Automatic Lyric Transcription and Automatic Music
Transcription from Multimodal Singing

XIANGMING GU, LONGSHEN OU, WEI ZENG, JIANAN ZHANG, NICHOLAS WONG,
and YE WANG, National University of Singapore, Singapore

Automatic lyric transcription (ALT) refers to transcribing singing voices into lyrics while automatic music
transcription (AMT) refers to transcribing singing voices into note events, i.e., musical MIDI notes. Despite
these two tasks having significant potential for practical application, they are still nascent. This is because the
transcription of lyrics and note events solely from singing audio is notoriously difficult due to the presence of
noise contamination, e.g., musical accompaniment, resulting in a degradation of both the intelligibility of sung
lyrics and the recognizability of sung notes. To address this challenge, we propose a general framework for
implementing multimodal ALT and AMT systems. Additionally, we curate the first multimodal singing dataset,
comprising N20EMv1 and N20EMv2, which encompasses audio recordings and videos of lip movements,
together with ground truth for lyrics and note events. For model construction, we propose adapting self-
supervised learning models from the speech domain as acoustic encoders and visual encoders to alleviate
the scarcity of labeled data. We also introduce a residual cross-attention mechanism to effectively integrate
features from the audio and video modalities. Through extensive experiments, we demonstrate that our
single-modal systems exhibit state-of-the-art performance on both ALT and AMT tasks. Subsequently, through
single-modal experiments, we also explore the individual contributions of each modality to the multimodal
system. Finally, we combine these and demonstrate the effectiveness of our proposed multimodal systems,
particularly in terms of their noise robustness.
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1 INTRODUCTION

Singing contains both textual and musical information. As an important component of singing
voice analysis, automatic transcription of singing voice includes automatic lyric transcription (ALT)
and automatic music transcription (AMT). The former is the task of recognizing textual information,
while the latter is the task of identifying musical information, including onsets/offsets/pitch of
note events. The above two tasks facilitate solving many downstream music information retrieval
problems. For instance, ALT can be applied to lyric alignment [29], query by singing [33], audio
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indexing [20], music subtitling [18], and singing pronunciation evaluation [59]. AMT can be applied
to sight-singing evaluation [80], music therapy [72], and human-computer interaction [58, 77].
Furthermore, they can also be employed in singing voice synthesis [37, 45], which is a topic that
has recently been actively studied in the singing field.

Traditionally, ALT and AMT systems are built only on audio modality and treated as separate
tasks with distinct objectives. However, they encounter certain common challenges, which motivate
developing a generalized solution.

Insufficient robustness for noise. Audio recordings of singing may be accompanied with noise,
e.g. background music. In challenging signal-to-noise ratio (SNR) environments, the intelligibility of
singing in the audio modality will be drastically reduced, thus affecting the information retrieval of
lyrics and musical note events. In our previous work [27], we showed that attempting the ALT task
solely on audio recordings in noisy environments yields unsatisfactory performance. Additionally,
[26, 36] showed that low SNR environments greatly harm the performance of pitch estimation from
speech. Considering that singing and speech share similarities in terms of the sound production
mechanism, it is reasonable to surmise that attempting audio-only AMT from singing voices would
probably meet the similar challenge of noise robustness.

Limited data for complex tasks. Singing transcription is notably much more difficult compared
to speech-related recognition tasks due to the scarcity of labeled data and the intricate intertwining
of textual and musical information within singing. Speech recognition benefits from large-scale
annotated datasets such as LibriSpeech [63], which comprises 960 hours of annotated speech
recordings. In contrast, DSing [8, 13], a widely used ALT dataset, has about 150 hours of data, and
the largest AMT dataset, MIR-ST500 [76], only contains around 30 hours. The scarcity of labeled
data arises from the time-consuming process of manual annotation, where extensive musical
knowledge is necessary. Additionally, singers inevitably have to adjust or compromise certain
linguistic features, such as word stress and articulation, to accommodate properties or constraints
of singing that are not present in regular speech, such as melody, tempo, or deliberate timbre
adjustments. As a result, singing tends to be less intelligible as compared to speech [67], thereby
further complicating the transcription process.

The perception of both speech and singing extends beyond the auditory realm, as exemplified by
the McGurk effect [50]. This phenomenon highlights the significant impact of visual information on
auditory perception. Inspired by this, we assume that incorporating more modalities in singing will
enhance the performance of both ALT and AMT systems, particularly concerning noise robustness.
In our previous work [27], we developed the first multimodal ALT system, MM-ALT, capable of
processing audio, video, and IMU inputs. Comparative analyses between MM-ALT and its single-
modal counterparts revealed that supplementary modalities, especially videos of lip movements,
significantly contribute to noise robustness. However, the realm of AMT from multimodal singing
has not been explored yet. In a position paper [77], the potential of multimedia fusion approaches in
improving AMT from music or singing was mentioned. To address this research gap and validate our
assumption, we extend our previous work [27] to accommodate for both multimodal ALT and AMT.
In developing our multimodal system, we propose adapting self-supervised learning models, e.g.
wav2vec 2.0 [3] and AV-HuBERT [68] from the speech domain to the singing domain. This approach
addresses the issue of limited data availability for tasks of audio-only ALT and AMT. In this manner,
we harness the abundance of speech data. Furthermore, to enhance the integration of representations
from various modalities, we introduce a residual cross-attention mechanism, which combines self-
attention and cross-attention to effectively utilize the strengths of each modality and exploit the com-
plementary relationships among different modalities. To summarize, our contributions are four-fold:
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e We present a general framework for ALT and AMT from multimodal singing. Our frame-
work incorporates both audio and video modalities. To support the development of these
systems, we curate the first multimodal singing dataset, consisting of N20EMv1 for ALT and
N20EMv2 for AMT. By introducing the video modality, our systems demonstrate increased
noise robustness. With severe perturbations of musical accompaniment (-10 dB SNR), our
systems outperform their audio-only counterparts by large margins.

e We adapt self-supervised learning (SSL) models from the speech domain to the singing do-
main, employing our proposed adaptation method. Consequently, our audio-only systems
achieve state-of-the-art performance for both ALT and AMT tasks on widely used benchmark
singing datasets, including DSing [8, 13], DALI [54, 55], Jamendo [70], Hansen [31], Mauch
[49], MIR-ST500 [76], TONAS [25], and ISMIR2014 [57].

o We initialize new tasks of lyric lipreading and note lipreading utilizing only video information.
Our systems are capable of extracting language-related information (lyrics) and music-related
information (note events) from only video modality.

e We introduce Residual Cross Attention (RCA), a new feature fusion method to better fuse the
multimodal singing features, leveraging both self-attention and cross-attention mechanisms.

Our previous work [27] focused on the construction and evaluation of the multimodal ALT
system. This article extends it in the following aspects: (1) We propose a generalized problem setting
for both ALT and AMT from multimodal singing voice and we focus on the audio and video two
modalities. (2) Based on the data collected in [27], we curate a new dataset named N20EMv2 with the
annotations tailored for AMT. (3) We propose a novel adaptation strategy for AMT. (4) We conduct
extensive experiments for single-modal and multimodal AMT systems. (5) We incorporate more
comparison experiments and ablation studies to demonstrate the effectiveness of our methods.

2 RELATED WORK
2.1 Automatic Lyric Transcription

Automatic lyric transcription (ALT), the counterpart task of automatic speech recognition (ASR) in
the field of music information retrieval, has evolved with various approaches. The initial work [33]
developed a Japanese ALT system by adapting a Hidden-Markov-Model (HMM). [53] investigated
the impact of in-domain lyric language models (LM) on transcription performance. Additionally,
[51] leveraged the repetitive patterns of songs to enhance the consistency and accuracy of their
transcription system. The advent of deep learning and benchmark datasets DSing [8, 13] and
DALI [54, 55] enabled data-driven deep learning approaches for ALT. Notably, [8, 13, 15] proposed
employing a DNN-HMM framework with factorized time-delay neural network (TDNN-F) or its
variations as the feature encoder. Additionally, [16] adopted a connectionist temporal classification
(CTC) architecture, utilizing a CRNN as the encoder, while [4, 29] implemented the hybrid CTC-
Attention framework [78] in this task.

Despite the efforts, the progress in developing ALT systems is hindered by the limited availability
of large-scale singing datasets [81]. Although DSing and DALI provide some support for ALT, they
still fall short in scale. Moreover, the issue of copyright protection surrounding singing recordings
restricts the sharing and accessibility of such data. Data augmentation emerges as a viable solution to
alleviate the data scarcity problem. Previous research explored techniques like random time stretch-
ing, pitch adjustment [41], and vocoder-based synthesis [4] to transform speech data into a more
“song-like” form. Moreover, [81] proposed a method that aligns lyrics with melodies before adjusting
duration and pitch during data augmentation. However, these methods complicate the workflow of
building transcription systems, making the training more computationally intensive. To resolve the
problem of limited data more efficiently, we leverage the similarities between speech and singing. In
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our previous work [27], we proposed adapting self-supervised-learning (SSL) models, e.g. wav2vec
2.0 [3], from the speech domain as acoustic models for ALT. Building upon this, the subsequent
wav2vec 2.0-based ALT system achieved state-of-the-art performance on all benchmark singing
datasets and exhibited few-shot capabilities [61]. Subsequently, [23] proposed a semi-supervised
learning method to further improve the few-shot performance using the same ALT system.

