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SinTechSVS: A Singing Technique Controllable
Singing Voice Synthesis System

Junchuan Zhao, Low Qi Hong Chetwin, Ye Wang, Member, IEEE

Abstract— The precise control of singing techniques is of
utmost importance in achieving emotionally expressive vocal
performances. To bridge the gap between current Singing Voice
Synthesis (SVS) systems and human singers, our paper focuses
on developing an SVS system that allows for control over
singing techniques. In this paper, we introduce SinTechSVS, a
singing technique controllable SVS system composed of a singing
technique annotator, a singing technique controllable synthesizer,
and a singing technique recommender. Our approach leverages
transfer learning for efficient singing technique annotation and
adapts the DiffSinger framework with additional style encoders
and an attention-based singing technique local score (STLS)
module to enhance singing technique controllability. We also
propose a Seq2Seq singing technique recommender for the new
task of Singing Technique Recommendation (STR). Experimental
results demonstrate that SinTechSVS significantly improves the
quality and expressiveness of synthesized vocal performances,
with comparable general synthesis capabilities to state-of-the-art
SVS systems and enhanced control over singing techniques, as
evidenced by objective and subjective evaluations. To the best of
our knowledge, SinTechSVS is the first SVS capable of controlling
singing techniques.

Index Terms—Singing voice synthesis, singing voice synthesis
conditioned on singing techniques, singing technique classifica-
tion, singing technique recommendation, metric, deep learning.

I. INTRODUCTION

S INGING voice synthesis (SVS) is the task of synthesizing
an expressive singing voice for a given music score

and corresponding lyrics by using computing models [1].
In the past, singing voice synthesis (SVS) systems mostly
adopted concatenative [2], [3], [4], [5], [6], [7], [8], [9] and
Hidden Markov Model (HMM) [10], [11], [12], [13], [14]
approaches. The field of singing voice synthesis (SVS) has
witnessed significant advancements in recent years due to
the development of advanced deep learning methods. These
methods have enabled the creation of highly sophisticated SVS
systems that can generate singing voices with high accuracy
in terms of pronunciation, pitch, and duration [15], [16], [17].
However, it is worth noting that professional singers rely
on more than just the accurate delivery of notes and lyrics.
Emotional expressiveness and delivery of performances are
also crucial aspects that make for a great singer [18], [19].
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Consequently, the development of flexible expression controls
has become a crucial area of focus in the latest SVS systems.

Singing voice synthesis with expression control is the task
of conditioning voice-related features while synthesizing the
singing voice [18]. In the context of SVS with expression
control, there have been studies that focused on intensity
[20], vibrato [21], [22], [14], timbre [23], [14], breath [20],
singer identity [23], [24], and emotion [21] as control signals.
However, despite the significant strides made by deep learning-
based SVS systems in generating natural and realistic singing
voices, research on singing voice synthesis with singing tech-
nique control is still lacking, as suggested by Cho et al. [1].
Real singers convey expression through deliberate choice of
singing techniques, and thus singing techniques should be the
primary focus of SVS research.

As highlighted by [25], the concept of singing technique
encompasses the utilization of extended techniques in human
singing, serving as a crucial component in vocal performances.
This paper mainly explores singing techniques within the POP
genre as discussed by [25] since it includes comprehensive
research in various singing techniques outlined within this
genre and the availability of abundant datasets for this kind
of research. Although there are additional singing techniques,
such as ’staccato’ and ’legato forte,’ listed in other genres, they
are not the primary focus of our study. This decision is due
to the absence of reference definitions and datasets pertaining
to these particular techniques.

Unfortunately, the establishment of robust singing technique
control encounters several formidable challenges within the
realm of research and development: (1) The dearth of com-
prehensive and meaningful annotations pertaining to singing
techniques presents a significant obstacle. The absence of such
annotations hinders the capacity to train and fine-tune SVS
systems effectively. (2) Addressing the need to condition SVS
systems for the synthesis of audio with specific singing tech-
niques is another intricate challenge. Achieving this condition-
ing necessitates innovative approaches to incorporate singing
technique nuances into the synthesis process. (3) Evaluating
the efficacy and controllability of SVS systems in replicating
singing techniques represents yet another intricate challenge.
Accurately assessing the performance of these systems in
capturing and reproducing nuanced vocal expressions demands
the development of robust evaluation methodologies.

