
KeYric: Unsupervised Keywords Extraction and Expansion
from Music for Coherent Lyrics Generation

XICHU MA, VARUN SHARMA, MIN-YEN KAN, WEE SUN LEE, and YE WANG, School of
Computing, National University of Singapore, Singapore

We address the challenge of enhancing coherence in generated lyrics from symbolic music, particularly for
creating singing-based language learning materials. Coherence, defined as the quality of being logical and
consistent, forming a unified whole, is crucial for lyrics at multiple levels—word, sentence, and full-text.
Additionally, it involves lyrics’ musicality—matching of style and sentiment of the music. To tackle this, we
introduce KeYric, a novel system that leverages keyword skeletons to strengthen both coherence and musicality
in lyrics generation. KeYric employs an innovative approach with an unsupervised keyword skeleton extractor
and a graph-based skeleton expander, designed to produce a style-appropriate keyword skeleton from input
music. This framework integrates the skeleton with the input music via a three-layer coherence mechanism,
significantly enhancing lyric coherence by 5% in objective evaluations. Subjective assessments confirm that
KeYric-generated lyrics are perceived as 19% more coherent and suitable for language learning through singing
compared to existing models. Our analyses indicate that integrating genre-relevant elements, such as pitch,
into music encoding is crucial, as musical genres significantly affect lyric coherence.

CCS Concepts: • Applied computing → Sound and music computing; Education; • Computing method-
ologies → Natural language processing.

Additional Key Words and Phrases: Lyrics Generation; Keyword Extraction; Textual Coherence; Language
Learning; Graph Learning

ACM Reference Format:
Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang. 2023. KeYric: Unsupervised Keywords
Extraction and Expansion from Music for Coherent Lyrics Generation. J. ACM 1, 1 (September 2023), 27 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Coherence is often lacking in existing lyrics generation systems. This reduces the comprehensibility,
engagement, and artistic expression of the content. This paper focuses on enhancing the coherence
of generated lyrics, defined as the quality of being logical and consistent, forming a unified whole.
In lyrics writing, coherence means using a broader context and establishing semantic relationships
between words and sentences to enhance understanding and interpretation [59].
Coherence in lyrics is manifested at four levels [59]: Word level coherence: Words form logical

concepts or actions with their surrounding words. Sentence level coherence: Each line supplements,
contrasts, or expands on the previous line. Full-text level coherence: The entire text revolve around
a single theme. Musicality level coherence: The lyrics match the rhythm, sentiment, and style

Authors’ address: Xichu Ma, ma_xichu@nus.edu.sg; Varun Sharma, sharmavarun.s@u.nus.edu; Min-Yen Kan, kanmy@comp.
nus.edu.sg; Wee Sun Lee, leews@comp.nus.edu.sg; Ye Wang, wangye@comp.nus.edu.sg, School of Computing, National
University of Singapore, Singapore, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 ACM.
ACM 0004-5411/2023/9-ART
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

Topic
Continuation

Topic
Development

Irrelevant

Irrelevant

Broken
rhythms

Broken
rhythms

(a) Human written (Good):

(b) Generated (Bad):

(a)

(b)

Details

Irrelevant

Fig. 1. Examples of (a) coherent human-composed lyrics (at top) and (b) incoherent automatically generated
lyrics (at bottom) using the music from John Lennon’s song Imagine. The human composition (a) exhibit
good coherence due to appropriate collocation. Subsequent lines extend the preceding ones, and all sentences
revolve around the theme of “natural scenery during a day.” And the contents are harmonious with the
music style. In contrast, the generated sample (b) suffer from poor coherence due to inappropriate word
combinations, off-topic sentences, and a style incongruous with the music.

of the accompanying music. For example, in Figure 1-a, the example shows high-quality human-
composed lyrics with appropriate collocation. Each subsequent sentence extends the previous one,
and the entirety of the sentences describes the theme “natural scenery during a day,” creating
a peaceful atmosphere that aligns with the music’s sentiment. In contrast, the example (b) of
machine-generated lyrics exhibits poor word choices leading to unclear meaning (e.g., “spider fixes
toast”), weak sentence connections, a lack of central theme, and a bizarre style that conflicts with
the musical style. Additional generated examples can be found in Appendix B.

Current models for lyrics generation typically achieve the proficiency demonstrated by the lower
lines in the previous example, where grammar and rhythm are acceptable, but coherence across
all four levels remains problematic [45, 65]. Although ChatGPT1 generates coherent and rhyming
lyrics, it has notable limitations: it cannot process music input, meet syllable requirements, or
avoid the risk of plagiarism. Customizing lyrics for specific applications, such as language learning,
introduces even greater challenges. While research has shown that singing songs with appropriate
lyrics can help language learners acquire vocabulary [18, 19, 22, 24, 48, 50, 62, 75], human-composed
songs that appeal to learners’ musical tastes [51] often lack the necessary target vocabulary and
may be subject to copyright. Existing lyrics generation systems are also inadequate in this context,
as they struggle to incorporate user-specified keywords while maintaining four-level coherence.
A recent study propose using a keyword skeleton as prompts for lyrics generators to enhance

coherence [70]. A “keyword skeleton” is defined as a structured list of terms, each corresponding
sequentially to a sentence or line in the lyrics. Nevertheless, this approach has limitations. It does
not thoroughly investigate and clearly define lyric coherence, fails to analyze the root causes of
incoherence in generated lyrics, and does not fully leverage the keyword skeleton framework. We
identified the main issues as follows: (1) The system employs the YAKE keyword extraction method
[70], which generates skeletons based on word frequency. This approach does not effectively capture
the narrative structure of lyrics. (2) The system may overlook essential user-input keywords during
the skeleton generation process. (3) The system does not account for musical features, relying
heavily on the rhythm and syllable templates of original lyrics, thus limiting its generalizability.

1https://openai.com/chatgpt/

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 3

MIDI Music Lyrics

MIDI Music
Keyword

Sleketons Lyrics

Keyword Skeleton
Extractor

Music-Skeleton Coupled
Graph Network

Coherent Lyrics GeneratorCoherent Lyrics Generator

Data Tier

(Unsupervised Learning)

Data Extention Tier

Cross-modal Coupling Tier

(Supervised Learning)

User Inference Tier

MIDI

Seed Words

Keyword
Skeleton

Lyrics

Input Output

MIDI

Seed Words

Keyword
Skeleton

Lyrics

Input Output

Figure 1. Dataflow diagram of the Keyric system, which generates coherent lyrics from MIDI music and seed keywords. The

Keyword Skeleton Extractor module employs unsupervised learning to extract the most semantically significant keywords from a

lyrics database, forming a keyword skeleton. This process extends the original {MIDI, lyrics} tuple data into a {MIDI, keyword

skeleton, lyrics} triplet dataset. Utilizing this extended dataset, the cross-modal tier, which includes a graph network and a lyrics

generator, couples MIDI with skeletons and skeletons with lyrics, respectively. The Music-skeleton Coupled Graph Network selects a

keyword for each music phrase from a statistical graph, linking them to form a skeleton. The Coherent Lyrics Generator then takes the

skeleton as a prompt to generate coherent lyrics. During inference (whose data flow is shown by the red blocks), users can input MIDI

and desired seed keywords to obtain lyrics. The graph network first predicts a skeleton, which is then fed into the lyrics generator to

produce lyrics suitable for language learning.

Fig. 2. The KeYric system extracts semantically significant keywords from a song’s lyrics, forms a keyword
skeleton that align with the music, and uses this skeleton to fit human-composed lyrics in training. During
inference, the system takes a MIDI file and seed words as inputs to produce personalized coherent lyrics.

(4) The system utilizes keywords as prompts without incorporating targeted innovations in its
language model appropriately to enhance coherence. As a result, the coherence of the generated
lyrics remains less satisfying compared against human-composition. It is crucial to integrate a
deeper understanding of musical elements and user inputs into the generation process to improve
musicality and personalization.

In response to the above challenges, we introduce the KeYric system, which enhances coherence,
musical association, and personalization in generated lyrics. As illustrated in Figure 2, the KeYric
system generates coherent lyrics by first taking a MIDI file [63] and user-specified seed words as
inputs. The Keyword Skeleton Extractor module uses unsupervised learning to extract semantically
significant keywords from a lyrics database, forming keyword skeletons. This extends the original
{MIDI, lyrics} tuple into a {MIDI, keyword skeleton, lyrics} triplet dataset. The cross-modal tier,
which includes a graph network and a lyrics generator, then couples MIDI with skeletons and
skeletons with lyrics. The Music-skeleton Coupled Graph Network selects a keyword for each
musical phrase, linking them to form a skeleton, and the Coherent Lyrics Generator creates lyrics
based on this skeleton. During inference, the system predicts a skeleton from the given MIDI file
and seed words, and then generates personalized lyrics suitable for language learning through
singing [45].

Our approach differs from traditional keyword extraction methods that rely on word frequency
or manual annotation. Instead, we conceptualize our keyword skeletons as an interpretable latent
space, capable of compressing the lyric space and sampling it with comprehensible keywords. For
instance, the example lyrics (a) in Figure 1 can be summarized into the keyword skeleton ["see",
"sun", "birds", "nightly"]. We propose a novel unsupervised method for extracting keyword skeletons
from human-composed lyrics, identifying the most representative words through a process of
text compression and reconstruction. Furthermore, we leverage deep graph networks to establish
pairwise connections between musical phrases and keywords within a skeleton. This graph model
predicts a skeleton that includes the user-specified keywords, aligning with the sentiment and style
of the music, thereby enhancing musicality coherence. Additionally, we present a coherent lyrics
generation model that uses a skeleton and melody as prompts. This model incorporates three levels

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

4 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

of coherence mechanisms, which enhance coherence at the word, sentence, and full-text levels
throughout the generation process.

Objective and subjective evaluations demonstrate that the KeYric system achieves a 5% and 19%
improvement in lyric quality over the compared models, respectively. Experts, including linguists,
songwriters, and language teachers, have verified that KeYric generates lyrics that facilitate language
learning through singing. Furthermore, we investigate the impact of genres and musical elements
on lyric coherence. The findings reveal that pop and country songs produce the most coherent
skeletons and lyrics. Additionally, our analysis indicates that, in comparison to bar boundary,
genre-relevant information such as pitch and note duration of music play a more significant role in
maintaining lyric coherence.

In summary, this study makes three major contributions:
• We address coherent lyrics generation and propose a solution that improves coherence at
word (smoothness between adjacent words), sentence (continuity in describing the same
subject in adjacent sentences), full-text levels (the entire lyrics center the same theme), and
musicality (lyrics match the style and sentiment of the music).

• We propose KeYric to generate lyrics from a keyword skeleton. This novel unsupervised
method extracts keyword skeletons from lyrics, expands input music and seed words for
language learning into a skeleton, and incorporates the skeleton in the lyrics generator.

• Our analysis of the experiment results reveals that incorporating genre-relevant musical
components (i.e., pitch and note duration) in data encoding substantially enhances the
coherence of the generated lyrics.

2 RELATEDWORK
2.1 Automatic Lyrics Generation
With the rise of neural network technology, Recurrent Neural Networks (RNNs) [21, 45, 46, 58, 66, 79]
and Transformers [7, 36, 41, 54, 56, 65, 81] dominate automatic lyrics generation. These autoregres-
sive models select the next lyric token or line until the desired length is reached. Considering the
musical nature and unique requirements of writing lyrics, many studies have focused on using
prompts or conditional embeddings to improve the generated lyrics’ topical words [76, 85], content
[54], rhyme [36, 81], matching of syllables [43, 53, 77], audio features [7, 72–74], and realism [47]
. To produce well-balanced lyrics, SongNet [36] and ChipSong [41] both constrain several of the
above characteristics. Other studies use adversarial learning to reward results with desirable lyric
characteristics from a consequentialist perspective [8, 12, 14, 45]. Researchers find that, to make
lyrics singable, syllable patterns must match the melody [42]. Accordingly, some studies attempt to
produce lyrics from melody input [34, 65, 77].