Although ALT is the counterpart task of ASR, it still presents unique research problems that
must be overcome to successfully adapt ASR systems for ALT. One major challenge is that singing
is typically accompanied by musical instruments, resulting in polyphonic inputs. [29] introduced
a genre-informed acoustic model for ALT systems under polyphonic scenarios. Follow-up research
efforts enhanced this framework with genre adapters [22], and multi-task setting [21], etc. However,
all these methods only consider the audio modality and do not incorporate additional information.
When faced with challenging signal-to-noise ratio (SNR) environments or other types of sound
contamination, these approaches may struggle to accurately transcribe lyrics. This, therefore,
motivates the use of multimodal approaches for ALT.

2.2 Automatic Music Transcription

Automatic Music Transcription (AMT) involves three subtasks: musical note’s onset detection,
offset detection, and pitch estimation. Initial research focused on fundamental frequency (F0) esti-
mation. One of the representative works is YIN [10], which utilized auto-correlation to estimate F0
from speech or music signals. pYIN, an extension of YIN, improved pitch estimation with multiple
candidates and HMM-based refinement [48]. With the emergence of data-driven deep learning
techniques, CREPE introduced a CNN architecture for frame-level pitch estimation and achieved
state-of-the-art performance [39]. Simultaneously, PatchCNN used a patch-based CNN for pitch
contour extraction [71]. Afterwards, SPICE introduced a self-supervised task for pitch estimation
without relying on large labeled datasets [24]. Previous approaches primarily focused on predicting
pitch values in frequency, while TONet considered tone (pitch name) and octave as the pitch targets
[5]. These aforementioned works concentrate on pitch estimation, thus neglecting the other aspects
of note events, i.e. onsets and offsets.

We narrow our focus on AMT from singing. Notably, AMT shares similarities with audio-to-score
conversion [2, 60, 65], whose targets are symbolic representations that reflect what musicians read.
However, our current work focuses on transcribing note events, rather than musical scores. In
the pre-deep learning era, Tony, a software tool based on HMM, was developed to transcribe note
onsets, offsets, and MIDI pitch values from singing recordings [47]. Afterwards, HCN [19] and
VOCANO [34] adopted PatchCNN [71] for pitch estimation and integrated a note segmentation
network for onset and offset detection. VOCANO also utilized virtual adversarial training [56]
to leverage unlabeled singing data to improve performance. Recently, there has been a growing
interest in end-to-end frameworks. For instance, [76] used an Efficient-Net [73] architecture to
transcribe singing notes in an end-to-end manner and introduced the MIR-ST500 dataset, which is
the largest singing dataset with human annotations for AMT. Besides, [42] employed a pretrained
pitch estimation network and a quantization algorithm to generate frame-level pseudo labels,
training an end-to-end AMT system using the noisy student framework [79]. It is noted that [42]
directly transcribed singing notes from polyphonic singing while other approaches relied on source
separation, like Demucs [12], as a preprocessing step. Regardless, both approaches still struggle to
transcribe/separate singing audio when the instrumental musical accompaniment is much louder,
i.e. a challenging SNR environment. Additionally, [28] found that AMT systems tend to perform
better on females and proposed an approach to alleviate this fairness issue.
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Table 1. Data Collection and Processing for audio and video modalities. v1, v2 denote N20EMv1, N20EMv2.

. . ‘ Resolution | Frequency (Hz)
Modality | Device ‘ Raw ‘ vl ‘ v2 ‘ Raw ‘ vl ‘ v2
Audio ‘ Audio-Technica 4050 ‘ 32-bit depth ‘ 441k ‘ 16k
Video | Sony AX4 | 1920x1080 pixels | 96x96 pixels | 50 | 25 | 50

2.3 Multimodal Learning

Humans rely on multiple modalities, e.g., sight, hearing, taste, touch, and smell, to perceive and
understand their surroundings. Each modality provides distinct and complementary information, en-
hancing the overall understanding. For instance, previous research showed that visual cues in speech
provide valuable assistance in language learning [9, 52]. Inspired by this, many deep learning models
are designed to enable multimodal input. Even though the original task may be designed for a single
modality, the introduction of extra modalities brings empirical performance gains. In the speech
domain, [46, 68, 69, 74] fused audio and video modalities to enhance the performance of speech recog-
nition and speaker detection. In the vision domain, [35, 66] combined both RGB images and depth im-
ages to improve tasks like semantic segmentation. Besides the empirical findings of the general supe-
riority of multimodal approaches over their single-modal counterparts, [38] derived the framework
of multimodal learning problem from the theoretical perspective. Then they proved that learning
with multiple modalities tends to have a better latent representation quality than that with a subset
of modalities, thus providing a theoretical guarantee for better performance of multimodal systems.

3 MULTIMODAL SINGING DATASET: N20EMV1 AND N20EMV2
3.1 Singer Profile and Song Selection

Firstly, we recruited 30 participants from a local university to collect data, comprising 17 males
and 13 females. To promote singer diversity, the participants were selected with varying accents,
including a range of European, Indian, North American, East Asian, and Southeast Asian accents.
Moreover, their abilities varied widely, from individuals with no formal vocal training to those who
are amateur-level singers. To ensure song diversity, we chose 20 songs from [17] based on their
rich phonemic coverage and variation in musical features, e.g. genre and tempo. Furthermore, these
songs are easy for singers to learn. Although each participant was given the freedom to choose the
songs according to their preferences, we made adjustments to ensure a limit of 10 singers for each
song at maximum to balance the dataset.

3.2 Multimodal Singing Data Recording

To ensure a controlled and undisturbed environment, we conducted the singing data recording in
a soundproof studio. The recording setup included specific equipment for each modality: an Audio-
Technica 4050 condenser microphone with a pop filter for audio, a Sony AX4 video camera for video.
Before the recording session, the singers were instructed to wear a monaural headset for playback
of musical accompaniment. The video camera, accompanied by a ring light, was positioned in front
of the singers, prioritising on the movements of the lower half of each singer’s face, especially the
jaw, lips, and tongue. The camera can also collect audio signals, which were only used for modality
synchronization. Lyric sheets for the selected songs were provided on a music stand for reference.

During the recording, singers were advised to minimize bodily movements to reduce noise inter-
ference in the data. While the tempo and key of each song were predetermined, the singers had the
flexibility to choose between male-vocal or female-vocal arrangements for songs that better suits
their own vocals in pitch range and timbre. They also had some freedom in their rendition of pitch
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Table 2. Statistics of our N20EMv1 dataset. Table 3. Statistics of our N20EMv2 dataset.
Split ‘ Duration (min) ‘ Num. of Utterances Split ‘ Duration (min) ‘ Num. of songs
Total 323 5116 Total 502 157
Train 241 3803 Train 386 123
Valid 35 616 Valid 47 16
Test 47 697 Test 69 18

and rhythm. Minor pronunciation errors were allowed as long as the clarity of the vocals remained
intact. The recording process adhered to standard practices where singers were instructed to monitor
the musical accompaniment through their monaural headsets, ensuring only vocal voices were cap-
tured. After each complete song recording, the singer moved on to the next song. Table 1 presents the
resolutions and frequencies of the raw data for audio and video modalities. Following the recording,
the raw data from the two modalities were synchronized using audio recorded from each device.

3.3 Multimodal Singing Data Processing

As presented in Table 1, we modified the resolutions and frequencies when curating N20EMv1 and
N20EMv2 datasets. Specifically, the audio data was down-sampled to 16 kHz and transformed into
a single channel for both two datasets to meet the input requirements of self-supervised learning
(SSL) models from the speech domain, e.g., wav2vec 2.0 [3]. For raw video data, we followed the
approach in [68] to crop regions-of-interest (ROIs) centered around the mouth region, resulting
in a resolution of 96x96 pixels. This cropping technique not only reduces unnecessary information
but also helps protect the privacy of the singers. The video data was down-sampled to 25 Hz for
N20EMv1, adhering to the input specifications of AV-HuBERT [68]. However, for N20EMv2, we
retained a frame rate of 50 Hz as a higher temporal resolution is crucial for accurate AMT.

Following the practices in benchmark ALT datasets, e.g. DSing [8, 13], and benchmark AMT
datasets, e.g. MIR-ST500 [76], we curated N20EMv1 at the utterance-level and N20EMv?2 at the
song-level. As the raw data was already in the song-level form, it was directly used in N20EMv2
after the aforementioned pre-processing. For N20EMv1, we divided whole songs into utterances,
and further details about this process are presented in the next section. Subsequently, the data was
partitioned into train/valid/test splits, following the same division scheme used in our previous
work [27] for N20EMv1 (different splits have no overlapping songs). The statistics of N20EMv1 and
N20EMv2 can be found in Table 2 and Table 3. Notably, the total duration of N20EMv2 is longer
than that of N20EMv1 due to the exclusion of silent utterances in N20EMv1.

