a genetic
algorithm that selects pitches as close to the input curve as
possible at each timestep (Equation 18). This may lead to
overfitting to the input sketch, influencing the overall quality
of the generated melodies.

Regarding D-Raw, the use of raw melody contour as input
could introduce excessive pitch details that may mislead gener-
ative models (c.f. subsection IV-B). The model might struggle
to capture the useful information (viz., the general trend),
due to the noisy nature of raw melody contours. Similarly,
D-MuMIDI does not consider the general trend information
compared to Drawlody. This can make it challenging for the
model to successfully capture the dependencies between input
sketches and output melodies.

On rhythmicity, the advantage of Drawlody over other
groups (p ≤ 3.04e−7) seems to somewhat belie the findings
in objective evaluation, where there should be no signifi-
cant disparities among FlexMIDI- and MuMIDI-based groups
(namely, Drawlody, w/o-CNN, No-CPE, w/o-CG and CNN-
based). This could be attributed to the influence of musicality
on rhythmicity, where lower musicality might affect subjects’
judgement of rhythmicity. This occurs because melodies and
rhythms are integrated in human music listening, while ob-
jective metrics can only measure the rhythms of melodies
by neglecting other pitch-related features. On faithfulness
and stability, Drawlody has a remarkably close MOS to RB
(p ≥ 0.16). It also has similar faithfulness performance to
human-composed melodies (p = 0.16). These advocate the
ability of Drawlody to well fit the sketched curve while
keeping the musicality.

Despite the generally positive performance of Drawlody,
there are still gaps between Drawlody and human-composed
melodies, particularly in terms of stability, musicality, and
richness (p ≤ 0.039). These differences indicate that there is
still a considerable distance to cover before machine com-
posers can truly compete with expert human musicians.

C. Usability and Interpretability Evaluation
1) Proxy-grounded Evaluation: For the proxy-grounded

evaluation, we assessed Drawlody against the rule-based base-
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TABLE III
THE USABILITY AND INTERPRETABILITY EVALUATION OF DRAWLODY. SINCE THE INPAINTING-BASED BASELINE HAS PROVIDED TWO CONTEXTUAL

MELODIES AS THE EFAULT

User Friendliness User Engagement Interpretability
MOS p-value MOS p-value MOS p-value

Drawlody 4.38 N.A. 4.63 N.A. 4.50 N.A.

Usability-centred Emotion-based 4.13 0.5 3.88 0.03 2.00 0.04
Inpainting 2.00 2.0e−8 2.81 4.1e−5 3.00 0.01

Interpretability-centred
Continuation 2.94 3.0e−4 3.31 3.1e−5 3.00 8.0e−3

Chord-based 2.94 1.0e−4 3.31 3.1e−5 3.00 0.1
DAW 2.38 2.8e−5 2.69 4.1e−5 2.75 0.1

line (RB) as a proxy model. We investigated their similarity in
both objective and subjective music quality scores. Regarding
objective metrics, Table IV reveals a significant similarity in
the pitch distributions generated by Drawlody and RB, with
high Overall Agreement (OA) on Pitch Class (PC) at 90.79%
and Note Content (NC) at 88.63%. Similarly, subjective met-
rics in Table II demonstrate similarities between Drawlody
and RB in terms of faithfulness and stability (p ≥ 0.16), two
critical criteria associated with the sketch-melody alignment.

However, Drawlody does not exhibit substantial similarity
with RB on other metrics. We attribute this difference to
the discernible gaps in their music generation quality, as
highlighted in the music quality evaluation mentioned earlier.
These findings support the conclusion that while Drawlody
can generally emulate the melodic motion depicted in sketches
similar to RB, it introduces other adjustments to enhance the
musicality of generated melodies, thereby avoiding overfitting
to the input sketches.

TABLE IV
THE PROXY-GROUNDED EVALUATION OF DRAWLODY ON OBJECTIVE

MUSIC QUALITY METRICS. THE PERCENTAGES ARE THE OVERLAPPING
AREAS (OA) BETWEEN FEATURES SCORES OF DRAWLODY AND RB.

PC PCH PCTM PI NC NLTM
Drawlody v.s. RB 90.79% 56.90% 82.98% 71.33% 88.63% 85.44%

2) Human-grounded Evaluation for Usability and Inter-
pretability: Table III lists human ratings on the usability and
interpretability of some interactive music creation (IMC) sys-
tems. It is evident that Drawlody achieves similar MOSs to the
usability-centred emotion-based system on User Friendliness
and User Engagement, meanwhle significantly outperforming
all other baselines that require musical conditions as input (viz.
continuation, chord-based, inpainting, and DAW) by a large
margin, with p ≤ 3.0 × 10−4. This indicates that removing
complex musical input can significantly enhance the usability
of IMC systems.

Furthermore, Drawlody also achieves higher MOSs than
both interpretability- and usability-centred baselines on Inter-
pretability. This advantage is significant (p ≤ 0.04) in contrast
to all usability-based baselines and the continuation baseline.
While the MOS of Chord-based and DAW is lower than that
of Drawlody, the difference does not exhibit statistical signif-
icance (p = 0.1), as both of them emphasise interpretability
and can give humans some hints from domain knowledge.

Generally, these results demonstrate our motivation that
Drawlody can simultaneously retain the advantages of both
usability-centred and interpretability-centred interactive music
creation systems, and that the explanations given by Drawlody
can help humans better understand how their input controls

and relates to the generated melody. For more video demon-
strations of generated melodies, the readers may visit this link.

VII. CONCLUSION

This paper presents Drawlody, an interactive music creation
(IMC) framework with higher interpretability and usabil-
ity. Based on a music-theoretical concept “melody contour”,
we create a simpler interaction medium generalised melody
contour (GMC), balancing the trade-off between interpretabil-
ity and usability in existing IMC frameworks. With Drawlody,
users can compose arbitrary-length melodies by sketching
simple GMC curves. The underlying architecture of Drawlody
is based on CNN and Transformer, which generates melodies
from GMC sketches following an end-to-end paradigm. We
also propose new representations of melody contour images
and symbolic music, corroborating their effectiveness through
contrastive studies. The efficacy of Drawlody is assessed by
both subjective and objective evaluations, which demonstrate
its ability to produce high-quality musical output while also
show a significant improvement in interpretability and usabil-
ity. However, our work currently focuses on the generation of
monophonic melodies. In the future, we aim to further extend
the framework to encompass multi-track music scenarios,
enhancing its capacity for diverse musical expressions and
exploring exciting opportunities for commercial applications.

ACKNOWLEDGMENTS

This research is supported by Ministry of Education of
Singapore (MOE-T2EP20120-0012).

REFERENCES

[1] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney,
Besmira Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N
Bennett, Kori Inkpen, et al. Guidelines for human-ai interaction. In
Proceedings of the 2019 chi conference on human factors in computing
systems, pages 1–13, 2019.

[2] Chunhui Bao and Qianru Sun. Generating music with emotions. IEEE
Transactions on Multimedia, pages 1–1, 2022.
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