Unfortunately, few studies have examined coherence in lyrics generation thoroughly. Although
state-of-the-art (SOTA) work attempts to use keyword skeletons as prompts to improve the coher-
ence of lyrics generation [70], it does not define or explain what coherence in lyrics means in detail.
Additionally, this system lacks an in-depth discussion on how to extract keyword skeletons and
how to use the keyword framework to enhance coherence in the lyrics generator. It also overlooks
the coherence between lyrics and music, failing to generate lyrics that match the prosody and style
of the input music. These issues result in a significant gap between automatic lyrics generation and
human songwriting.

2.2 Coherence in Text Generation
Existing methods for coherent text generation fall into three categories. The first generates text
from prerequisite keywords, topics, or sentences. Early approaches used the hidden state of the

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 5

previous sentence as context for the next [78], while later work suggested condensing sentences
to condition future generations [26]. Other studies expanded phrase-based storyline plans into
coherent stories. However, these methods often rely on (1) high-frequency words, leading to
homogenized storylines [83], (2) predicate-argument structures, which ignore sentiment and style
[20], or (3) human annotations, which lack uniform standards [80]. Improved methods for extracting
keyword skeletons from lyrics are needed.
The second branch of methods enhances coherence by selecting the most coherent candidate.

One study includes an independent model’s coherence judgment score in the generation loss
[68]. SeqGAN with coherence and cohesion discriminators evaluates candidates’ probabilities of
co-occurrence and adjacency with previous text [10]. Phrase-level reward replaces full-sentence
reward in the roll-out process to improve efficiency [12]. The GEDI model uses an independent
language model to compute priors for candidate words under a given topic code and previous
words, approximating the posteriors given by the discriminators [32]. Lin et al. suggest adding
a topic transition planner to GEDI for gradual topic transitions [39]. A recent poem generation
study used prompt templates requiring candidates to predict the title, previous sentence, or topic,
keeping only the winners in the beam search [89]. These “inverse prompts” predict back from the
current generation (e.g., “current generation is from a <STYLE> style poem titled <TITLE>”). Since
lyrics, as artistic texts, cannot be generalized into a few limited themes like technology, society, or
economy, as in the case of GEDI, and song titles often fail to comprehensively summarize the lyrics’
content, we believe that using a single coherence mechanism alone is unlikely to improve lyric
coherence. Therefore, it is necessary to design a new architecture that includes multiple coherence
mechanisms.

The third branch suggests using a keyword skeleton as prompts to improve coherence in long texts
[26]. However, applying this to lyrics generation is complex. It requires subjective human annotation
of keyword skeletons, with one word per lyric line capturing salient semantic, sentimental, and
narrative information. Current automatic plot planning and keyword skeleton extraction techniques
often overlook words expressing sentiment and music style [20, 52, 80, 82, 83], making them less
suitable for coherent lyrics generation. The lyrics generation in this study uses the keyword skeleton
as prompts. Through an integrated model architecture, it combines GEDI, a lyrics generator, and
inverse prompt techniques to enhance the coherence of the generated lyrics before, during, and
after word selection.

2.3 Unsupervised Keyword Extraction
To create keyword skeletons that enhance lyric coherence and maintain the style and sentiment
without human annotation bias, we reviewed existing unsupervised keyword extraction studies.

Unsupervised keyword extraction has evolved significantly. Initially, researchers used statistical,
linguistic, machine learning, and graph theory methods to extract keywords from text [55]. With ad-
vancements in deep learning and language models, text-embedding models have gained prominence
[2, 67]. Techniques like PageRank [13] and TextRank [49] construct document graphs to evaluate
vertex importance. Improvements include clustering similar phrases into topics and weighting
them by semantic relations [6], PositionRank which considers word position and frequency [23],
and multipartite graphs that ensure topical diversity [5]. To address the limitations of graph-based
methods, deep learning-based embedding methods like EmbedRank [4] and SIFRank [69] use
high-dimensional vectors. UkeRank [38] and AttentionRank [16] improve accuracy with global and
local contexts and a hybrid attention model with BERT [15], respectively. Recent research ranks
all phrases from a corpus by relevance to new documents [64] and uses autoencoding variational
Bayes to build a latent topic tree [86].

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

6 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

However, these methods are inadequate for lyric keyword skeleton extraction: (1) They struggle
with poetic and metaphorical language, such as “time is a thief” (without simile indicators “like” or
“as”), which requires understanding abstract concepts. (2) They overlook plot and topic transitions,
complicating the generation of coherent texts from keywords. (3) Lyrics feature more repetitions
and fewer explicit topic markers, making accurate keyword identification challenging. Thus, lyric
keyword skeleton extraction necessitates specialized methods.

Imagine – Composition 1

Early one day we shall see
→ (that) The sun rising brightly
Singing birds at peace
→ After the dark, nightly
Nature is all around us
Listen if you can
Ah~

Perhaps one day we shall know
→ (that) Beauty is all around
Trees, flowers, and animals
→ Living above the ground
Nature is all around us
Breathe, enjoy the air
You~

You may not see, or know this
But life does surround us all
Maybe we'll join together
And we'll live without a fall

[see, rising, peace, night, nature, listen,
perhaps, beauty, flower, living, nature,
air, see, life, join, live]
Relevance 0.189

Imagine – Original

Imagine there's no heaven
It's easy if you try
No hell below us
Above us, only sky
Imagine all the people
Livin' for today
Ah

Imagine there's no countries
It isn't hard to do
Nothing to kill or die for
And no religion, too
Imagine all the people
Livin' life in peace
You

You may say I'm a dreamer
But I'm not the only one
I hope someday you'll join us
And the world will be as one

[heaven, easy, hell, sky, people, living,
country, hard, kill, religion, people,
peace, dreamer, only, hope, world]
Relevance 0.247

Imagine – Composition 2

Nothing around but what you see
No ghosts or spirits high
Just that which can be perceived
With an unaided eye
Live not for some world beyond
Just live for today
Ah

If no borders existed
As the world appears from space
No rivals, conflicts, chaos, war
No fights for what's called 'race'
Live not to crush some enemy
But to uplift all
You

We know that which is real
Yet fight for make-believe
Let's stop the endless battle
And bring about world peace

[nothing, spirit, perceive, unaided,
world, today, border, space, war, fight,
enemy, uplift, real, fight, battle, peace]
Relevance 0.236

Imagine – Composition 3

I found a chest in my basement
It opened with a creak
To a candy jungle
→ As far as I could see

Imagine all that sugar
Ain't great for my teeth

I wandered there for miles
I passed a chocolate grove
Sour patches and pop rocks
There were all-the treats I know

Imagine all that sugar
Ain't great for my teeth

You may say I'm a glutton
But I'm not just thinkin' treats
I hope someday our real world
Will be-e just as sweet

[basement, open, candy, see, sugar,
tooth, wander, chocolate, rock, treat,
sugar, tooth, glutton, treat, hope, sweet]
Relevance 0.185

Text: seed words for learning → : Clause Text: Conjunctions/ Antecedent ReferenceText: Skeleton keyword

Average relevance to the song name = 0.203
Random keyword skeleton’s relevance to the song name = 0.129

Fig. 3. Human composed lyrics given the mandatory seed words know and see based on John Lennon’s
song Imagine. Seed words are denoted by green text, skeleton keywords by orange text, clauses by an arrow
→, and conjunctions by underscore.

3 KEYWORD SKELETON EXTRACTION AND EXPANSION
3.1 Motivation
We commissioned lyricists to write lyrics suitable for language learning based on given seed words
and music. By monitoring their creation process, we observed common procedures among human
lyricists writing for linguistic pedagogy. As illustrated in Figure 3, these keywords evolve into
lyrical cues and are extended into sentences, considering pivotal terms, rhyme, melodic alignment,
and seed words to be learned. An initial assessment of the semantic relevance [61] between these
keyword skeletons and song titles showed a 57.4% improvement compared to randomly selected
keywords (as 0.203 vs. 0.129 shown in Figure 3). There are typically four methods to achieve textual
coherence: repeating key nouns, using pronouns, employing transition signals, and maintaining
logical order [57]. Compared to previous automated models, human lyricists use these components
more effectively, enhancing coherence between consecutive lyric lines.

However, this process is labor-intensive, requiring over 20 minutes per song lyric to align with
the provided music and keywords. In lyrics-based language learning, this effort increases as lyricists
tailor compositions to learners’ backgrounds (e.g., linguistic proficiency, vocabulary). To improve
efficiency, we propose KeYric, which emulates human lyricists’ writing processes through deep
learning.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 7

..

.

..

.

Transformer Encoder

R
ec

o
n

st
ru

ct
io

n
Lo

ss

Data Preparation

MIDI Embedding

Keyword

MIDI Embedding

Keyword

Paired MIDI

Keyword
Transition

Matrix

Keyword
Skeleton

PredictPredict

Lyric Tokens

Keyword
Expansion

Input MIDI

REMI Encoding

T
Input Seed Words

T
Input Seed Words

Keyword
Skeleton

Lyrics Generator

Prepositive
Topic Guider

Inverse Prompt

Song
Name

Output LyricsOutput Lyrics

(a) (b) (c)

Keyword
Graph

MIDIBert

“Imagine there’s no heaven”

hell

sky

Phrase1
Phrase2

PhraseN

Keyword1: Spring

Keyword2: Water

...

Seed wordN: See

Bipartite Graph

Inference

see

MLP

MLP

MLP

Seed word1: Know

...

A
ct

iv
at

e

imagine

...

know

… ...
(10K word nodes)

Self-Attention

VAE

Transformer Decoder

“Imagine there’s no heaven”

..

.

..

.

{Keyword skeletons,
Lyrics,

MIDI files}

Fig. 4. KeYric architecture. (a) Keyword skeleton extractor creates keyword skeletons from lyrics. The skeletons
are then packaged along with the lyrics text and their corresponding MIDI files for model training. Specifically,
paired {keyword skeletons, MIDI files} datasets will be utilized to train a cross-modal graph model, i.e. the
keyword skeleton expander, that communicates between music and keywords. Paired {keyword skeleton,
lyrics} datasets will be employed to train a coherent lyrics generator, with a keyword skeleton serving as
heuristic prompts. (b) Keyword skeleton expander trains on pairs to build a keyword skeleton from input
MIDI file and seed words. The bipartite graph consists of two sub-graphs, the word sub-graph and music
sub-graph. (c) Coherent lyrics generator takes a keyword skeleton, melody and a song name to generate
coherent lyrics supporting language learning.

The core idea is to extract salient vocabulary from each lyric sentence using unsupervised learning.
We build a keyword skeleton with the words gaining highest attention weights during compression
and reconstruction, refining coherent connections between lyric sentences. Then a keyword skeleton
expander, trained on extracted keyword skeletons and corresponding MIDI files, predicts a suitable
keyword skeleton for unseen input songs. Simultaneously, a lyrics generator, trained on full lyrics
using an expanded keyword skeleton as prompts, employs multi-layer coherence mechanisms to
select prevalent conjunctions, pronouns, clauses, and cohesive terms. This approach generates
coherent lyrics by stringing together the keywords, ultimately achieving overall coherence.