3.4 Lyric Annotation for N20EMv1

The lyric annotation primarily focuses on the audio modality, as audio and video were already
synchronized. To segment the whole song into utterances, an expert uses spectrogram information
and the marker function in Adobe Audition software to annotate each utterance’s starting and
ending timestamps. The standards are established based on natural factors such as musical cadence,
as well as practical considerations, including a preference for consonant boundaries over vowel
boundaries between utterances. For each utterance, actually sung words between the starting and
ending timestamps are served as the lyric annotation. In some cases where the sung words by the
singers are different from the correct lyrics that should have been sung, the actual sung words
are used in the annotations. We also provide the annotations for different types of errors, detailed
in Appendix A. Following the completion of the annotation process, the recordings of the two
modalities are segmented at the utterance level based on the provided annotations. Additionally,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article . Publication date: March 2024.



Automatic Lyric Transcription and Automatic Music Transcription from Multimodal Singing 7

Fig. 1. lllustration of our coarse-to-fine annotation procedure for the N20EMv2 dataset.
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any instances of silence, breaths, or non-phonemic noise occurring between utterances are removed
from the data. Similarly, the musical accompaniment is segmented accordingly.

3.5 Note Annotation for N20EMv2

The note annotation is also conducted on the audio modality. A coarse-to-fine method is used to
enhance the annotation precision, as depicted in Fig. 1. In the first stage, we use Melodyne', a pro-
fessional digital signal processing software, to obtain coarse annotations. Then in the second stage,
a manual refinement is performed, involving the adjustment of onset/offset/pitch. This is achieved
by concurrently playing and comparing the annotations and audio tracks simultaneously from an
interface comprising spectrogram, waveform, and MIDI notes. Given that note annotation demands
extensive musical knowledge and is time-consuming, two experts are assigned to complete the task.
To ensure inter-rater reliability, several rules (detailed in Appendix A) are established as guidelines.

4 METHODOLOGY
4.1 Problem Formulation

We consider a general setting for both automatic lyric transcription (ALT) and automatic music
transcription (AMT) from singing. Specifically, given the synchronized singing recordings from
multiple modalities (in this work, we consider audio and video modalities, x4 and xV, our framework
can be seamlessly adopted to scenarios with more modalities), the ALT target is a sequence of
tokens y* = {yk, yL, ..., ylL\h },yL € V, where Nj is the length of output sequence and V represents
the vocabulary comprising all possible tokens. Since lyrics belong to the textual modality, various
tokenizers, such as characters, words, subwords, or phonemes can be used to represent tokens. In this
work, we use a character tokenizer. Then the vocabulary has 26 English letters, 4 special characters
(beginning of sentence < bos >, end of sentence < eos >, quotation <’>, and word boundary < >).
AMT aims to produce a sequence of note events y"' = [(o1, fi, p1), (02, f2. p2), .-, (ONys fNy> PN,
where 0, and f;, are the onset/offset time of n-th note, 0<01<fi<0,<fo<..<0N, <fN, Pn
is the note pitch value and N represents the number of note events. Consequently, the multimodal
ALT system is a function that maps x* and x" into y* while the multimodal AMT system is a
function that maps into y.

Each system consists of a feature representation learning frontend and a task-specific backend.
Initially, modality-specific encoders ¢ and ¢ are employed to extract the feature representations
for each modality input. The modality feature fusion module ¥/ first aligns the features from different
modalities to ensure the features have the same number of frames and dimensions. Afterwards,
projects the features from different modalities into a shared latent space and integrates them to
obtain more informative representations. Finally, - and M transform the fused representations
into lyrics and note events, respectively.

Considering that the lengths of input modalities and output modalities do not possess fixed
relationships, we formulate multimodal ALT and multimodal AMT as two sequence-to-sequence

Ihttps://www.celemony.com/en/melodyne/what-is-melodyne
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Fig. 2. Framework of our multimodal ALT system or multimodal AMT system.
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problems. While these two systems share the same architectures (not their parameter weights) for
encoders, they are trained separately. It is worth noting that (i) our systems can accommodate a
single input modality or multiple input modalities, and (ii) our systems can be extended to output
both lyrics and note events simultaneously. We direct readers to Sec. 6 for further discussions.

4.2 Modality-Specific Encoders

The audio encoder ¢* is designed to learn acoustic representations for audio modality. We propose
the adaptation of self-supervised learning (SSL) models, specially wav2vec 2.0 LARGE [3], from
the speech domain to the singing domain. The rationale behind this choice is that SSL models,
pretrained on abundant speech data, exhibit strong generalization capabilities even provided with
low-resource labeled data in new domains. wav2vec 2.0 consists of a CNN-based feature encoder and
a Transformer-based context network. The feature encoder has seven temporal 1D convolutional
blocks. It takes the raw waveform of the singing audio and produces latent singing representations.
The latent singing representations are then fed into the context network. By capturing global
temporal information, the context network transforms the latent singing representations into
contextual singing representations. The resulting output z* has a frame rate of approximately 49.8
Hz (equivalent to a frame length of about 20 ms), with each frame having 1,024 dimensions.

The video encoder ¢" is designed to learn visual representations of singing from videos of lip
movements. We propose the adoption of AV-HuBERT LARGE [68] in our system, which is one of
the state-of-the-art approaches for lip reading. Similar to wav2vec 2.0, AV-HuBERT consists of a
CNN-based image encoder and a Transformer-based transformer encoder. The image encoder is
constructed using a 3D convolutional front-end followed by a modified ResNet-18 block [32]. This
component is responsible for extracting latent visual representations, which can be regarded as
embeddings of the video frames. Then the transformer encoder operates on the video embeddings
and captures contextual visual representations by considering the relationships among video frames
in a large context. The frame rate of the final output z remains consistent with that of the input
video clips, with each frame having 1,024 dimensions. In the original AV-HuBERT structure, the
input video frame rate is set as 25 Hz. Hence, for ALT, we retain the same frame rate considering task
similarity with ASR. However, the transcription of note events has higher resolution requirements,
so we select an input frame rate of 50 Hz for our AMT systems.

4.3 Modality Feature Fusion

The modality feature fusion module i/ aims to exploit the complementary relationship and redun-
dancy that are presented in the different modalities. Before fusing the acoustic representations z*
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and the visual representations 2V, we unify the frame

rates to about 50 Hz and the frame dimensions to 1,024  Fig. 3. lllustration of modality feature fu-
if necessary. Specifically, we up-sample z” using near- sion module.

est interpolation with a scale factor of 2. Afterwards, z

we introduce a new attention module called Residual [ D 1"

Cross Attention (RCA) for fusing the unified features, Add:‘"”m | Ad“i‘"""“ ha
as illustrated in Fig. 3. RCA is built upon Transformer tro ecrornnd

block architecture, and its illustration can be found in o 2
Appendix D. There are M RCA blocks when consider- A smm J l A D ha

ing M input modalities. Every RCA block takes input Cwss | [ e J ‘ MI-TICA ] [ M;A |

representations from all modalities. Within each block, divh vikte Totkly Vixto
one modality is designated as the source, providing keys LLL{_U I ]

and values, while the remaining modalities serve as ref- ;% Posidonal Encoding ZV%‘\
erences, providing queries. In addition to the multi-head

self-attention (MHSA) [75] operation applied to the source modality, each RCA block adds extra
shortcuts by performing the multi-head cross-attention (MHCA) operation between the source and
each reference. The outputs of all RCA blocks are then aggregated to yield the final fused features
z. RCA can be mathematically represented as follows:

2! =IN(z" + MHSA(z") + ) MHCA(2",2"), IL;=Aor V, @
J#i
27 = LN(2l + FEN(21)), z=2""+2"", [=Aor V, @

where “LN” denotes layer normalization, and “FFN” refers to a positional-wise feed forward network.

4.4 Automatic Lyric Transcription Backend

For ALT systems, we design a hybrid CTC-Attention backend to address the sequence-to-sequence
(S2S) problem inspired by [78], as present in Fig. 4(a). Initially, the ground truth lyrics are converted
into a sequence of tokens y" = {ylL, yg‘, ylL\h },yL € V and V represents the character vocabulary

comprising 30 tokens. The ALT backend 0% aims to predict p(y*|z) and consists of a two-layer
MLP, a CTC linear layer, and an S2S decoder. Firstly, the MLP with 1,024 hidden neurons further
encodes the fused features z into e € R7*1924 where T denotes the number of frames. Subsequently,
there are two network branches to compute p(y’|z), equivalently p(y*|e).

The first branch is a CTC linear layer, which maps e to output probabilities for each frame
pere(meler), m € VU {< blank >},t = 1,2,..., T, where <blank> is the blank token. In CTC, each
frame’s prediction is considered independent, leading to the probability of a sequence ;.1 be-
ing p(m.rle) = Hthl p(7:)e;). The final predictions for output sequence y" are derived from the
alignment 1.7 by eliminating repeated tokens and <blank> tokens. The operation is represented
as B. To supervise the CTC predictions, it is required to convert the ground truth labels into all
possible CTC alignments. We use 8! (y) to represent all CTC paths mapped from y*, and then
p(ytle) = 2mres-1(yt) P(mi|e). Therefore, the CTC loss is written as

T
Lere = -logperc(ytle) = —log > [ ]p(mlen. 3)

mreB-1(yl) t=1

The second branch is parameterized by a location-aware attention-based GRU decoder [6]. In
contrast to the CTC formulation, the S2S formulation does not assume independence among pre-
dictions. Instead, it directly computes p(y"|e) = Hi‘l p(yElyt . e) following the chain rule. To
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Fig. 4. (a) Hybrid CTC-Attention ALT backend; (b) AMT backend.
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predict each target token y%, the S2S decoder takes previously predicted tokens yf:n_l as input and
utilizes a location-aware attention mechanism to derive a contextually weighted e. This attention
mechanism enables the model to focus on specific parts of e that are relevant for predicting the
current token y%. Then the S2S loss is written as

N;
Lsps = —log psas(y“le) = —log l_[Pszs(yﬂylL;n—la e). (4)
n=1
As we employ a hybrid system, the overall loss function is a weighted sum of the two aforemen-
tioned loss terms: £ = (1 — 1) Lszs + ALcre. To balance the losses, we set A = 0.2 in this work.
During inference, in addition to the hybrid CTC-Attention structure mentioned above, we
leverage a character-level LSTM language model. This allows us to predict the most likely lyrics by
considering the output of three components:

y"* = argmax{alog perc(y'le) + (1 - @) log pszs(y*le) + flog pu(y™)}, ®)
y

where « and f are hyper-parameters used to balance three log-probability terms during the beam
search. We set the beam size as 512. To evaluate the performance of our ALT systems, we report
word error rate (WER), which is a widely used metric for this task.