3.2 Keyword Skeleton Extraction
Given a vocabulary set 𝑉 , the keyword skeleton is defined as a sequence of word tokens 𝐾 =

{𝑘1, 𝑘2, . . . , 𝑘𝑛}, 𝐾 ≠ ∅, where each element 𝑘𝑡 ∈ 𝑉 corresponds sequentially to 𝑠𝑡 , the 𝑡𝑡ℎ line
in specific lyrics. As a condensed version of the entire text, a keyword skeleton should present
coherence akin to a storyline, showcasing the narrative development and central theme. The
selected keywords should meet the following criteria: (1) Each keyword represents a lyric sentence
and conveys its stylistic information concisely. (2) Keywords should link coherently to nearby
keywords. (3) Repeated keywords are allowed to present lyric structure. Thus, the skeleton can
serves as a synopsis and developmental framework for the lyrics.

We propose an unsupervised learning model to interpretably select the best keyword from each
lyric line. As shown in Figure 4-a, the keyword extractor compresses lyrics into latent space and
reconstructs them using a hierarchical Transformer-VAE. The word-to-sentence encoder’s attention
scores determine the most semantic and stylistic words contributing to the latent variables for each
line. These chosen words form the keyword skeleton. The use of VAE improves generalizability and
robustness by capturing the underlying semantic structure of lyrics. This accommodates variations
and different versions of the same song while maintaining keyword extraction consistency. This
probabilistic approach ensures effective handling of diverse lyric representations. A hierarchical

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

8 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

architecture separates sentence and word attention computation, making word token attention
values more representative of their contributions to a sentence.

3.2.1 Lyrics Compression. In Figure 5, the green blocks illustrate the compression process. The
VAE has a hierarchical Transformer encoder 𝑞𝜃 (𝑧 |𝑥), decoder 𝑝𝜙 (𝑥 |𝑧), and latent variable 𝑧 ∈ R𝑑𝑧

[31]. 𝑞 and 𝑝 are parameterized by 𝜃 and 𝜙 respectively.

Input Tokens[CLS]

Word-level Encoder

Hub

Sentence-level Encoder

Pooling

MLP

MLP

Input Tokens[CLS]

Word-level Encoder

Hub MLP

Input Tokens[CLS]

Word-level Encoder

Hub MLP

z1' z2' zt'zT
'

Word-level Decoder

Sentence-level Decoder

Word-level Decoder Word-level Decoder

Output Tokens Output Tokens Output Tokens

...

μT

σT

μ1

σ1

μ2

σ2

μt

σt

zT

KL
Loss

R
econstruction

Loss

z1 z2 zt

z1 z2 z3Pstop Pstop Pstop

Masking Masking Masking

Fig. 5. Keyword skeleton extractor network made of symmetric hierarchical Transformer-VAE encoder and
decoder.
The hierarchical Transformer encoder [71] aggregates word tokens 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} into

sentence-level representations 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑢} stored in “hub” vectors, i.e., the foremost vector.
Each sentence is prefixed with a prepositive virtual [CLS] token. A sentence’s aggregated latent
vector is a Gaussian sample of its Transformer encoding at the hub vector’s location. We choose
an isotropic Gaussian distribution with unit variance, 𝑝 (𝑧) = N(0, 𝐼), as our prior. This simplifies
the latent space structure, ensuring each latent variable contributes equally and independently. It
aids efficient learning of diverse lyric representations while maintaining consistency and reducing
complexity in the hierarchical Transformer encoder. We incorporate positional, part-of-speech
(POS), and dependency embeddings [17] to include word tokens’ syntactic features.

The lyric-level encoder computes cross-sentence information and averages the outputs through
a pooling layer to obtain the compressed latent vector of the entire lyrics, 𝑍𝑇 ∈ R𝑑𝑧 .

𝑧𝑡 = 𝑀𝐻𝑢𝑏 (𝑓 (𝐸𝑚𝑏 ([𝐶𝐿𝑆] | |𝑠𝑡) + 𝐸𝑚𝑏+ ([𝐶𝐿𝑆] | |𝑠𝑡)))
𝑧𝑇 = 𝑃𝑜𝑜𝑙 (𝐹 (𝑍))

𝜇𝑡 , 𝜎𝑡 = 𝑀𝐿𝑃 (𝑧𝑡); 𝜇𝑇 , 𝜎𝑇 = 𝑀𝐿𝑃 (𝑍𝑇)
(1)

where 𝐸𝑚𝑏 (·) is the word embedding layer and 𝐸𝑚𝑏+ (·) is the sum of positional and semantic
embeddings. 𝑠𝑡 (𝑡 ∈ [1, 𝑣]) is the 𝑡𝑡ℎ sentence. | | denotes concatenation, 𝑓 (·) and 𝐹 (·) are the
word-to-sentence and sentence-to-lyrics Transformer encoders, respectively.𝑀𝐻𝑢𝑏 is the masking
operation that retains only the hub vector.

3.2.2 Lyrics Reconstruction. Unlike previous research [33, 40, 87], our lyric reconstruction uses
a symmetric Transformer-based encoder and decoder, as the model compresses and reconstructs
lyrics rather than generating them from random latent variables.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 9

We sample the lyric’s latent vector, 𝑧′
𝑇
, from the approximate posterior 𝑞𝜃 (𝑧 |𝑥) = N(𝜇𝑧, 𝜎𝑧). To

match the decoder’s input shape, we expand 𝑧′
𝑇
into the set 𝐶′ = {𝑐′1, 𝑐′2, . . . , 𝑐′𝑢}, where 𝑐′𝑖 ∈ R𝑑𝑐 .

We decode 𝑧′
𝑇
into sentence-level latent variables 𝑍 ′ = {𝑧′1, 𝑧′2, . . . , 𝑧′𝑢} and project each 𝑧′𝑖 ∈ R𝑑𝑧

into the word-level decoder’s input shape to regenerate lyric tokens.
A Multi-layer Perceptron (MLP) predicts whether the current sentence is the end of the lyric

reconstruction. The MLP assigns each 𝑧′𝑖 a probability 𝑃𝑠𝑡𝑜𝑝 , indicating if the current sentence
should be the last.

𝐶′ =𝑊𝑧 · 𝑧′𝑇 ; 𝑍 ′ = 𝐺 (𝐶′); 𝑋 ′ = 𝑔(𝐶′); 𝑃𝑠𝑡𝑜𝑝 = 𝑀𝐿𝑃 (𝑍 ′) (2)

where𝑊𝑧 is a linear projection to sequentially expand 𝑧′
𝑇
; 𝐺 (·) and 𝑔(·) are the lyric-to-sentence

and sentence-to-word decoders.

3.2.3 Loss Design. The loss function of the keyword extractor is formulated as follows:

L𝑉𝐴𝐸 = 𝛼E𝑞𝜃 (𝑧 |𝑥)
[
𝑙𝑜𝑔𝑝𝜙 (𝑥 |𝑧)

]
+ 𝛽L𝑆𝑡𝑜𝑝 (𝑃𝑠𝑡𝑜𝑝)

−𝛾𝐷𝐾𝐿 [𝑞𝜃 (𝑧 |𝑥) | |𝑝 (𝑧)]
(3)

The loss function has three weighted terms. The first term, Reconstruction Loss, compares
generated lyrics to the ground truth. The second term, Sentence Loss on the stopping distribution
𝑃𝑠𝑡𝑜𝑝 , encourages the model to select an appropriate length for the generated lyrics [33]. The third
term, the Kullback-Leibler Divergence, penalizes deviations of the latent variable distribution from
a Gaussian prior with unit variance. We employ the “reparameterization trick” [31] to sample
latent variables in a differentiable manner by predicting the mean and variance parameters of the
Gaussian distribution.

3.2.4 Keyword Selection. After compressing and reconstructing the lyrics, we examine the ac-
cumulative self-attention matrices of all word-level Transformer encoder blocks to identify each
line’s keyword. For each lyric line, each token’s attention scores across all layers,𝑊 𝐴𝑡𝑡

𝑖 ∈ R𝑛×𝑛 ,
are multiplied along the propagation path to the hub vector’s attention score,𝑊 𝐴𝑡𝑡

𝐻𝑢𝑏𝑡
∈ R𝑛×1. As

illustrated by the red arrows in Figure 5, we select 𝑘𝑡 , the token with the highest product, as the
keyword for its lyric line since this product indicates the token’s contribution to the sentence
encoding. We then concatenate all selected keywords to form the skeleton of the lyrics.

𝑘𝑡 = 𝑎𝑟𝑔max
∏𝜓−1

𝑖=1
𝑊 𝐴𝑡𝑡
𝑖 ·𝑊 𝐴𝑡𝑡

𝐻𝑢𝑏𝑡
(4)

where 𝑘𝑡 is the extracted keyword for sentence 𝑡 and𝜓 is the layer number of the word-to-sentence
encoder.

3.3 Keyword Skeleton Expansion
The keyword skeleton extractor creates matched triplets of {keyword skeletons, lyrics, MIDI files}.
It also generates two static matrices showing keyword co-occurrence and adjacency statistics,
forming a keyword relationship graph. By adding input music phrases as nodes and connecting
them to the keyword graph, the expander uses a graph Transformer [27] to learn the cross-modal
relevance of keywords and music (Figure 4-b).

During inference, the expander generates a keyword skeleton as lyric storylines from user-input
seed words 𝐾𝑠𝑒𝑒𝑑 and input MIDI music 𝑚. the expander augments seed words by predicting
additional keywords from the music and rearranging them to form a keyword skeleton. Each
music phrase node predicts a keyword matching its musical features after graph propagation

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

10 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

and neighbor feature aggregation. The skeleton is the concatenation of the input seed words and
predicted keywords from all music nodes.

3.3.1 Graph Building. As shown in Figure 4-b, a bipartite graph connects the keyword textual
modality with the symbolic music modality, consisting of two subgraphs: the keyword graph and
the music graph.
The keyword graph contains word nodes of the entire vocabulary, identified by their token

IDs. These nodes are connected by bidirectional edges representing co-occurrence and adjacency
frequencies based on extractor statistics. For instance, the probability of the keywords “seasons”
and “spring” appearing together in a skeleton is 0.6, and the probability of “spring” following
“seasons” in skeletons is 0.4. Thus, the edge from “seasons” to “spring” in the keyword graph has
features [0.6, 0.4].

B
ar

Su
b

-b
eat (1

)

P
itch

 (6
2

)

D
u

ratio
n

 (8
)

Time

Su
b

-b
eat (5

)

P
itch

 (6
4

)

D
u

ratio
n

 (8
)

Su
b

-b
eat (9

)

P
itch

 (6
0

)

D
u

ratio
n

 (8
)

Su
b

-b
eat (1

3
)

P
itch

 (6
7

)

D
u

ratio
n

 (8
)

B
ar

Su
b

-b
eat (1

)

P
itch

 (5
3

)

D
u

ratio
n

 (3
2

)

(a) REMI Encoding

MidiBERT Embedding(b) MidiBERT Embedding

Self-attention layers & Dense layer

Masked

Su
b

-b
eat (5

)

P
itch

 (6
4

)

D
u

ratio
n

 (8
)

Reconstruction

Fig. 6. Illustration of REMI encoding and MidiBERT embedding. (a) The REMI encoding of a MIDI file is a
music event representation that converts MIDI scores into discrete tokens with metrical context, aligning
with lyric phrase divisions. (b) The MidiBERT embedding, a large-scale pre-trained model for symbolic music
understanding, is trained by masked language modeling task which masks and reconstructs the tokens in
REMI encodings.