4.5 Automatic Music Transcription Backend

For AMT systems, we reformulate the sequence-to-sequence problem as a frame-level classi-
fication problem, inspired by [76]. The ground truth note events y™ = [(o0y, i, p1), (02, fo, P2)s
. (ONy» fN,» PN, )] are transformed into onset/silence/pitch name/octave frame-level targets, repre-
sented as w!,w?, w, w*. This transformation enables us to classify each frame of the fused features
€ RT*1024 jnto corresponding labels, as visualized in Fig. 4(b). Since directly predicting offsets is
challenging, our AMT backend predicts silence instead, and the offsets fi, f5, ..., fn, are determined
as the beginnings of silence frames. We employ a pitch name and an octave to denote each note pitch.
To construct w!, frames covering the onsets 05,05, ..., 0n, are labeled as 1, while other frames
are labeled as 0. Similarly, silence frames are assigned a label of 1 in w2, while other frames are
assigned a label of 0. As a result, we can use binary values to indicate the state of each frame in
w!,w?. In conventional practice, pitch values p;, p, ..., pn, are represented as MIDI note numbers
ranging from C2 (MIDI number 36, 65.41 Hz) to B5 (MIDI number 83, 987.77 Hz). Here “B” and “C”
are the pitch names while “2” and “5” are the octaves. According to music theory, there are 12 notes
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(C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B) in each octave. We consider a pitch range from C2 to B5, result-
ing in a total of 4 octaves. Additionally, we introduce an octave class and a pitch name class to repre-
sent silence. Consequently, each frame of w® has 13 possible values, and each frame of w* has 5 pos-
sible values. During inference, the frame-level predictions are transformed back into the note events.
It is noted that the transformation between note events and frame-level targets introduces temporal
quantization errors. Therefore, the frame resolution significantly impacts the AMT accuracy.

The AMT backend 0™ consists of a linear layer with 20 output neurons, allocating 1, 1, 13,
5 neurons for w!,w?, w®,w*, separately. The output probabilities can be expressed as p(w'|z) =

HiTzl p(wf |z¢),i = 1,2,3,4. To train the AMT system, we combine the loss terms for the four targets:

4

T
LM = ~logp(yM|z) = ) ~log[ | p(wilz0), (6)
t=1

i=1 =

where we employ binary cross-entropy (BCE) loss for targets w!, w? and cross-entropy (CE) loss
for targets w®, w*. Notably, we set a positive weight of 15.0 in the BCE loss for onset prediction to
amortize the effects of imbalanced distribution in w'!.

In Fig. 4(b), we provide a visualization of the post-processing step to convert the predictions
for w!,w?, w3, w? into note events. We postpone the details to Appendix B. At a high level, we first
identify pairs of onset and offset and then identify the pitch between the time. Unless otherwise
stated, we maintain a fixed onset threshold of 0.4 and an offset threshold of 0.5. AMT systems are
typically evaluated using F1-scores of COnPOff (Correct onset, pitch, and offset), COnP (Correct
onset, pitch), and COn (Correct onset). Their definitions and implementations can be found in
[57, 64]. To ensure fair comparisons with previous approaches, such as [19, 34, 42, 47, 76], we set the
pitch tolerance to 50 cents, the onset tolerance to 50 ms, and the offset tolerance to the maximum
of 50 ms and 0.2xnote duration. Additionally, we use the F1-score of COff (Correct offset) metric
to evaluate the performance of offset detection.

4.6 Training Strategy

We developed several training strategies for our multimodal ALT system and multimodal AMT sys-
tem to address the following challenges. One key challenge is adapting self-supervised learning
(SSL) models from the speech domain to the singing domain. In our approach, we utilize SSL
models, namely wav2vec 2.0 [3] as audio encoder and AV-HuBERT [68] as video encoder. Originally,
these models are pretrained on unlabeled speech data using SSL objectives. They are then finetuned
on labeled speech data with ASR objectives. As we mentioned before, these SSL models have demon-
strated the ability to generalize well to new domains, even in low-resource labeled scenarios, which
can be attributed to their unsupervised learning on rich speech data. Given the similarities between
speech and singing data, we hypothesize that these SSL models can also effectively generalize
to our setting. For the ALT task, we initialize our audio encoder and video encoder with the SSL
models pretrained and finetuned on speech data. This choice is motivated by the fact that ALT and
ASR are analogous tasks with similar input-output pairs. We expect that both the pretraining and
finetuning on speech data will yield benefits for the ALT task. However, the targets of the AMT
task are the note events, rather than text in ALT and ASR. Hence, a question arises regarding the
adaptation of the SSL models: will finetuning on speech data be advantageous for the AMT task?

Inspired by [43], we speculate that finetuning on speech data may distort the pretrained features
of SSL models and bias them towards ASR, thus hindering their generalization to AMT. To address
this concern, we propose a new adaptation strategy specifically tailored to the AMT task. We skip
the finetuning step on speech data with ASR objectives. Instead, we conduct linear probing on
the AMT backend 0, followed by full finetuning of the entire system. To further compare the
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Algorithm 1 Adaptation of the SSL models  Algorithm 2 Adaptation of the SSL models from

from the speech domain to the ALT task the speech domain to the AMT task
Require: SSL model ¢’ (here I; is either A  Require: SSL model % (here I; is either A or V)
or V) which has been pretrained under SSL which has been pretrained under SSL objective,
objective, randomly initialized task-specific randomly initialized task-specific backend 8V,
backend 6%, learning rates yy, y; for 6 and learning rates yi, y; for 9™ and ¢, iterations
@, iterations K for full finetuning. K1, K; for linear probing and full finetuning.
Finetuning ¢’ on the ASR task. Skip finetuning ¢’ on the ASR task.
fork=1to K do . fork=1to K; +K; do
M
o o
qs[i — ¢Ii - YZ% if k(/ﬁl If_lt(]};,?n i Probi
end for ear rrobing
else N
Pl — @i — v, ‘Z)éji > Full Finetuning
end if
end for

above two adaptation strategies, we outline the training pipeline for the single-modal singing ALT
system and single-modal singing AMT system in Algorithm 1 and Algorithm 2, respectively (for
single-modal system, the feature fusion module ¢ can be omitted). Typically, we use a relatively
smaller learning rate y, than y; to preserve pretrained features of modality-specific encoders.

Both wav2vec 2.0 and AV-HuBERT in our multimodal systems are large-scale. Consequently,
to mitigate high GPU memory demands, we propose a two-stage training approach similar
to [62]. In the first stage, we train single-modal systems independently, each of which consists of
a modality-specific encoder and a task-specific backend. Then in the second stage, we freeze the
modality-specific encoders and only train the feature fusion module and the task-specific backend.
In this way, we eliminate the requirements to load and update all model weights simultaneously
and take advantage of powerful singing representations learnt by single-modal systems. For more
details, we refer readers to Appendix B.

5 EXPERIMENTS

In this section, we comprehensively evaluate our proposed systems for automatic lyric transcription
(ALT) and automatic music transcription (AMT) tasks using both benchmark singing datasets and
our curated multimodal singing dataset. To begin with, we conduct single-modal experiments
for each task in a clean scenario (only vocal) to evaluate the efficacy of our modality-specific
representation learning and assess the individual contributions of each modality to the task. Then
we proceed with multimodal experiments to demonstrate the robustness of multimodal systems in
the presence of sound noise contamination?. Finally, we conduct ablation studies to evaluate the
effectiveness of our proposed methods. Additional information on the benchmark singing datasets
and implementation details are presented in Appendix C and Appendix D, respectively.

5.1 Automatic Lyric Transcription Experiments

5.1.1 Audio-only ALT. To evaluate our audio encoder and ALT backend, we train and test our
systems using benchmark datasets, including DSing [8, 13], DALI [54, 55], Jamendo [70], Hansen

2We have released our code and trained models for ALT and AMT through https://github.com/guxm2021/MM_ALT and
https://github.com/guxm2021/SVT_SpeechBrain, respectively.
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Table 4. WER(%) of different audio-only ALT systems on various datasets. The reported numbers with * are
from [15] since the results in original papers are either absent or inferior. The best results and the second-best
results are marked as bold face and underline, respectively.