The music graph includes music nodes represented by MidiBERT embeddings [11] of all music
phrases’ REMI encodings [28]. First, a MIDI file is split into phrases following [45]. Then, as
demonstrated in Figure 6-a, REMI, a music event representation, converts each music phrase’ MIDI
score into discrete tokens, providing metrical context for rhythmic patterns and segmenting music
encoding into distinct nodes aligned with lyric phrase divisions. Next, MidiBERT, a large-scale
pre-trained model for symbolic music understanding, uses masked language modeling (MLM) to
learn high-level features by masking and reconstructing input REMI tokens (Figure 6-b), capturing
intricate musical patterns, harmonies, and structures.

In the music graph, music nodes are connected by directed edges indicating performance order.
Keyword nodes are bidirectionally connected to all music nodes, forming a bipartite graph to model
cross-modal relationships (Figure 4-b). That is, in reference initialization, every music phrase is
connected to every keyword. Integrating text and music modalities in a graph network, this model

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 11

predicts keywords from paired music phrases, generating a keyword skeleton aligned with the
musical context to provide a coherent storyline for lyrics generation.

3.3.2 Keyword Skeleton Expansion. The graph Transformer computes hidden states for all nodes,
propagating keyword information throughout the graph. Unlike sequential or grid models, a graph
network (1) de-emphasizes autoregressive generation, enabling parallel keyword expansion; (2)
captures topological long-term keyword dependencies; and (3) unifies music and text as graph
nodes for cross-modal relevance. Hidden states for nodes and edges are represented uniformly as
R𝑑𝑔 . After information propagation, an MLP predicts and samples a keyword for each music node,
representing the music phrase. This procedure is formulated as:

ℎ𝑥𝑖 = 𝐸𝑚𝑏𝑤𝑜𝑟𝑑 (𝑥); ℎ𝑚𝑖 = 𝐸𝑚𝑏𝑀𝐼𝐷𝐼 (𝑅(𝑚)) (5)

ℎ𝑖 = 𝜎 (
∑︁
𝑗∈N(𝑖)

𝛼𝑖, 𝑗𝑊ℎℎ 𝑗); 𝑒𝑖, 𝑗 = 𝜎 (
∑︁

𝑘∈N(𝑖)
𝛼𝑖,𝑘𝑊𝑒𝑒𝑖,𝑘) (6)

𝑃 (𝑘𝑖) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (ℎ𝑚𝑖)); 𝐿𝑜𝑠𝑠 = 𝐶𝐸 (𝑃 (𝑘𝑖), 𝑘𝑖) (7)
where ℎ and 𝑒 are graph node and edge hidden states, whose superscripts distinguish music
and word nodes. 𝑅(·) denotes REMI encoding while 𝐸𝑚𝑏𝑤𝑜𝑟𝑑 and 𝐸𝑚𝑏𝑀𝐼𝐷𝐼 represent word and
MidiBERT Embedding respectively. N(𝑖) are node 𝑖’s incoming neighbors, and𝑊ℎ and𝑊𝑒 are
graph Transformer model’s trainable parameters.

The expander is trained using the Cross-Entropy loss between the predicted keyword from the
music node 𝑃 (𝑘𝑖) and the extracted keyword 𝑘𝑖 from the lyrics. Thereby, the expander produces a
coherent keyword skeleton that fits the music during inference.

3.3.3 Specified Seed Words Insertion. During lyrics generation inference, users typically input
several seed words to indicate the words they wish to learn through singing. The seed words
provided by users are usually insufficient to form a complete keyword skeleton. Therefore, we
employ the keyword expander to predict additional keywords from the input MIDI file and organize
both seed words and expanded keywords into a keyword skeleton in a specified order. We utilize
melody identification from [44] and musical snippet segmentation techniques from AI-Lyricist
[45] to estimate an appropriate sentence number 𝐿 (equal to the number of phrases in the input
music). After predicting keywords for the first number of 𝑙𝑒𝑥𝑝 = 𝐿 − 𝑙𝑠𝑒𝑒𝑑 music nodes, we insert
the remaining 𝑙𝑠𝑒𝑒𝑑 specified seed words into the keyword skeleton, ensuring the total number of
keywords in the skeleton equals the number of musical phrases. We use average co-occurrence
and adjacency probabilities to determine seed words’ positions within the skeleton. Each seed
word is inserted sequentially to maximize these probabilities for the entire keyword skeleton thus
improving the storyline’s coherence. The expanded keyword skeleton is finalized after all seed
words are inserted.

Compared to Plan2Lyrics [70] and AI-lyricist, inserting seed words during skeleton expansion
avoids conflicts with surrounding words. Maximizing co-occurrence and adjacency probabilities
ensures sentence-level coherence. The graph model also establishes cross-modal coherence between
music and lyrics.

4 COHERENT LYRICS GENERATION
After training, the keyword skeleton expander can produce a keyword skeleton from unseen input
MIDI music. Thus, the lyrics generation module takes any MIDI music and a keyword skeleton
produced from the MIDI as input to generate coherent lyrics. We propose a three-layer mechanism
to ensure coherence in its generation, utilizing three stacked GPT-2-based submodules: prepositive
topic guider, main-body lyrics generator, and inverse prompts. These submodules enforce coherence

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

12 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

Imagine

Imagine

<True>

<False>

... say

... say

I'm

I'm

a

a

0.7 0.05 ... 0.05

0.60.1 0.2...

Dre
am

er
Hum

an

Arti
st

GEDI

GEDI

Prompt:
Songname+Label

Desired Attribute:
Songname <True>

0.080.88 0.2...

... say I'm a12Dream

Prompt:
Keyword+Syllable

0.60.1 0.2...GPT-2

Beam Search
... say I'm a dreamer

Inverse Prompt

Inverse prompt:
“... say I'm a ... can be
summarized as <Keywords>”

Score: 0.8 √

... say I'm a ...

... say I'm a painter Score: 0.7 √

Score: ... X

... say I'm a human Score: 0.1 X

(a)

(b)

(c)

...
You may say I'm a dreamer.

But I'm not the only one.
...

Final Output(d)

11 10 9

(Syllable Planning)

Fig. 7. Coherent lyrics generator’s network architecture. (a) The prepositive topic guider. (b) The main-body
lyrics generator. (c) Post-beam search driven by inverse prompts. (d) Final output of generated lyrics.

before, during, and after lyric probability computation. (1) The expanded keyword skeleton prompts
the main-body lyrics generator. (2) The prepositive topic guider uses the song name and previously
generated words to constrain the next word selection. (3) Beam search with inverse prompts
evaluates lyric candidates based on their alignment with the keyword skeleton.
GPT-2 is chosen as the foundational model for all three sub-modules due to its power, repro-

ducibility, interpretability, and computational affordability. While more advanced models might
perform better, GPT-2 enables us to explore coherence-enhancing factors and techniques within
generally acceptable resource constraints. A textual lyric dataset pre-trains these models for poetic
lyric adaptation, followed by fine-tuning for specific tasks. The three-layer mechanisms work
together to generate fluent, coherent, and musically relevant lyrics.

4.1 Main-body Lyrics Generator
The main-body lyrics generator produces subsequent tokens autoregressively. It is fine-tuned to
generate lyrics based on a specified number of syllable and a keyword in the skeleton as prompts
after pre-training on a lyric dataset. As illustrated in Figure 7-b, the fix-length keyword and syllable
prompts precede each lyric sentence. A syllable planning 𝑆𝐿 = {𝑠𝑙1𝑖 , 𝑠𝑙2𝑖 , ..., 𝑠𝑙𝑇𝑖 }, which is a list
of predicted remaining syllable counts, is added to each token’s word embedding to indicate
the remaining syllables in the current sentence. Training with keyword and lyric association

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 13

improves word-level coherence by familiarizing the generator with specific keywords. Using the
keyword 𝑘𝑖 and remaining syllable number 𝑠𝑙𝑡𝑖 as prompts, the generator maximizes 𝑃𝑤 (𝑥𝑡 =

𝑘𝑖 |𝑥<𝑡 , 𝑠𝑙𝑡𝑖) × 𝑃𝑤 (𝑥>𝑡 |𝑥<𝑡 , 𝑠𝑙𝑡+1𝑖 , 𝑥𝑡 = 𝑘𝑖) to generate probabilities for subsequent token. For ease of
computation, this process is approximated mathematically as

𝑃𝑤 (𝑥𝑡 |𝑥<𝑡 , 𝑠𝑙𝑡𝑖 , 𝑘𝑖) (8)

4.2 Prepositive Topic Guider
Usually, to generate lyrics that match desired attributes, discriminators 𝑃𝑑 (·) typically measure
how well the generated lyrics align with a given attribute. The entire generation and discrimination
process is formulated as follows:

𝑃𝑦 (𝑥𝑡 |𝑥<𝑡 , 𝑦) ∝ 𝑃𝑤 (𝑥𝑡 |𝑥< 𝑡)𝑃𝑑 (𝑦 |𝑥𝑡 , 𝑥< 𝑡) (9)
However, the subjective and multifaceted nature of song lyrics makes them difficult to describe.

Instead of attribute classes used in [32], we propose using the song name to guide generation, as
song names often summarize themes, sentiments, and content.

We enhance the main-body generator with a prepositive topic guider based on GEDI [32]. GEDI
is called a “prepositive” topic guider because it influences the token selection process with the song
name and previous generated lyrics before the main-body generator makes its final prediction,
ensuring alignment with the desired song name from the outset. This guider computes the proba-
bility that each candidate token 𝑥𝑡 matches the desired features in the song name prompt 𝑦 (i.e.,
𝑃𝑑 (𝑦 |𝑥𝑡 , 𝑥<𝑡)), replacing the ineffective roll-out and reward processes of conventional discrimina-
tors. As shown in Figure 7-a, the topic guider computes the probability of each candidate token
given the song name prompt, the corresponding anti-prompt (“<SONGNAME> <FALSE>”), and
previous tokens at each step. This probability is multiplied to constrain token selection alongside
the main-body generator’s prediction.

𝑃𝑑 (𝑦𝑝𝑜𝑠 |𝑥1:𝑡) =
𝑃𝑦 (𝑥1:𝑡 |𝑦𝑝𝑜𝑠)

𝑃𝑦 (𝑥1:𝑡 |𝑦𝑛𝑒𝑔) + 𝑃𝑦 (𝑥1:𝑡 |𝑦𝑝𝑜𝑠)
(10)

GEDI can enhance sentence-level coherence in lyrics generation. Its optimization objective
ensures the current sentence is judged as a continuation of the same topic as the previous sentence,
thus increasing the probability of selecting more relevant candidate words.

4.3 Inverse Prompts
Generating long texts often deviates from the prompt and includes irrelevant content. To address
this, we use the inverse prompt mechanism [89], a beam scoring function that evaluates the log
likelihood in reverse. Traditional beam search calculates beam scores using the log likelihood of
generating lyrics from prompts: 𝐵𝑒𝑎𝑚𝑆𝑐𝑜𝑟𝑒 (𝑋 |𝐾) = 𝑙𝑜𝑔𝑃𝑤 (𝑋 |𝐾). In contrast, the inverse prompt
assumes that if the prompts can be generated back from the lyrics, they must be closely related,
formulated as 𝐵𝑒𝑎𝑚𝑆𝑐𝑜𝑟𝑒𝐼𝑃 (𝑋 |𝐾) = 𝑙𝑜𝑔𝑃𝑤 (𝐾 |𝑋). Traditional prompting strategy is “K results in
X”, whereas inverse prompt is “X inferred from K”.