Method ‘ DSing valid DSing test DALItest Jamendo Hansen Mauch
TDNN-F [8] 23.33 19.60 67.12% 76.37% 77.59* 76.98*
CTDNN-SA [13] 17.70 14.96 76.72* 66.96" 78.53* 78.50*
MSTRE-Net [15] - 15.38 42.11 34.94 36.78 37.33
Genre-Informed [30] | - 56.90* - 50.64* 39.00*  40.43*
Voice2Singing [4] - - 415 - - -
Pitch-Informed [16] - - 64.41 76.2 - -

DE2 - segmented [14] | - - - 44.52 - 49.92
Ours ‘ 13.26 14.56 32.71 35.63 18.55 29.47

Table 5. WER(%) of our audio-only ALT sys- Table 6. WER(%) of our video-only ALT system on N20EMv1

tems on N20EMv1.

with ablated decoding configurations.

Train Data WER (%) | Method WER (%) |

N20EMv1l DSing | valid test CTC S2S LM | valid test
Y, X 12.74 19.68 Y, X X | 63.52(+15.61) 78.20 (+9.75)
v v 19.65 13.00 X v X |5572(+7.81)  74.10 (+5.65)
v v X |55.80(+7.89)  72.70 (+4.25)

v oV W 4791 68.45

[31], Mauch [49]. DSing and DALI are two large-scale datasets for model training while the other
three datasets are only used for evaluation. We follow [11] to extract vocal parts.

Initially, we train and evaluate our ALT system on DSing. The audio encoder, wav2vec 2.0, was
pretrained on LibriVox (LV-60k) and finetuned on LibriSpeech [63] before its fine-tuning on singing
data. For inference, we train an LSTM language model using lyrics exclusively from the DSing train
split, aiming for simplicity. We note that the previous methods incorporated a broader range of lyrics
to train their language models (LMs). As indicated in Table 4, our system achieves state-of-the-art
(SOTA) performance on DSing. Subsequently, we finetune the above system using the DALI train
split and evaluate its performance on DALI test split/Jamendo/Hansen/Mauch. For inference, we
train an LSTM LM on both the DSing and DALI train splits. We observe that our wav2vec 2.0-based
ALT system surpasses previous approaches on DALI test split/Hansen/Mauch by large margins.
While on Jamendo dataset, our system achieves comparable performance as MSTRE-Net [15].

Considering that our proposed wav2vec 2.0-based ALT system has achieved SOTA performance
on the benchmark singing datasets, we adopt it to build a strong baseline for our curated N20EMv1
dataset. As for the training of LM, we use the lyrics from both the DSing train split and N20EMv1
train split. We also augment the LM using some texts from LibriSpeech. This LM will be used in all
following experiments related to N20EMv1. Initially, we train the system using only the N20EMv1
train split. To further enhance the system’s performance, we augment the training data by incorpo-
rating the DSing dataset. As present in Table 5, the system exhibits improved performance, which
demonstrates that scaling more singing data during training enhances the system’s generalization.

5.1.2  Video-only ALT. In this section, we initialize the new task of video-only ALT (or lyric lipread-
ing). As this is the very first attempt, we train our video encoder and ALT backend to establish
a benchmark system and assess the contribution of the video modality to the ALT task. Prior to
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Fig. 5. (Left) Quantitative results (Right) qualitative results of audio-only and audio-visual ALT systems in
different SNR scenarios on N20EMv1. “GT” refers to the ground truth. Correct words are marked in yellow
color, insertions are highlighted using red color, and substitutions are highlighted using blue color.
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finetuning our system on N20EMv1, the video encoder undergoes pretraining on LRS3 [1] and
VoxCeleb2 [7], followed by finetuning on LRS3. We present the experimental results in Table 6. It is
noted that lip videos inherently possess ambiguity in distinguishing between different characters,
as singers may exhibit similar mouth shapes when pronouncing different characters. Therefore, the
context relationships among consecutive characters are important. We validate this by conducting
ablation studies on the decoding choice. Firstly, when we ablate the use of LM, we found that the
performance drops a lot. Furthermore, when only using CTC backend (w/o0. LM & w/o. S2S) or only
S2S backend (w/o0. LM & w/o. CTC) for decoding, we observe that S2S backend makes great contri-
butions to the performance. We assume that the use of S2S backend and an external language model
alleviates the ambiguity in the video modality, thus enhancing the performance of video-only ALT.

5.1.3  Multimodal ALT. To build our multimodal ALT system, we adhere to the training strategy de-
tailed in Appendix B. For fair comparisons, we train our audio-only and audio-visual systems using
the same training strategy, with the disabled modality set as zeros. Our experiments are conducted
on the N20EMv1 dataset. In contrast to the previous sections, we simulate noisy environments by
mixing the vocal singing with its corresponding musical accompaniment at different signal-to-noise
ratio (SNR) levels, including —10, -5, 0, 5, 10 dB, as well as clean scenarios without accompaniment.
The quantitative results are reported in Fig. 5(Left). It is observed that the multimodal systems
outperform the audio-only system by large margins, especially in challenging SNR environments.
For instance, at —10 dB, the performance gap is about 30% WER. While at —5 dB, the performance
gap is about 10% WER. However, with the increase of SNR, the benefits brought by additional
modality gradually become limited, which is also observed in the comparison between audio-visual
speech recognition and audio-only speech recognition in [46, 68]. The reason behind this is that
with the absence of noise perturbations, the audio modality has sufficient information to retrieve
textual information with limited aid from other modalities. Afterwards, we compute the average
WER across the six scenarios as an evaluation metric for noise robustness. Consequently, on average,
our audio-visual system shows a significant improvement over its audio-only counterpart, reducing
WERs by 7.62% and 6.51% on the N20EMv1 valid and test splits, respectively. Therefore, we conclude
that multimodal systems are more robust to noise disturbances than the single modal system.
The quantitative results are also presented in Fig. 5(Right), where we showcase the comparisons
among predicted lyrics of audio-only and audio-visual transcription systems. More case studies are
included in Appendix E. Firstly, we would like to highlight that although a character-level tokenizer
is used in our system, the word-level errors (e.g. insertions, substitutions, deletions) are analyzed
as WER is used as the evaluation metric. As shown in Fig. 5(Right), in the clean scenario, the
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Table 7. COnPOff/COnP/COn Fi-score (%) of different audio-only AMT systems on MIR-ST500 test
set/TONAS/ISMIR2014. The best results and the second-best results are marked as bold face and underline.

Dataset | Metric (%) T | Tony | HCN | VOCANO | EffNet | JDC | Ours 1 | Ours 2
[47] | [19] [34] [76] [42]
MIR- COnPOSf - - - 45.78 | 42.23 | 52.39 52.84
ST500 COnP - - - 66.63 | 69.74 | 70.73 70.00
COn - - - 75.44 | 76.18 | 78.32 78.05
COnPOSf - - - 9.57 - 12.71 24.08
TONAS | COnP - - - 19.65 - 25.24 | 36.87
COn - - - 42.41 - 52.77 64.38
COnPOSf 50 59.4 68.38 49.55 - 52.36 62.42
ISMIR ——
2014 COnP 68 - 80.58 63.63 - 70.38 75.91
COn 73 79.0 84.04 79.16 - 92.77 93.02

predictions of the audio-only system have one insertion error and two substitution errors while the
audio-visual system corrects the insertion error. Similarly, in noisy environments, the audio-visual
« »

system corrects the insertion error of “is”. While it fails to transcribe the words “Wonder” and
“along”, it exhibits fewer character-level errors compared to the audio-only system.

5.2 Automatic Music Transcription Experiments

5.2.1 Audio-only AMT. We validate our choice of audio encoder and AMT backend on N20EMv2
and benchmark singing datasets, which include MIR-ST500 [76], TONAS [25], and ISMIR2014 [57].
MIR-ST500 is the largest singing AMT dataset with human annotations for training and in-domain
(ID) evaluation. TONAS and ISMIR2014 are two small datasets only for evaluation in out-of-domain
(OOD) scenarios. We follow [76] to extract the vocal parts from singing if necessary.

We first train an AMT system, referred to as “Ours 1” in Table 7, on the MIR-ST500 train split
and evaluate its performance on MIR-ST500 test split, TONAS, and ISMIR2014. The audio encoder
(wav2vec 2.0) has been pretrained on LibriVox (LV-60) without additional finetuning on a speech
recognition task. For in-domain (ID) data, our system achieves a significant performance improve-
ment over the previous SOTA. For OOD data, our system still outperforms the EffNet [76], thereby in-
dicating the effectiveness of our model design and adaptation strategy. We note that the performance
on TONAS is noticeably lower compared to the MIR-ST500 test set and ISMIR2014. This disparity can
be attributed to the fact that TONAS predominantly consists of Flamenco songs, resulting in a sub-
stantial distribution shift when compared to the other datasets that primarily consist of pop songs.

Next, we proceed to train another AMT system, denoted as “Ours 2”, using both the MIR-ST500
train split and the N20EMv?2 train split. In Table 7, “Ours 2” not only maintains a high level of
performance for in-domain (ID) data but also exhibits significantly improved generalization abil-
ities when confronted with singing data from previously unseen domains. Specifically, “Ours 2”
achieves state-of-the-art performance in terms of COnPOff/COnP/COn on TONAS and COn on
ISMIR2014. Despite pitch quantization errors, the performance of “Ours 2” is comparable to the
state-of-the-art [34] in terms of COnPOff/COnP on ISMIR2014. It is important to note that while the
MIR-ST500/TONAS/N20EMv2 datasets are annotated in semitones, the pitch values in ISMIR2014
are annotated in cents (1 semitone = 100 cents), which puts our AMT system at a disadvantage.
However, considering modern musical notation and following the approach in [76], our current
design adopts a 12-tonal equal temperament system with semitonal resolution, which proves to
be more practical in real-world applications. To summarize, the performance of our AMT systems
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Table 8. COnPOff/COnP/COn/COff F1-score (%) of our audio-only/video-only AMT systems on N20EMv2.

Dataset Metric (%) T Audio Video
Tolerance 1 | Tolerance 1 Tolerance 2

COnPOSff 61.83 4.45 9.27
. COnP 68.42 6.16 11.79
N20EMv2valid | - 92.18 77.14 88.69
COff 89.80 74.68 83.01
COnPOSff 73.06 6.84 15.25
COnP 79.56 8.79 18.53
N20EMv2 test COn 93.66 78.62 88.64
COff 91.78 78.83 84.48

Fig. 6. Examples of (a) different mouth shapes (b) the same mouth shapes for the same pronunciation with
different pitches. (c) Classification accuracy of our video-only AMT system for octaves and pitch names
on N20EMv2.

Octave
69.65 Pitch Class
66.45

30.83 31.46

Bb3, 58 F4,65 Eb3, 51 G3,55 ° vala test
(a) (b) (c)

(“Ours 17 and “Ours 2”) demonstrates that wav2vec 2.0 can learn excellent acoustic representations
for the AMT task. Finally, we evaluate the performance of the system “Ours 2” on the N20EMv2
valid/test splits to establish a baseline for this new dataset. The results are presented in Table 8,
where “Tolerance 1” denotes the default onset/offset/pitch tolerance.

5.2.2  Video-only AMT. In this section, we initialize the new task of video-only AMT (or note
lipreading). To establish a baseline for N20EMv2, we train our video encoder and AMT backend.
The video encoder has been pretrained on LRS3 [1] and VoxCeleb2 [7] without finetuning on a
lip reading task. Experimental results in Table 8 demonstrated the effectiveness of utilizing video
data for lip movements, achieving an F1-score of approximately 80% for onset and offset detection
using the default tolerance. This performance is noteworthy as it competes with the performance
of previous audio-only AMT systems in terms of these two metrics. Furthermore, we explore the
potential of our video-only system by relaxing the tolerance settings as “Tolerance 2”. Specifically,
we set the onset tolerance to 100 ms, the offset tolerance to the maximum of 100 ms and 0.2Xnote
duration, and the pitch tolerance to 100 cents. Consequently, the COn F1-score reaches about
89%, indicating that within a range of +50 ms, our system can accurately detect almost all onsets.
Regarding pitch estimation, our video-only system also provides hints for distinguishing different
pitches, showcasing the power of AV-HuBERT in learning visual representations for AMT.

To interpret the high performance of our video-only system in onset/offset detection, we assume
that it can detect transitions between consecutive note events by recognizing subtle changes in the
mouth shape of singers. However, capturing acoustic information such as pitch solely from video is
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Fig. 7. COnPOff/COnP/COn/COff F1-score (%) of our audio-only/audio-visual AMT systems on N20EMv2.
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Fig. 8. Qualitative comparison of our audio-only AMT system and audio-visual counterpart.
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challenging. The system demonstrates rough differentiation between mouth shapes. as indicated by
the COnPOff/COnP performance. However, mouth shapes alone are insufficient for accurate pitch
predictions. As depicted in Fig. 6(a) and Fig. 6(b), some cases show different mouth shapes corre-
sponding to different pitch labels, while others exhibit identical mouth shapes but different ground
truth MIDI numbers, resulting in potential failures. This issue resembles the character ambiguity
problem in video-only ALT systems. We further evaluate the pitch name and octave classification
accuracy of our video-only AMT system on N20EMv2, as shown in Fig. 6 (c). The accuracy of octave
predictions ranges from 65% to 70%, while the accuracy of pitch name estimation is around 30%.

5.2.3 Multimodal AMT. Similar to multimodal ALT, we develop multimodal AMT systems using
different combinations of modality inputs and conduct experiments in noisy environments using
synchronized musical accompaniment on N20EMv?2. Firstly, we compare the performance of the
audio-only system with that of the audio-visual system. As illustrated in Fig. 7, the audio-visual
system consistently outperforms the audio-only system across COnPOff/COnP/COn/COff metrics.
The addition of the video modality yields significant improvements, particularly in low SNR
scenarios. Especially for the COn and COff metrics, the audio-visual system surpasses the audio-
only system by more than 40% F1-score at -10 dB. This result aligns with our assumption that the
video modality excels in onset/offset detection but faces challenges in pitch estimation due to the
inherent ambiguity. As the SNR increases, the performance gaps between the two AMT systems are
narrowed, suggesting that the contributions of video modality are diluted in less noisy environments.

To further illustrate the advantages of incorporating the video modality, we visualize the pre-
dictions made by our audio-only system and audio-visual system in a 0 dB environment in Fig. 8.
The selected song segment (42 s to 47 s) contains seven notes, and both systems accurately predict
the pitch of the notes. However, the audio-only system fails to detect the onset (t;) of the fifth
note and the offset (#;) of the seventh note, whereas these events are successfully detected by the
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Table 9. Ablation study of model choices on the N20EMv2 dataset.

N20EMv2 valid N20EMv?2 test
Models COnPOff COnP COn COff | COnPOff COnP COn COff
AV-HuBERT 44.99 51.45 85.47 83.49 57.77 64.89 88.01 86.11
wav2vec 2.0 (rand) 43.47 53.43 82.60 81.07 50.74 63.12 81.29 80.39
wav2vec 2.0 59.54 64.89 91.45 90.65 69.77 76.04 93.02 91.94

audio-visual system. To understand the decision-making process of the audio-visual system, we
visualize consecutive video frames capturing the lip movements xx_l, xx , xX +1» corresponding to
the onset of the fifth note. From #; — 1 to #; + 1, we observe a slight narrowing of the subject’s mouth,
indicating a transition from a higher-pitched note to a lower-pitched note. Similarly, from t, — 2 to
t, + 2, we observe a gradual closure of the subject’s mouth, signifying the transition from a note
to silence after t,. To conclude, the audio-visual system effectively captures the note transitions,

allowing for precise onset and offset predictions.

5.3 Ablation Study

5.3.1 Ablation on Model Choices. AV-HuBERT can ac-

cept both audio and video modalities within its original ~Table 10. Ablation study of model choices
structure [68]. However, our preliminary experiments in- on N20EMv1.

dicate that AV-HuBERT struggles to learn powerful acous-

tic representations for our singing transcription tasks. To WER (%) |
investigate this phenomenon further, we conducted an ab- Models valid ‘ test
lation study on N20EMv1 and N20EMv2. Specifically, we

trained an audio-only ALT system based on AV-HuBERT AV-HuBERT 31.21 | 38.64
using the N20EMv1 training split and an audio-only AMT ~ Wav2vec 2.0 (rand) | 99.91 | 99.37
system based on AV-HuBERT using the N20EMv2 train- ~ Wav2vec 2.0 12.74 | 19.68

ing split. These models were subsequently evaluated on

the corresponding valid/test splits, and their performance was compared to audio-only transcription
systems based on wav2vec 2.0. As presented in Table 9 and Table 10, we observe that the transcription
systems utilizing wav2vec 2.0 achieve significantly better performance in both ALT and AMT tasks
compared to the systems relying on AV-HuBERT. Moreover, we validate the effectiveness of using
the pre-trained model on both ALT and AMT tasks. Specifically, we re-train the wav2vec 2.0-based
transcription systems following the same procedure except that we randomly initialize the model
weights of wav2vec 2.0. As shown in Table 10, the resulting ALT hardly recognizes lyrics from audio
as it achieves almost 100% WER. While for AMT, the performance also deteriorates significantly.

5.3.2 Ablation on Adaptation Strategy. To adapt self-supervised-learning (SSL) models from the
speech domain to the AMT task, we propose Algorithm 2 considering both the domain shift and task
difference. Specifically, we first skip the finetuning of SSL models on the ASR task and then directly
finetune them on the AMT task in a linear probing and full finetuning manner. We conduct an
ablation study on audio-only AMT systems to validate the effectiveness of this adaptation strategy.
In addition to our proposed design, we create two variants for comparison. For “variant 1”, we retain
finetuning of SSL models on the ASR task, followed by full-finetuning on singing data. Conversely,
for “variant 2”, we skip the finetuning on the ASR task and directly proceed with full-finetuning
on singing data. All transcription systems are trained using both the MIR-ST500 train split and
N20EMv?2 train split. The evaluation results are presented in Table 11 and Table 12. We note that our
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Table 11. Comparison among different adaptation strategies for AMT on the N20EMv2 dataset.

N20EMv2 valid N20EMv2 test
COnPOff COnP COn COff | COnPOff COnP COn COff

variant 1 56.89 63.39 91.50 89.09 70.16 77.25 93.08 91.22
variant 2 59.24 65.99 91.17 89.62 69.90 76.84 92.71 91.21
Ours 61.83 68.42 92.18 89.80 73.06 79.56 93.66 91.78

Methods

Table 12. Comparison among different adaptation strategies for AMT on MIR-ST500 test/TONAS/ISMIR2014.