However, reversing the order of prompts and lyrics can produce unnatural texts [89]. A more
natural inverse prompt predicts the original prompts from the generated text. Here, the inverse
prompt summarizes generated lines 𝑋 ′ back into a keyword skeleton 𝐾 ′, and beams are rated by:
𝐵𝑒𝑎𝑚𝑆𝑐𝑜𝑟𝑒𝐼𝑃 (𝑋 |𝐾) = 𝑙𝑜𝑔𝑃𝑤 (𝐾 ′ |𝑋 ′).

An example is shown in Figure 7-c. Given the keyword “Dream” and previously generated text
“... say I’m a” in the search beams, the inverse prompt is constructed as “... say I’m a {dreamer /
painter / human} can be summarized as <KEYWORD>”. A GPT-2 model optimized for inverse

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

14 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

prompt predicts the <KEYWORD> for each beam and scores them based on how closely it matches
“Dream”. In the example, beams ending in “dreamer” and “painter” receive higher scores and remain
in the search while other results are eliminated. To ensure the inclusion of seed words, the proposed
scorer will return 0 if a candidate beam does not contain the specified seed word for learning.
The skeleton extracted by the KeYric system is a compressed representation of the lyrics in a

latent space, serving as the song’s theme. The essence of Inverse Prompt is to have the model
generate lines during beam search that can be summarized as the core idea, ensuring the lyrics
maintain a consistent theme and enhancing full-text coherence.

5 OBJECTIVE EXPERIMENT
5.1 Dataset
We used the Netease API to extract English lyrics with the 100 most frequent tags from a lyric dataset
[84], creating theNetease-lyrics dataset of 160,171 {𝑠𝑜𝑛𝑔𝑛𝑎𝑚𝑒, 𝑙𝑦𝑟𝑖𝑐} pairs for training the keyword
skeleton extraction model. For training the keyword skeleton expansion model, we built the LMD-
lyrics dataset from the Lakh MIDI dataset [60], which contains 7,211 {𝑠𝑜𝑛𝑔𝑛𝑎𝑚𝑒, 𝑙𝑦𝑟𝑖𝑐, 𝑀𝐼𝐷𝐼 𝑓 𝑖𝑙𝑒}
triplets. All lyrics are segmented by lines. Both datasets are split into 8:1:1 train, validation, and
test subsets.

5.2 Configurations
The keyword skeleton extractor employs a standard encoder-decoder block [71] with hidden states
size 𝑧 ∈ 𝑍 set to 256 (𝑑𝑧 = 𝑑𝑐 = 256). Preliminary experiments determined 𝛼 = 1.0, 𝛽 = 4.0, and 𝛾 =
0.2 [33]. The keyword skeleton expander’s graph network has an embedding size of 256 (𝑑𝑔=256),
7 propagation layers to accommodate an average of two verses and two choruses, and includes
the 10,000 most frequent words. Graph propagation uses sub-graphs of size 1024 in batches. We
pretrained three GPT-2 models (prepositive topic guider, main-body generator, and inverse prompt
scorer) on the Netease-lyrics dataset with a masked language model (MLM) task [15] and used the
LMD-lyrics dataset with respective prompt templates.

5.3 Compared Methods
We compared our keyword skeleton extraction (Proposed-K) and keyword expansion (Proposed-
G, with G representing “graph”) models against various unsupervised keyword extraction tech-
niques, including graph-based algorithms (TextRank, TopicRank, MultipartiteRank, PositionRank),
embedding-based algorithms (EmbedRank, SIFRank), and attention-based algorithms (Attention-
Rank, UkeRank) [38].
We also compared our KeYric system (Proposed) with the SOTA lyrics generation model [70],

referred to as Plan2Lyrics in this paper, and with AI-Lyricist [45], based on SeqGAN, and SongMASS
[65], which uses a Transformer to generate lyrics from a melody line.
An ablation study assessed the impact of each coherence mechanism in our lyrics generator.

We evaluated three versions: (1) a vanilla GPT-2 generator with the keyword skeleton as prompts
(Proposed-Lite, a simplified generator without coherence mechanisms), (2) a generator with a
prepositive topic guider (Proposed-Pre), and (3) a generator with only inverse prompts (Proposed-
IP). This allowed us to determine each mechanism’s contribution to enhancing lyrics’ coherence
and musicality.

5.4 Objective Measures
We objectively evaluated the keyword skeletons and the lyrics generator’s applicability to language
learning.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 15

The keyword extractor and expander were evaluated on five metrics. The first metric, “repre-
sentativeness” [70], assesses how well the keyword skeleton represents the semantic content and
linguistic characteristics of the original lyrics [20]. This is measured by the average cosine similarity
between each lyric sentence and its keyword embedding, indicating their interchangeability. The
second metric, “coherence”, evaluates the skeleton’s topic transitions [29]. It is the average log
probability of keyword graph edges, reflecting the frequency of consecutive keyword pairs in
adjacent lines and thus measuring the coherence of the storyline. It is formulated as:

𝐶𝐾 =
1
|𝐸 |

∑︁
𝑒𝑖,𝑗 ∈𝐸

log 𝑃 (𝑒𝑖, 𝑗) (11)

where each 𝑒 ∈ |𝐸 | denotes the edge in the keyword graph defined in subsubsection 3.3.1 that
connects two subsequent words in the keyword skeleton 𝐾 and 𝑃 (𝑒𝑖, 𝑗) represents the probability
associated with edge 𝑒𝑖, 𝑗 in the keyword graph, indicating the frequency of subsequent occurrence
of the keywords 𝑘𝑖 and 𝑘 𝑗 .
We propose the third metric, “uniformity”, which evaluates the distribution of keywords,

aiming for one keyword per lyric sentence. It is the ratio of lyric sentences without keywords,
multiplied by the number of keywords in the skeleton as a balancing coefficient. This ensures
each sentence contributes a keyword, supporting the storyline cohesively without missing key
points. High uniformity suggests concentrated keywords, potentially losing content from other
lines. The fourth metric, “cross-modal relevance”, measures the correlation between text and
musical features, computed as the normalized dot product of their feature vectors [45]. The fifth
metric, “diversity”, assesses the word choice diversity in the lyrics dataset [20, 83]. It is the average
pairwise difference between two keyword skeletons, formulated as:

𝐷 =
1

|𝑆 | (|𝑆 | − 1)

|𝑆 |∑︁
𝑖=1

|𝑆 |∑︁
𝑗=𝑖+1

| (𝑆𝑖 ∪ 𝑆 𝑗) − (𝑆𝑖 ∩ 𝑆 𝑗) | (12)

where 𝑆 is the keyword skeleton of the lyrics in the test set and | | denotes the size of a set. Diversity
is beneficial, but excessive diversity can result in random keywords.
Following previous studies on coherent text generation, we evaluate lyrics generators using

two metrics: local [25, 35] and global coherence scores [26]. Local coherence is measured by topic
switching detection, calculating the probability that two consecutive sentences share the same
topic [3]. Global coherence is evaluated by a model predicting the document’s overall coherence
through supervised regression [1]. Additionally, we performed part-of-speech (POS) tagging on
the generated lyrics and computed the proportion of elements that significantly contribute to
coherence, including conjunctions, subordinate clause indicators, and pronouns.

5.5 Objective Experiment Results
The keyword skeleton evaluation results are shown in Table 1-a. Our proposed model outperforms
others in all five metrics. Notably, our one keyword per line strategy avoids distribution bias and
enhances episodic coherence. It improves uniformity by 26% compared to the second-best method.
The VAE captures essential keywords, increasing diversity by 15% and cross-modal relevance
by 14%. Our keyword expander improves coherence and cross-modal relevance by 20% and 14%,
respectively, demonstrating the effectiveness of deep graph networks in correlating music and
lyrics.
In contrast, AttentionRank employs an attention mechanism but lacks a lyric reconstruction

process, leading to the selection of articles and auxiliary words that misrepresent lyrics, lowering its
representativeness score. TopicRank and TextRank build text graphs and select keywords without

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

16 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

Table 1. Results of the objective experiments. (a) Objective experiment results of keyword skeleton level
evaluation. (b) Objective experiment results of lyrics evaluation. The bold red values represent the best
performing values, while the underlined values respresent second best performing. We omit the values of
the keyword expander (Proposed-G) on representativeness, uniformity and faithfulness as the expander is
independent of the original lyrics. REP: representativeness, CO: coherence, UNI: uniformity, CMR: cross-
modal relevance, DIV:diversity, PCT: proportion of coherent terms.

(a) Keyword Skeleton Generation (b) Lyrics Generation

Model REP↑ CO↓ UNI↓ CMR↑ DIV↑ Model Local
Coherence↑

Global
Coherence↑ PCT↑

SIFRank 0.5 6.69 5.30 0.52 6.2 Original 0.88 1.66 0.28
MultiPartiteRank 0.56 6.73 4.11 0.55 13.59 AI-Lyricist 0.83 1.52 0.16

TopicRank 0.55 6.7 4.06 0.56 12.48 SongMASS 0.85 1.54 0.19
AttentionRank 0.42 6.66 5.91 0.39 5.27 Plan2Lyrics 0.85 1.59 0.25

TextRank 0.54 6.7 4.2 0.48 11.19 Proposed 0.881 1.69 0.27
PositionRank 0.45 6.5 6.7 0.45 3.86 Proposed-Lite 0.854 1.57 0.22
EmbedRank 0.57 6.48 2.75 0.51 13.46 Proposed-Pre 0.86 1.65 0.24
UKERank 0.44 6.43 3.98 0.42 4.62 Proposed-IP 0.876 1.61 0.24
Plan2Lyrics 0.29 6.42 2.91 0.33 4.33
Proposed-K 0.6 6.33 2.04 0.64 15.68
Proposed-G - 5.13 - 0.64 13.82

considering sentence order, resulting in weaker coherence. PositionRank, relying on keyword
frequency and previous occurrences, produces undiversified keyword skeletons. EmbedRank,
which uses embeddings for keyword extraction, ranks second in competitiveness by selecting
heavily modified words, like nouns surrounded by many adjectives, creating information-dense
keywords. However, ignoring sentiment and style modifiers weakens EmbedRank’s cross-modal
relevance with music.

The evaluation results for the coherent lyrics generated by our proposed model are presented in
Table 1-b. Our model shows a 5% improvement over the SOTA Plan2Lyrics, demonstrating that our
compression-reconstruction skeleton extraction method produces a more effective latent space. It
also surpasses AI-Lyricist by 9% in overall coherence, validating the effectiveness of our three-layer
mechanisms. Additionally, our model outperforms SongMASS by 7%, indicating that incorporating
human knowledge, such as syllable templates and keyword skeleton input, is more effective than
relying solely on automatic cross-modal relevance capture.
Lyrics’ coherence improvement is calculated by averaging the percentage improvements for

each metric in Table 1-b. For example, the improvement in local coherence compared to AI-Lyricist
is (0.88 - 0.83) / 0.825 = 0.06, and the improvement in global coherence is (1.69 - 1.52) / 1.52 = 0.112.
The overall improvement is then (0.06 + 0.112) / 2 = 0.09 (9%). The +5% and +7% improvement over
Plan2Lyrics and SongMASS is calculated similarly.
Although Plan2Lyrics increases the use of conjunctions and referential words in generated

lyrics, the skeleton quality largely determines coherence improvement. Plan2Lyrics employs the
YAKE method, which relies on text word frequency for keyword extraction. While these skeleton
keywords show high coherence, they lack diversity and fail to adequately represent the original
lyrics, resulting in an ineffective compression space. Additionally, the absence of musical input
leads to significant deviations in musicality.