MIR-ST500 test TONAS ISMIR2014
COnPOff COnP COn | COnPOff COnP COn | COnPOff COnP COn

variant 1 50.78 68.75  77.23 21.63 34.60 63.01 61.03 74.25 91.84
variant 2 51.43 68.89  77.98 22.55 36.72 63.48 57.97 72.21  92.16
Ours 52.84 70.00 78.05 24.08 36.87 64.38 62.42 75.91 93.02

Methods

Fig. 9. Visualization of self-attention and cross-
attention weights in RCA module of audio modality.
We use brighter colors to highlight stronger attention.

Table 13. WER (%) of our multimodal ALT system
with ablated fusion module in -10 dB SNR scenario.
CA: Cross-Attention, SA: Self-Attention.

Fusion WER (%) |
CA SA | valid test

X 4 | 41.62(+1.90) 65.15 (+2.17)
v X | 4235(+2.63) 63.99 (+1.01)
v+ | 39.72 62.98

Audio
Video

adaptation strategy consistently outperforms the two variants across all evaluation sets, including
ID data and OOD data, in terms of all metrics.

5.3.3 Ablation on Feature Fusion. We evaluate the effectiveness of our proposed RCA module
for multi-modal ALT task. To highlight the differences, we evaluate the ALT performance with
different feature fusion modules at —10 dB SNR scenario. As present in Table 13, we find that the
absence of cross-attention shortcuts leads to an increase of 1.90% and 2.17% WER on the valid and
test splits. While the absence of self-attention mechanism causes an increase of 2.63% and 1.01%
WER, respectively. These results indicate that RCA contributes to improved feature fusion.

To further investigate the effectiveness of the RCA mechanism, we visualize the attention maps
within the RCA module when the audio serves as the source modality. We include audio-audio self-
attention and audio-video cross-attention, as shown in Fig. 9. We observe that both attention maps
exhibit common attention patterns. Moreover, the cross-attention can extract additional relation-
ships between frames that are not captured by the self-attention alone. This demonstrates that the
RCA enhances feature fusion by incorporating complementary information from the other modality.

6 DISCUSSIONS AND FUTURE WORK

In this work, we consider multimodal singing automatic lyric transcription (ALT) and multimodal
singing automatic music transcription as two distinct tasks, following previous literature. Our
current system can be trained to seamlessly transcribe both lyrics and musical note events, resulting
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in a multi-task system. However, the data of different modalities are highly imbalanced. Treating
the training on a single dataset with predefined modality combinations and predefined learning
objectives as an individual learning task, the challenge lies in striking a balance between different
learning tasks to train a multitask and multimodal system that achieves high performance and
high robustness simultaneously. This poses an open problem that requires further investigation.
Furthermore, while our ALT system is designed for a single language, the AMT system is language-
agnostic. Thus, combining these two systems would necessitate considering a multilingual setting.
We leave this direction as a topic for future research.

7 CONCLUSION

In this work, we proposed a unified multimodal framework for transcribing lyrics and note events
from singing voices. To develop our systems, we carefully curated the multimodal singing auto-
matic lyric transcription (ALT) dataset N20EMv1 and the multimodal singing automatic music
transcription (AMT) dataset N20EMv2. Then, we adapted self-supervised learning (SSL) models
from the speech domain into the singing domain as acoustic encoders, yielding state-of-the-art
performance. Additionally, we adapted SSL models initially used for lipreading tasks to serve as
visual encoders, allowing us to initialize two novel tasks: lyric lipreading and note lipreading.
Our results demonstrated that video modality can significantly contribute to both ALT and AMT
tasks, despite the inherent challenges posed by ambiguity. Finally, we introduced residual cross
attention (RCA), a new feature fusion method, to fuse features from different modalities to obtain
the ultimate transcription. Through our comprehensive experiments, we unveiled the advantages
of incorporating additional modalities, which led to improved transcription performance and
enhanced robustness against sound contamination and perturbations.
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A ADDITIONAL DETAILS ON THE N20EMV1 AND N20EMV2 DATASETS

During the annotation of N20EMv1, we mentioned in the main paper that the pronunciation errors
are annotated. Although the annotations are not used in this work, we think they will prove valuable
for future research endeavors, particularly in the area of singing pronunciation evaluation. As
depicted in Table 14, there are four types of pronunciation errors, including mispronunciation,
substitution, insertion, and deletion. We use distinct brackets to mark them.

Table 14. Annotation for different types of pronunciation errors.

Error Example Annotation
("correct” - "wrong")

Mispronunciation “little” - “laytle” /Nittle/
Substitution “the” - “a” a [the]
Insertion 4" {a}

Deletion “and” - (and)

During the annotation process of N20EMv2, we established several rules to ensure consistency
between the two annotators. Firstly, notes are segmented based on both pitch and syllables. Each
syllable was considered as a separate note, while specific guidelines for labeling onset/offset/pitch
are outlined below:

o Pitch: Notes with a duration longer than a semiquaver are treated as individual notes, as
perceived by the annotators. However, ornaments such as pitch bending at the beginning
of a note or vibratos were not considered independent notes. The pitch of each note was
annotated with semitonal precision.

e Onset: The onset time of each note was identified as the start of the vowel in each syllable.
In cases where a syllable began with a non-vowel sonorant, the annotators deliberately
determined when the vowel was pronounced and marked it as the onset. For instance, if
the lyrics of a note were “last” [la:st], the onset would be placed at the beginning of “a” [a:]
rather than “1” [1].

e Offset: The offset time of each note was determined based on the absence of significant
patterns in the audio spectrogram or when the next note commenced.

Following the initial annotation, two experts carefully scrutinized each other’s labeling results to
reach a final agreement.

B ADDITIONAL DETAILS ON METHODOLOGY

Post-processing for AMT systems. During the inference of AMT systems, we first obtain frame-
level predictions w!*, w?*, w3* w**. These predictions are then transformed back into note-level
predictions y™* through a post-processing step. Firstly, given the pitch name predictions w** and
octave predictions w?* we determine the predicted MIDI number (or silence) for each frame. Next,
we iterate all frames to identify all note events. For each note event, we first determine its onset. If
the onset prediction w;* surpasses 0.4 (onset threshold) and w;* is a local maximum, we consider
(- 1)% as the onset time. Here L represents the duration of input and % corresponds to the frame
length or frame resolution. Then the offset time (¢’ — 1)% is determined under the condition that
t’ = argmin(w?" > 0.5) and ¢’ > t. The MIDI number assigned to this note is determined as the
mode of the predicted MIDI numbers between the t-th and t'-the frames.

Training multimodal singing transcription systems. The complete algorithm for training multi-
modal ALT system is presented in Algorithm 3. The training pipeline for the multimodal AMT
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system can be similarly derived. Specifically, in stage I, we train single-modal systems using Al-
gorithm 1 for ALT and Algorithm 2 for AMT. This training procedure results in two task-specific
backends 91{; and 9{; (or 9/];’1 and 9{}4 ), corresponding to audio and video modalities. We observe that
initializing the task-specific backend for the multimodal system using the task-specific backend
from the best-performing modality (normally the audio modality) can expedite convergence and
lead to empirical performance improvements. Then in stage II, we freeze the parameter updates for
the modality-specific encoders and only train the feature fusion module and task-specific backend.

Algorithm 3 Training pipeline for multimodal singing ALT system

Require: Modality-specific encoders ¢, ¢V, modality feature fusion module ¢/, task-specific back-
end 6%, learning rates yy, y, for X and ¢ / ¢V in stage [, learning rate y3 for ¢ and 0" in stage II,
iterations K1 and K; for stage I and stage II.

Train {¢4, 0 } and {¢V, 6L v} via Algorithm 1 using hyperparameters yi, y2, K. > Stage I

Evaluate {¢%, Gfl} and {¢", G‘L,} to decide the best-performing modality for ALT task.
Initialize OF « 91{;
Freeze the weights of ¢4, ¢V

for k =1to K; do > Stage II
aLr
a0

L
R
end for

HL(—QL—}/?,

Training on samples with uneven duration. To address the issue of uneven duration in singing
samples and enable batch training, we employ a padding approach. Both the training samples and
their corresponding frame-level targets are padded with zeros to match the duration of the longest
sample in a batch. Suppose the numbers of frames in a batch are T}, ..., T?, ..., TB, where B is the
batch size, then the frame number of the padded batch is denoted as Tin,x = max{T?, ..., Tb, ... T8 1.
We then construct a mask M € RBXImex for each batch. Each element Mtb =1ift < T?. Otherwise,
M? = 0. Suppose the loss for each frame in a single sample is I?, then the masked loss is computed as:

B Tmax B Tmax
L= ZZMl’lb or £ = 5T = D, D M, @)
B = prd mdxMtbltl

where the choice between the two forms depends on Whether the loss is averaged over the frame
axis. To reduce the padding ratio, we sort all the samples in ascending order based on their duration
during training.

Training on song-level data. The experiments of AMT are conducted at the song level. However,
loading an entire song is highly demanding for GPU memories, given the typical duration of songs
ranging from 3 to 5 minutes. To address this, we divide each song into segments, each comprising
5 seconds, except for the last segment, which may range from 2.5 to 7.5 seconds. During the
evaluation, the predictions for all segments are combined to compute song-level metrics.

C BENCHMARK SINGING DATASETS

ALT datasets. The DSing dataset [8, 13] provides official train/valid/test splits. Specifically, the
train split has three subsets, namely DSing1, DSing3, and DSing30, each varying in size. Throughout
our work, we utilize the DSing30 subset as the train split. We divide DALI v2 [55] into train and
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valid splits, and regard a subset of DALI v1 as the test split following [15]. These two datasets
are the most large-scale ones for ALT. Jamendo, Hansen, Mauch are three small datasets only for
evaluation. Among them, Jamendo comprises English songs with different genres while the other
two datasets consist of Western pop songs. The statistics of these datasets are shown in Table 15.

AMT datasets. The MIR-ST500 [76] dataset is the largest singing AMT dataset with human
annotations. It comprises 500 Chinese pop songs, amounting to a total duration of about 30 hours.
The dataset is divided into a train split with 400 songs and a test split of 100 songs. TONAS [25]
and ISMIR2014 [57] are two small datasets that we used only for evaluating out-of-domain (OOD)
scenarios, due to their distinct styles, languages, and annotation processes. TONAS has 72 Flamenco
songs while ISMIR2014 encompasses 14 songs sung by children, 13 by male adults, and 11 by female
adults. The statistics of these datasets are shown in Table 16.

Table 15. Statistics of benchmark ALT datasets. Table 16. Statistics of benchmark AMT datasets.

Data ‘ Split ‘ Num. of Utter. ‘ Duration Data ‘ Split ‘ Num. of Songs ‘ Duration

e e e T e
test 480 Bmin_ronas |- | 72 | 36 min

DALI 351113 2?83322 22311?11}11 ISMIRZ014 | - %8 |19 min
test 12,471 9h

Jamendo | - ‘ 921 ‘ 49 min

Hansen | - ‘ 634 ‘ 34 min

Mauch |- | 878 | 54 min

D IMPLEMENTATION DETAILS
D.1 Automatic Lyric Transcription Experiments

In Section 5.1.1 Audio-only ALT, we first train our ALT system on the DSing dataset. We follow
Algorithm 1 and employ a learning rate of y; = 3 x 10™* for the ALT backend and a learning rate
of y, = 1 X 107> for the acoustic encoder. The model is trained using Adam optimizer [40] for 10
epochs with a batch size of 4. During the inference, we train an RNN language model (RNNLM),
which has the embedding size of 128, 2 RNN layers with 2,048 RNN neurons, as well as 1 DNN
block with 512 DNN neurons. This RNNLM is trained on the lyrics from DSing train split. We select
a = 0.4 for CTC decoding weight and f = 0.4 for LM decoding weight when evaluating the system
on DSing valid/test splits. We mark this system as “System 1.

When we train our ALT system only on the N20EMv1 dataset, we keep the same training
configuration except that the RNNLM is trained on the lyrics from N20EMv1/DSing/LibriSpeech
train splits. We mark this ALT system as “System 2”. In the main paper, we further augment the
training data by incorporating the DSing dataset. To achieve this, we directly fine-tune “System
1” on the N20EMv1 dataset, which is called “System 3”. This ALT system is further used in our
multimodal experiments.

To evaluate our proposed framework on the DALI/Jamendo/Mauch/Hansen datasets, we fine-tune
“System 1” on the DALI train split for 2 epochs. We enhance the ability of RNNLM by increasing
the number of RNN layers to 3, the number of DNN blocks to 2, and DNN neurons to 1,024. We
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employ a = 0.3 for CTC decoding weight and = 0.2 for LM decoding weight when evaluating the
system on the above datasets. This system is labeled as “System 4”.

In Section 5.1.2 Video-only ALT, we train our transcription system based on only video modality.
We follow the same configurations as “System 2” for implementation. In Section 5.1.3 Multimodal
ALT, we train our transcription system following Algorithm 3 for 10 training epochs with a learning
rate of 1 x 107, Since we freeze the parameters of our acoustic encoder and visual encoder, we
increase the batch size to 24.

D.2 Automatic Music Transcription Experiments

In Section 5.2.1 Audio-only AMT, we first train our AMT system on the MIR-ST500 dataset. We
follow Algorithm 2 and employ a learning rate of y; = 3 x 10™* for the AMT classifier and a learning
rate of y, = 5% 107> for the acoustic encoder. Then we train the system for 2 epochs under the linear
probing stage and 8 epochs under the full fine-tuning stage. The batch size is set as 8. The resulting
system is marked as “Ours 1” in the main paper. We follow the same training configurations to
train “Ours 2” and our video-only AMT system with only modification on training data.

In Section 5.2.2 Video-only AMT, we train our video-only AMT system on N20EMv2 using the
same training pipeline as our audio-only AMT system except that the input is the video modality.
In Section 5.2.3 Multimodal AMT, we train our transcription system following Algorithm 3 for 10
training epochs with a learning rate of 3 x 107%.

E MORE RESULTS
E.1 Adaptation of Models from the Music Domain

In the main paper, we have highlighted that singing and

speech share similarities, which is our main motivation to adapt Table 17. Comparison between
wav2vec 2.0 and AV-HuBERT from the speech domain into the wav2vec 2.0 and MERT for the ALT
singing domain. It is worth of mentioning that singing and mu- task on N20EMv1.

sic are also similar, especially in terms of musical perspective

in the audio signal. Therefore, we replace wav2vec 2.0 with WER|
MERT, a recent large-scale self-supervised-learning model from Models valid ‘ test
the music domain [44], in our transcription systems to evalu-

ate its ability to extract linguistic/musical information for ALT MERT >7.48 | 74.55
and AMT tasks. MERT shares a similar model architecture as _Wavavec 2.0 | 12.74 | 19.68

wav2vec 2.0 [3] but with different training paradigms and data

resources. We consider four model variants of MERT® and compare the best performance we can
achieve to wav2vec 2.0. To facilitate fair comparison, we only make minimal modifications on
training configurations to meet the specifications of input sampling rate and output frame rate.

For ALT, we train and evaluate audio-only systems on the N20EMv1 dataset. As shown in
Table 17, we observe that when replacing wav2vec 2.0 with MERT in our ALT framework, its
performance deteriorates drastically. This is expected since MERT was trained on music data and
prone to focus on the musical part of audio input instead of textual information.

For AMT, we train audio-only systems on the combination of MIR-ST500 and N20EMv2 train
splits. Afterwards, we test their performance on various singing datasets. Afterwards, we test their
performance on various singing datasets. We found that in most cases, the performance of wav2vec
2.0 exceeds that of MERT, especially on the MIR-ST500, TONAS and ISMIR2014 datasets, as present
in Table 18. While on the N20EMv2 dataset, it seems that MERT performs better on pitch estimation
while wav2vec 2.0 performs better on onset and offset detection, as shown in Table 19. Therefore,

3MERT-v1-330M/MERT-v1-95M/MERT-v0-public/MERT-v0 in https://huggingface.co/m-a-p.
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Table 18. Comparison between wav2vec 2.0 and MERT for AMT on the MIR-ST500/TONAS/ISMIR2014

datasets.

Models | 5 poff conP COn

MIR-ST500 test TONAS ISMIR2014
COnPOff COnP COn ‘COnPOff COnP COn

MERT 50.76 69.62  76.61 19.62 3030 61.08 | 62.59 7491 90.91

w2v 2.0 52.84 70.00 78.05 24.08 36.87 64.38

62.42 7591 93.02

Table 19. Comparison between wav2vec 2.0 and MERT for AMT on the N20EMv2 dataset.

N20EMv2 valid N20EMv?2 test

Models | conpoff COnP COn  COff | CONPOff COnP COn

Coft

MERT 63.08 71.18 89.29 87.89 72.06 79.89 91.78
w2v 2.0 61.83 68.42 92.18 89.80

90.50
73.06 79.56 93.66 91.78

we conclude that wav2vec 2.0 has superiority over MERT. However, we think further explorations
on the adaptation of MERT will be beneficial to this task. For instance, it is possible to ensemble

wav2vec 2.0 and MERT to extract better representations from singing audio.

E.2 More Qualitative Results for our ALT systems.

Fig. 10. More qualitative results of our audio-only/audio-visual ALT systems under different SNR environ-
ments. Deletions are marked using brackets and purple color, and substitutions are marked using blue color.

Clean

0dB
GT Goodbye = papa please pray = for me Like = the seasons have all = gone
A Goodbyel pop please pray for me Like the Feason'sT hold I (all) on l
— > — >
AV Goodbye‘ bap please pray for me Like the seasonsl held I (all) on
10 dB -5dB
GT Jesus = Lord at thy | birth You | gave me love = and helped me find the sun
A Jesus( love I (at) I the  birth You { give me love = and { help me {open (the) T sew J
AV Jesus = Lord { (at) I the  birth You { give me love = and {help me { in the lsongJ
5dB -10 dB
GT But the | wine and the | song Sleep in heavenly  peace
A { If the { wind I in T my I soul J {Edelweiss Iedelweiss((heavenly)] (peace)l
AV {Baby the {wind [ in the { sun J { Sleigh in l heaven ] sleigh l
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