Our objective experiments revealed a strong positive correlation between the coherence of lyrics
and the proportion of coherent elements they contain (Table 1-b). This suggests that using these
elements more extensively in lyrics generation enhances coherence.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 17

6 SUBJECTIVE EVALUATION
6.1 Experiment Participant and Procedures
We recruited 32 participants from the university via email, requiring English as their first language.
After completing the experiment and passing a manipulation check, participants received S$30.
The participants included 3 professional lyricists and 1 language teacher.

Participants underwent training before the main experiments. They were shown a sample
keyword skeleton and lyric paired with music and then asked to rate keyword skeletons and lyrics.
They also reviewed rating standards with examples for marks 1-5. The main experiment had two
sections: in section 1, participants rated 100 keyword skeletons paired with music in random order;
in section 2, they rated 40 lyrics paired with music in random order.

To maximize validity, we used several approaches: (1) a within-subjects experiment with random-
ized display order; (2) online training for participants with detailed example ratings and reasons to
ensure consistency. For singability, we provided a clear rating question with examples for scores
1-5 to avoid ambiguity: “Please listen to the synthesized singing of the lyrics and rate the following
aspects of the lyrics on a scale of 1 to 5, where 1 represents the lowest rating and 5 represents the
highest rating. Singability: How well do the syllables of the generated lyrics align with the melody
notes of the input music? It is a 5 score if all syllables and music notes are perfectly matched so that
you can sing the lyrics naturally, without syllables needing elongations or compressions into more/less
music notes, and without a word’s syllables separated by a downbeat. You should subtract 1 point for
every mismatch that you feel.” (3) We balanced participant recruitment to include a variety of other
spoken languages to mitigate linguistic biases, ensuring all participants’ first language was English.
(4) We used manipulation checks to verify genuine engagement.

6.2 Subjective Metrics
We conducted user rating surveys to evaluate the quality of extracted keyword skeletons, expanded
keyword skeletons, and generated lyrics, focusing on key aspects. We assessed keyword skele-
tons based on coherence, faithfulness, musicality, and sentiment. Coherence examines storyline
progression [9], faithfulness assesses accurate summarization of the original lyrics, musicality
checks the match with the music style [45], and sentiment evaluates emotional expression. We
refined the previously defined four levels of coherence in lyrics into six evaluation criteria for
subjective experiments: fluency, local coherence, global coherence, learnability, singability, and
musicality. Fluency [70] ensures natural English [88], local coherence ensures smooth sentence
transitions, global coherence maintains a consistent theme [88], and learnability integrates seed
words seamlessly. Participants judged the presence and contextual relevance of user-specified
words in the lyrics. Singability ensures syllables align with melody notes [30, 37], and musicality
evaluates cross-modal relevance with the genre, sentiment, and style of the paired music [45].

6.3 Subjective Experiment Results
As shown in Table 2-a, our model’s keyword skeletons assist users in envisioning storylines aligned
with the music’s style and sentiment. Participants noted that our keyword extractor summarizes
lyrics more accurately than compared models. Overall, our keyword extractor and expander out-
perform compared methods by 15% and 8%, respectively, based on the average improvement over
the second-best model in each metric.

As shown in Table 2-b, Our lyrics generator with a three-layer coherence mechanism surpasses
competitors in text quality, local and global coherence, and cross-modal relevance with the expanded
keyword skeleton. The KeYric system improves coherent lyrics generation by 19%, based on the

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

18 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

Table 2. Results of the subjective experiments. (a) Subjective experiment results of keyword skeleton level
evaluation. (b) Subjective experiment results of lyrics evaluation. The bold red values represent the best
performing values, while the underlined values respresent second best performing. CO: coherence, FA:
faithfulness, MUS: musicality, SEN: sentiment, FLU: fluency, LRN: learnability, SIN:singability

(a) Keyword Skeleton Generation (b) Lyrics Generation
Model CO↑ FA↑ MUS↑ SEN↑ Model FLU↑ Local CO↑ Global CO↑ LRN↑ SIN↑ MUS↑
SIFRank 3.24 2.91 2.88 2.72 Original 3.99 3.90 3.84 1.40 3.45 3.24

MultiPartiteRank 3.16 2.93 2.91 3.22 AI-Lyricist 1.79 1.66 1.51 2.33 2.27 1.83
TopicRank 3.22 2.93 2.90 1.60 SongMASS 2.42 2.16 2.02 1.03 2.45 2.07

AttentionRank 1.75 1.60 1.73 2.90 Plan2Lyrics 2.92 3.00 2.79 0.38 2.63 2.04
TextRank 3.25 3.09 2.90 2.51 Proposed 3.69 3.23 3.07 Δ 2.98 3.08 2.61

PositionRank 2.83 2.68 2.62 2.48
EmbedRank 3.38 3.18 3.04 2.94
UKERank 2.48 2.33 2.35 1.55
Plan2Lyrics 3.38 2.79 2.25 2.29
Proposed-K 3.59 3.69 3.59 3.69
Proposed-G 3.60 - 3.55 3.23

average improvement over the second-best model in each metric. It excels particularly in coherence
at the word, sentence, and whole-piece levels, validating our design motivation.

Subjective experiments show that lyrics generated with a skeleton are perceived as more coherent
and fluent by singers. Compared to the Plan2Lyrics model, our method improves coherence by
7.6% in local coherence and 10% in global coherence, highlighting the importance of coherence
constraints in lyrics generation. Additionally, our model outperforms Plan2Lyrics in musicality by
17%, demonstrating the need for cross-modal associations between music and text.

One important function of the KeYric system is to help generate personalized lyrics for language
learning through singing [45, 51]. In this method, users enhance their understanding and memory
of words by singing songs that include the keywords they wish to learn. Our lyrics generator
enhances personalized language learning by integrating input seed words naturally, showing a 28%
improvement in learnability compared to AI-lyricist. Specifically, the seed words that users want
to learn are successfully incorporated into the generated lyrics. And the surrounding words and
sentences help users understand the meanings of these seed words. This integration aids vocabulary
comprehension and language acquisition effectively. In summary, our generated lyrics are engaging,
coherent, pleasant, and artistic, making them ideal for language learning.

7 MULTIFACETED ANALYSIS: THE IMPACTS OF MUSICAL FACTORS ON LYRIC
COHERENCE

To analyze the effects of musical factors on lyric coherence, we divided the LMD-lyrics dataset
into 17 genres and independently trained and evaluated their expanded keyword skeletons. This
approach helped us understand how music genres influence lyric coherence. We extracted songs
from the database with identified genre attributes, covering 17 genres: bluegrass (0.66%), blues
(4.76%), Christian-gospel (1.38%), classical (1.16%), country (8.46%), dance-electric (5.48%), disco
(0.32%), folk (2.08%), hip-hop (3.28%), jazz (3.54%), metal (19.92%), new age (1.98%), pop (11.96%), punk
(6.84%), reggae (0.6%), R&B (0.96%), and rock (26.62%). Table 3-a shows the coherence rankings,
revealing that pop and country music produce the most coherent results. The coherence and
narrativity of human songwriting may be the primary reason. In contrast, classical music lacks
lyrics, and gospel songs use chanting and exclamations, leading to less coherent keyword expansion
and lyrics generation.

Our case studies show that classical songs’ lyrics are often incomplete, and punk and folk songs
lack a fixed arrangement. Large language models (LLMs) like ChatGPT struggle to detect patterns

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 19

Table 3. Multifaceted analysis of keyword and lyric coherence on datasets divided by (a) music genres. (b)
encoded elements. The bold red values represent the best performing values, while the bold blue values
indicate the least ideal performing values. The underlined values mean the second best performing valus.

(a) Results of Subdatasets of Different Music Genres.

Genres Keyword
Coherence↑

Local Lyrics
Coherence↑

Global Lyrics
Coherence (Global)↑

Normalized
Avarage↑

Pop (11.96%) 5.48 0.91 1.67 0.83
Bluegrass (0.66%) 5.01 0.92 1.64 0.75
Newage (1.98%) 5.08 0.91 1.61 0.70
Jazz (3.54%) 4.95 0.91 1.63 0.69
Reggae (0.6%) 4.66 0.91 1.66 0.69
Country (8.46%) 5.14 0.93 1.62 0.68
Hip-hop (3.28%) 5.05 0.91 1.62 0.67
Disco (0.32%) 4.68 0.92 1.58 0.59
Rock (26.62%) 4.55 0.90 1.63 0.58
R&B (0.96%) 5.17 0.89 1.58 0.54
Metal (19.92%) 4.6 0.89 1.58 0.53
Blues (4.76%) 5.08 0.90 1.55 0.52

Dance-electric (5.48%) 4.06 0.91 1.61 0.50
Christ-Gospel (1.38%) 3.36 0.85 1.50 0.45

Punk (6.84%) 4.79 0.90 1.50 0.37
Folk (2.08%) 4.47 0.90 1.50 0.31

Classical (1.16%) 4.33 0.88 1.49 0.15

(b) Results of Subdatasets of Different REMI Encoded Elements.
REMI

Element
Keyword

Coherence↑
Local Lyrics
Coherence↑

Global Lyrics
Coherence (Global)↑

Full 5.13 0.881 1.69
w/o Bar Line 5.23 0.80 1.61
w/o Position 5.10 0.83 1.66
w/o Pitch 4.44 0.86 1.57

w/o Duration 4.94 0.89 1.61

in these genres. Thus, we trained our generation model on genres with average coherence scores
of 0.53 and above (e.g., metal). The trained model also performs well on unseen genres.
We further investigated which musical elements influence cross-modal lyric coherence. By

excluding elements in REMI melody representation, we observed changes in coherence. As shown
in Table 3-b, removing pitches significantly decreases keyword and whole-piece coherence by
13% and 7%. Surprisingly, removing bar line information increases keyword coherence by 2% but
reduces line-to-line coherence by 9%, as lyric lines do not always match bar lines. These findings
help us select musical elements to establish cross-modal relevance between text and music in future
work.

7.1 Ablation Study and Case Study
The analysis of lyrics from our model and its variants (Proposed-Lite, Proposed-Pre, Proposed-
IP) shows that Proposed-Pre produces more sentimentally and thematically coherent lyrics than
Proposed-Lite (+2.9%). Most sentences generated by Proposed-Pre maintain a consistent tone and
focus on a shared topic, influenced by the prepositive topic guider.
Lyrics from Proposed-IP exhibit tone and subject shifts but use more consecutive and supple-

mentary words to link these shifts. This variant also shows an increase in longer compound and
complex sentences with attributive and adverbial clauses. The Proposed model integrates features

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

20 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

of both Proposed-Pre and Proposed-IP, achieving smooth topic transitions between paragraphs
and coherence within paragraphs.

8 DISCUSSION AND FUTUREWORK
Despite the success of LLMs like ChatGPT in natural language processing, our findings suggest
that their proficiency in generating lyrics for language learning is inferior to our proposed system,
KeYric. As shown in Appendix A, ChatGPT struggles with generating original lyrics without
mimicking existing structures and often fails to meet specific syllabic requirements. In contrast,
KeYric adapts to new musical inputs and consistently produces accurate, flexible results. To fully
exploit the potential of LLMs in lyrics generation, future research could enhance LLMs’ abilities to
understand lyric prosody, incorporate explicit mandatory control instructions, and intentionally
avoid plagiarism. Developing models that can process various musical inputs and integrating more
comprehensive paired datasets could improve the applicability of LLMs in music-related tasks.
Our research focuses on the English language, but extending our model to other languages is

a promising future direction. While this extension is beyond the current paper’s scope, it could
significantly enhance our system’s applicability and impact. Future research should explore adapting
themodel formultilingual lyrics generation by addressing language-specific nuances and integrating
lyric datasets in diverse languages.

9 CONCLUSION
This paper examines lyric coherence at word, sentence, full-text, and cross-modal (musicality)
levels. We address issues in existing keyword extraction methods for improving lyric coherence.
We propose unsupervised keyword extraction from lyrics and keyword expansion from music.
Additionally, we suggest using multiple coherence mechanisms with a keyword skeleton to enhance
coherence before, during, and after lyric token prediction. Users believe that the KeYric system
outperforms SOTA model by 19%. Finally, we offer insights into how genres and musical elements
influence coherent lyrics generation.

ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers for their valuable suggestions. This project
was funded by research grant A0008150-00-00 from the Ministry of Education, Singapore.

REFERENCES
[1] Tushar Abhishek, Daksh Rawat, Manish Gupta, and Vasudeva Varma. 2021. Transformer models for text coherence

assessment. arXiv preprint arXiv:2109.02176 (2021).
[2] Lahbib Ajallouda, Fatima Zahra Fagroud, Ahmed Zellou, et al. 2023. Automatic keyphrases extraction: an overview of

deep learning approaches. Bulletin of Electrical Engineering and Informatics 12, 1 (2023), 303–313.
[3] Dennis Aumiller, Satya Almasian, Sebastian Lackner, and Michael Gertz. 2021. Structural text segmentation of legal

documents. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law. 2–11.
[4] Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl, and Martin Jaggi. 2018. Simple

unsupervised keyphrase extraction using sentence embeddings. arXiv preprint arXiv:1801.04470 (2018).
[5] Florian Boudin. 2018. Unsupervised keyphrase extraction with multipartite graphs. arXiv preprint arXiv:1803.08721

(2018).
[6] Adrien Bougouin, Florian Boudin, and Béatrice Daille. 2013. Topicrank: Graph-based topic ranking for keyphrase

extraction. In International joint conference on natural language processing (IJCNLP). 543–551.
[7] Jia-Wei Chang, Jason C Hung, and Kuan-Cheng Lin. 2021. Singability-enhanced lyric generator with music style

transfer. Computer Communications 168 (2021), 33–53.
[8] Yihao Chen and Alexander Lerch. 2020. Melody-conditioned lyrics generation with seqgans. In 2020 IEEE International

Symposium on Multimedia (ISM). IEEE, 189–196.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 21

[9] Yun-Nung Chen, Yu Huang, Hung-Yi Lee, and Lin-Shan Lee. 2012. Unsupervised two-stage keyword extraction from
spoken documents by topic coherence and support vector machine. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 5041–5044.

[10] Woon Sang Cho, Pengchuan Zhang, Yizhe Zhang, Xiujun Li, Michel Galley, Chris Brockett, Mengdi Wang, and Jianfeng
Gao. 2018. Towards coherent and cohesive long-form text generation. arXiv preprint arXiv:1811.00511 (2018).

[11] Yi-Hui Chou, I Chen, Chin-Jui Chang, Joann Ching, Yi-Hsuan Yang, et al. 2021. MidiBERT-piano: Large-scale pre-
training for symbolic music understanding. arXiv preprint arXiv:2107.05223 (2021).

[12] Yun-Yen Chuang, Hung-Min Hsu, Ray-I Chang, and Hung-Yi Lee. 2022. Adversarial Rap Lyric Generation. In 2022 4th
International Conference on Natural Language Processing (ICNLP). IEEE, 414–419.

[13] Fan Chung. 2014. A Brief Survey of PageRank Algorithms. IEEE Trans. Netw. Sci. Eng. 1, 1 (2014), 38–42.
[14] Aidan Cookson, Auguste Hirth, and Krish Kabra. 2020. SloGAN: Character Level Adversarial Lyric Generation. (2020).
[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
[16] Haoran Ding and Xiao Luo. 2021. AttentionRank: unsupervised keyphrase extraction using self and cross attentions.

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 1919–1928.
[17] Sufeng Duan, Hai Zhao, Junru Zhou, and Rui Wang. 2019. Syntax-aware transformer encoder for neural machine

translation. In 2019 International Conference on Asian Language Processing (IALP). IEEE, 396–401.
[18] Dwayne Engh. 2013. Why use music in English language learning? A survey of the literature. English Language

Teaching 6, 2 (2013), 113–127.
[19] Judith Weaver Failoni. 1993. Music as Means To Enhance Cultural Awareness and Literacy in the Foreign Language

Classroom. Mid-Atlantic Journal of Foreign Language Pedagogy 1 (1993), 97–108.
[20] Angela Fan, Mike Lewis, and Yann Dauphin. 2019. Strategies for structuring story generation. arXiv preprint

arXiv:1902.01109 (2019).
[21] Haoshen Fan, Jie Wang, Bojin Zhuang, Shaojun Wang, and Jing Xiao. 2019. A hierarchical attention based Seq2Seq

model for Chinese lyrics generation. In Pacific Rim International Conference on Artificial Intelligence. Springer, 279–288.
[22] Douglas Fisher. 2001. Early language learning with and without music. Reading Horizons: A Journal of Literacy and

Language Arts 42, 1 (2001), 8.
[23] Corina Florescu and Cornelia Caragea. 2017. Positionrank: An unsupervised approach to keyphrase extraction from

scholarly documents. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 1105–1115.

[24] Arla J Good, Frank A Russo, and Jennifer Sullivan. 2015. The efficacy of singing in foreign-language learning. Psychology
of Music 43, 5 (2015), 627–640.

[25] Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wenbiao Ding, and Minlie Huang. 2021. Long text generation by
modeling sentence-level and discourse-level coherence. arXiv preprint arXiv:2105.08963 (2021).

[26] Zhe Hu, Hou Pong Chan, Jiachen Liu, Xinyan Xiao, Hua Wu, and Lifu Huang. 2022. Planet: Dynamic content planning
in autoregressive transformers for long-form text generation. arXiv preprint arXiv:2203.09100 (2022).

[27] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous graph transformer. In Proceedings of
the web conference 2020. 2704–2710.

[28] Yu-Siang Huang and Yi-Hsuan Yang. 2020. Pop music transformer: Beat-based modeling and generation of expressive
pop piano compositions. In Proceedings of the 28th ACM International Conference on Multimedia. 1180–1188.

[29] Haixin Jiang, Rui Zhou, Limeng Zhang, Hua Wang, and Yanchun Zhang. 2019. Sentence level topic models for
associated topics extraction. World Wide Web 22 (2019), 2545–2560.

[30] Haven Kim, Kento Watanabe, Masataka Goto, and Juhan Nam. 2023. A Computational Evaluation Framework for
Singable Lyric Translation. arXiv preprint arXiv:2308.13715 (2023).

[31] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
[32] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard Socher, and

Nazneen Fatema Rajani. 2020. Gedi: Generative discriminator guided sequence generation. arXiv preprint
arXiv:2009.06367 (2020).

[33] Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. 2017. A hierarchical approach for generating
descriptive image paragraphs. In Proceedings of the IEEE conference on computer vision and pattern recognition. 317–325.

[34] Sankar Kuppan, Sobha Lalitha Devi, et al. 2009. Automatic generation of Tamil lyrics for melodies. In Proceedings of
the workshop on computational approaches to linguistic creativity. 40–46.

[35] Junyi Li, Wayne Xin Zhao, Zhicheng Wei, Nicholas Jing Yuan, and Ji-Rong Wen. 2021. Knowledge-based review
generation by coherence enhanced text planning. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 183–192.

[36] Piji Li, Haisong Zhang, Xiaojiang Liu, and Shuming Shi. 2020. Songnet: Rigid formats controlled text generation. arXiv
preprint arXiv:2004.08022 (2020).

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

22 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

[37] Qihao Liang, Xichu Ma, Finale Doshi-Velez, Brian Lim, and Ye Wang. [n. d.]. XAI-Lyricist: Improving the Singability of
AI-Generated Lyrics with Prosody Explanations. ([n. d.]).

[38] Xinnian Liang, Shuangzhi Wu, Mu Li, and Zhoujun Li. 2021. Unsupervised keyphrase extraction by jointly modeling
local and global context. arXiv preprint arXiv:2109.07293 (2021).

[39] Zhiyu Lin and Mark O Riedl. 2021. Plug-and-blend: a framework for plug-and-play controllable story generation with
sketches. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Vol. 17.
58–65.

[40] Danyang Liu and Gongshen Liu. 2019. A transformer-based variational autoencoder for sentence generation. In 2019
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–7.

[41] Nayu Liu, Wenjing Han, Guangcan Liu, Da Peng, Ran Zhang, Xiaorui Wang, and Huabin Ruan. 2022. ChipSong: A
Controllable Lyric Generation System for Chinese Popular Song. In Proceedings of the First Workshop on Intelligent and
Interactive Writing Assistants (In2Writing 2022). 85–95.

[42] Peter Low. 2003. Singable translations of songs. Perspectives: Studies in Translatology 11, 2 (2003), 87–103.
[43] Xu Lu, Jie Wang, Bojin Zhuang, Shaojun Wang, and Jing Xiao. 2019. A syllable-structured, contextually-based

conditionally generation of chinese lyrics. In Pacific Rim International Conference on Artificial Intelligence. Springer,
257–265.

[44] Xichu Ma, Xiao Liu, Bowen Zhang, and Ye Wang. 2022. Robust Melody Track Identification in Symbolic Music. In
Ismir 2022 Hybrid Conference.

[45] Xichu Ma, Ye Wang, Min-Yen Kan, and Wee Sun Lee. 2021. AI-Lyricist: Generating Music and Vocabulary Constrained
Lyrics. In Proceedings of the 29th ACM International Conference on Multimedia. 1002–1011.

[46] Eric Malmi, Pyry Takala, Hannu Toivonen, Tapani Raiko, and Aristides Gionis. 2016. Dopelearning: A computational
approach to rap lyrics generation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 195–204.

[47] Enrique Manjavacas, Mike Kestemont, and Folgert Karsdorp. 2019. Generation of hip-hop lyrics with hierarchical
modeling and conditional templates. In Proceedings of the 12th International Conference on Natural Language Generation.
301–310.

[48] Suzanne L Medina. 1990. The Effects of Music upon Second Language Vocabulary Acquisition. (1990).
[49] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Proceedings of the 2004 conference on

empirical methods in natural language processing. 404–411.
[50] Susan Bergman Miyake. 2004. Pronunciation and music. Sophia Junior College Faculty Bulletin 20, 3 (2004), 80.
[51] Dania Murad, Riwu Wang, Douglas Turnbull, and Ye Wang. 2018. SLIONS: A karaoke application to enhance foreign

language learning. In Proceedings of the 26th ACM international conference on Multimedia. 1679–1687.
[52] Shashi Narayan, Yao Zhao, Joshua Maynez, Gonçalo Simões, Vitaly Nikolaev, and Ryan McDonald. 2021. Planning with

learned entity prompts for abstractive summarization. Transactions of the Association for Computational Linguistics 9
(2021), 1475–1492.

[53] Hieu Nguyen and Brian Sa. 2009. Rap lyric generator. New York, USA (2009), 1–3.
[54] Nikola I Nikolov, Eric Malmi, Curtis G Northcutt, and Loreto Parisi. 2020. Conditional rap lyrics generation with

denoising autoencoders. CoRR, vol. abs (2020), 1–13.
[55] Aytuğ Onan, Serdar Korukoğlu, and Hasan Bulut. 2016. Ensemble of keyword extraction methods and classifiers in

text classification. Expert Systems with Applications 57 (2016), 232–247.
[56] Aitor Ormazabal, Mikel Artetxe, Manex Agirrezabal, Aitor Soroa, and Eneko Agirre. 2022. PoeLM: A Meter-and

Rhyme-Controllable Language Model for Unsupervised Poetry Generation. arXiv preprint arXiv:2205.12206 (2022).
[57] Alice Oshima and Ann Hogue. 2006. Writing academic english. Pearson.
[58] Peter Potash, Alexey Romanov, and Anna Rumshisky. 2015. GhostWriter: Using an LSTM for Automatic Rap Lyric

Generation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, 1919–1924. https://doi.org/10.18653/v1/D15-1221

[59] Dian Nauwala Putri. 2021. Cohesiveness in informal written text, song lyrics. ASELS_2021 (2021).
[60] C Raffel. 2016. Learning-based methods for comparing sequences, with applications to audio-to-midi alignment and

matching. 331 Ph. D. Ph. D. Dissertation. thesis, Columbia University.
[61] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv

preprint arXiv:1908.10084 (2019).
[62] Andrés Roberto Rengifo. 2009. Improving pronunciation through the use of karaoke in an adult English class. Profile

Issues in TeachersProfessional Development 11 (2009), 91–106.
[63] Joseph Rothstein. 1995. MIDI: A comprehensive introduction. Vol. 7. AR Editions, Inc.
[64] Xianjie Shen, Yinghan Wang, Rui Meng, and Jingbo Shang. 2022. Unsupervised deep keyphrase generation. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 11303–11311.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.18653/v1/D15-1221

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 23

[65] Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye, Shikun Zhang, and Tao Qin. 2021. Songmass: Automatic song
writing with pre-training and alignment constraint. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 13798–13805.

[66] Sung-Hwan Son, Hyun-Young Lee, Gyu-Hyeon Nam, and Seung-Shik Kang. 2019. Korean song-lyrics generation by
deep learning. In Proceedings of the 2019 4th International Conference on Intelligent Information Technology. 96–100.

[67] Mingyang Song, Yi Feng, and Liping Jing. 2023. A Survey on Recent Advances in Keyphrase Extraction from Pre-trained
Language Models. Findings of the Association for Computational Linguistics: EACL 2023 (2023), 2108–2119.

[68] Ruixiao Sun, Jie Yang, and Mehrdad Yousefzadeh. 2020. Improving language generation with sentence coherence
objective. arXiv preprint arXiv:2009.06358 (2020).

[69] Yi Sun, Hangping Qiu, Yu Zheng, ZhongweiWang, and Chaoran Zhang. 2020. SIFRank: a new baseline for unsupervised
keyphrase extraction based on pre-trained language model. IEEE Access 8 (2020), 10896–10906.

[70] Yufei Tian, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Gunnar Sigurdsson, Chenyang Tao,Wenbo Zhao,
Yiwen Chen, Tagyoung Chung, Jing Huang, et al. 2023. Unsupervised Melody-to-Lyrics Generation. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 9235–9254.

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

[72] Olga Vechtomova and Gaurav Sahu. 2023. LyricJam Sonic: A Generative System for Real-Time Composition and
Musical Improvisation. In International Conference on Computational Intelligence in Music, Sound, Art and Design (Part
of EvoStar). Springer, 292–307.

[73] Olga Vechtomova, Gaurav Sahu, and Dhruv Kumar. 2020. Generation of lyrics lines conditioned on music audio clips.
arXiv preprint arXiv:2009.14375 (2020).

[74] Olga Vechtomova, Gaurav Sahu, and Dhruv Kumar. 2021. LyricJam: a system for generating lyrics for live instrumental
music. arXiv preprint arXiv:2106.01960 (2021).

[75] Wanda T Wallace. 1994. Memory for music: Effect of melody on recall of text. Journal of Experimental Psychology:
Learning, Memory, and Cognition 20, 6 (1994), 1471.

[76] Jie Wang and Xinyan Zhao. 2019. Theme-aware generation model for chinese lyrics. arXiv preprint arXiv:1906.02134
(2019).

[77] Kento Watanabe, Yuichiroh Matsubayashi, Satoru Fukayama, Masataka Goto, Kentaro Inui, and Tomoyasu Nakano.
2018. A melody-conditioned lyrics language model. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 163–172.

[78] KentoWatanabe, Yuichiroh Matsubayashi, Kentaro Inui, and Masataka Goto. 2014. Modeling structural topic transitions
for automatic lyrics generation. In Proceedings of the 28th Pacific Asia conference on language, information and computing.
422–431.

[79] Xing Wu, Zhikang Du, Yike Guo, and Hamido Fujita. 2019. Hierarchical attention based long short-term memory for
Chinese lyric generation. Applied Intelligence 49, 1 (2019), 44–52.

[80] Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xiaoyan Cai, and Xu Sun. 2018. A skeleton-based model for promoting
coherence among sentences in narrative story generation. arXiv preprint arXiv:1808.06945 (2018).

[81] Lanqing Xue, Kaitao Song, Duocai Wu, Xu Tan, Nevin L Zhang, Tao Qin, Wei-Qiang Zhang, and Tie-Yan Liu. 2021.
DeepRapper: Neural rap generation with rhyme and rhythm modeling. arXiv preprint arXiv:2107.01875 (2021).

[82] Kevin Yang, Nanyun Peng, Yuandong Tian, and Dan Klein. 2022. Re3: Generating longer stories with recursive
reprompting and revision. arXiv preprint arXiv:2210.06774 (2022).

[83] Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-and-write: Towards
better automatic storytelling. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 7378–7385.

[84] Yi Yu, Abhishek Srivastava, and Simon Canales. 2021. Conditional lstm-gan for melody generation from lyrics. ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM) 17, 1 (2021), 1–20.

[85] Rongsheng Zhang, Xiaoxi Mao, Le Li, Lin Jiang, Lin Chen, Zhiwei Hu, Yadong Xi, Changjie Fan, and Minlie Huang.
2022. Youling: an AI-assisted lyrics creation system. arXiv preprint arXiv:2201.06724 (2022).

[86] Yuxiang Zhang, Tao Jiang, Tianyu Yang, Xiaoli Li, and Suge Wang. 2022. Htkg: Deep keyphrase generation with neural
hierarchical topic guidance. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 1044–1054.

[87] Kun Zhao, Hongwei Ding, Kai Ye, and Xiaohui Cui. 2021. A transformer-based hierarchical variational autoencoder
combined hidden Markov model for long text generation. Entropy 23, 10 (2021), 1277.

[88] Wei Zhao, Michael Strube, and Steffen Eger. 2022. Discoscore: Evaluating text generation with bert and discourse
coherence. arXiv preprint arXiv:2201.11176 (2022).

[89] Xu Zou, Da Yin, Qingyang Zhong, Hongxia Yang, Zhilin Yang, and Jie Tang. 2021. Controllable generation from
pre-trained language models via inverse prompting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2450–2460.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

24 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

A LYRICS GENERATION BY CHATGPT
A.1 Generated from existing lyrics
The conversation in Figure 8 is the process of ChatGPT generating lyrics from existing lyrics in
ChatGPT’s training dataset. Using query template like “Generate lyrics from the song called <SONG
NAME>.”, ChatGPT’s high-quality lyrics generation often contain traces of adaptation from the
original lyrics. This could cause copyright issues and is not comparable to our task of generating
lyrics without reference lyrics. ChatGPT also copies the song’s structure while our KeYric model
can be flexibly applied to new MIDI file input.

A.2 Generated from syllable templates
The conversation in Figure 10 is the process of ChatGPT generating lyrics from a syllable template
that contains a sequence of syllable number of each line. “Generate lyrics of sentences having
syllable numbers of 8,7,...,6” is the query sentence in ChatGPT. Despite providing lyric examples
with syllable numbers, ChatGPT does not understand this specific requirement and still produces
lyrics with incorrect syllable numbers. ChatGPT also always uses the same rigid versus-chorus
structure, possibly because it favours common lyric structures.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 25

Fig. 8. The conversation with ChatGPT generating lyrics from existing songs.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

26 Xichu Ma, Varun Sharma, Min-Yen Kan, Wee Sun Lee, and Ye Wang

Fig. 9. The conversation with ChatGPT generating lyrics from syllable templates.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation 27

B LYRICS GENERATION SAMPLES FROM COMPARED MODELS

I lift you up to see the world

→ like when you are a girl

Now we found the love

And I got a smile girl

Now I have to be a man

Doing everything

→ that I know about

I never got this chance of life

In a world of only you

I just need you to be in sophisticated mind

When it finally goes to dust and fire

I can't wait for a second

→ as a teen not patient

Know that I can't find

→ a sophisticated heart

His fingertips trace my skin

→ digging what I hide

→ that I'm in love with you

My heart is closed after duels

Next day we don't talk anymore

Scared the moment will pass, I see this

Then the pain will fill in all our heads

Well until what please tied you

Like to talk like

Nothing choose where you did

You think you were gave me cry

We let me stay

Let me feel you pain

This time to keep me flat

I think time

Land just leave you more plane

And if I know what I just wanna

→ make you until remember

I could get me my back unmoved

We got my head out

You need to know me now

How bright see all light

So it's all what you did before

I’ve never been so sophisticated

That's why you go

I am casting at the door to go

Let it be for the world now

when you go I'll be my conscience oh

I don't want to alter at all

Imagine there's a world so sophisticated

→ where skies are always blue.

And love and peace is all we ever knew.

Where every soul

→ can be as they desire.

And we can all see

→ what life could be like.

Let's imagine a world

→ with no need to fight.

Where love and hope

→ is what we all know and light.

Imagine there's no heaven

It's easy if you try

No hell below us

Above us, only sky

Imagine all the people

→ Livin' for today

Ah - - - -

You may say I'm a dreamer

But I'm not the only one

I hope someday you'll join us

And the world will be as one

Text: Seed words to learn → : Clauses Text: Conjunctions Text: Cohesive terms

Fig. 10. Lyrics generated by different lyrics generation models from John Lennon’s song “Imagine”, with
seed words sophisticated, know and see. Seed words are denoted by green text, clauses by an arrow
→, conjunctions by underscore and comments by a dotted box. Words that tie together related concepts,
behaviors and attributes are denoted by italic bold formatting.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Lyrics Generation
	2.2 Coherence in Text Generation
	2.3 Unsupervised Keyword Extraction

	3 Keyword Skeleton Extraction and Expansion
	3.1 Motivation
	3.2 Keyword Skeleton Extraction
	3.3 Keyword Skeleton Expansion

	4 Coherent Lyrics Generation
	4.1 Main-body Lyrics Generator
	4.2 Prepositive Topic Guider
	4.3 Inverse Prompts

	5 Objective Experiment
	5.1 Dataset
	5.2 Configurations
	5.3 Compared Methods
	5.4 Objective Measures
	5.5 Objective Experiment Results

	6 Subjective Evaluation
	6.1 Experiment Participant and Procedures
	6.2 Subjective Metrics
	6.3 Subjective Experiment Results

	7 Multifaceted Analysis: The Impacts of Musical Factors on Lyric Coherence
	7.1 Ablation Study and Case Study

	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Lyrics Generation by ChatGPT
	A.1 Generated from existing lyrics
	A.2 Generated from syllable templates

	B Lyrics Generation Samples from Compared Models