This paper aims to establish a deep learning-based SVS sys-
tem that allows users to control the singing techniques of the
synthesized singing voices. The contributions are summarized
as follows:

• We introduce SinTechSVS, a singing technique control-
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lable SVS system comprising three main modules: the
singing technique annotator (STA), the singing technique
controllable singing voice synthesizer (SVS), and the
singing technique recommender (STR). Additionally, we
enhance the SVS model with singing technique control
by integrating an attention-based singing technique local
score module (STLS) to improve controllability within
the Diffusion-based acoustic model. To fully leverage the
capabilities of SinTechSVS, we propose a transformer-
based singing technique recommender capable of gen-
erating utterance-level singing technique sequences from
music scores. This automates the process of determin-
ing singing technique labels for entire song utterances,
simplifying user interaction and reducing complexity.

• We propose a data-efficient singing technique annotation
framework using transfer learning and put forward a new
singing technique classification model with a Temporal
Pyramid Pooling (TPP) layer. This annotation framework
effectively addresses the challenge posed by the scarcity
of high-quality, publicly available annotated singing voice
datasets.

• We present two inspired evaluation metrics, Style Re-
classification Accuracy (SR-Acc) and Style Match Rate
(SMR), to measure the controllability of singing tech-
niques, both subjectively and objectively. Experimental
results demonstrate the effectiveness of SinTechSVS in
both unconditional and conditional synthesis capability.

II. RELATED WORKS

A. Singing Voice Synthesis Based on Deep Learning

In the later part of the 2000s and early 2010s, Singing Voice
Synthesis (SVS) experienced widespread popularity, primarily
through concatenation-based systems, such as VOCALOID
[26], [27], and Hidden Markov Model (HMM)-based systems,
such as the one introduced by Saino et al. [10], which
concurrently modeled lyrics, tones, and durations. Nonethe-
less, within the last few years, deep learning has emerged,
leading to numerous breakthroughs and enabling SVS to
achieve unparalleled levels of naturalness and accuracy. Vari-
ous concatenation-based and HMM-based SVS systems have
also transitioned to deep neural networks (DNNs), such as
Sinsy, which assumes that DNNs surmount the over-smoothing
that occurs within HMM models [28]. Comparatively, SVS
systems founded on neural networks, as opposed to HMM-
based ones, typically achieve better results with respect to
the quality and naturalness of synthesized audio signals [29],
[30], [16], [31]. Cho et al. [1] conducted a survey that
summarized five contemporary, state-of-the-art Deep-learning-
based (DL-based) SVS systems that employed various neural
networks. DiffSinger, which applies a Diffusion-based acous-
tic model, [30], showed very promising qualitative advance-
ments compared to other state-of-the-art models, in both SVS
and text-to-speech (TTS) tasks. In light of their findings,
we propose a Diffusion-based singing technique controllable
acoustic model. The authors of the survey also underscored
that future SVS systems will require greater data efficiency,
and expression controls that activate heightened variability in

emotions and singing techniques, in addition to more open
datasets and interpretable models. These challenges served
as primary motivations for our work and the contributions
we have made towards achieving data efficiency and singing
technique control within our proposed SVS system.

B. Expression Control in Singing Voice Synthesis

Umbert et al. [18] conducted a detailed investigation of
expression control and performance modeling, which encom-
passed a comprehensive inventory and classification of a
multitude of potentially valuable features that could be ma-
nipulated. They also identified various existing approaches to
expression control that differed in parameters such as timbre,
formants, and vibrato. However, the authors pointed out that
it would be a novel challenge to achieve intricate, dynamic,
and expressive modifications in singing. These modifications
relate to emotions, singing styles, and techniques.

Recently, the development of deep learning has expanded
the range of controllable expression features in SVS.

Singer-ID control, which enables users to specify a target
singer while synthesizing singing audio. This has received
considerable attention due to the availability of rich anno-
tations and the easily distinguishable nature of singer-IDs.
Researchers have made relevant contributions to this field [21],
[32], [33], [23], [22], [24].

Vibrato control is another significant control signal that
involves the ability to control the presence and characteristics
of ’Vibrato’ in the synthesized singing voice. Liu et al.
[32] proposed a deep learning-based SVS system capable of
controlling ’Vibrato’ patterns in synthesized singing voices.
Song et al. [22] proposed a DL-based vibrato model, designed
to enhance singing naturalness by controlling multiple aspects
of vibrato. Additionally, Sinsy [28] introduced innovative
methods for modeling pitch and vibrato, elevating the expres-
siveness of singing voices.

Emotion control refers to the ability to control the emo-
tional content of the synthesized singing voice. Kim et al.
[21] proposed U-Singer, which is the first deep learning-based
multi-singer emotional SVS capable of controlling emotional
intensity by regulating the subtle fluctuations in pitch, energy,
and duration of phonemes while synthesizing voices.

Singing Technique control enables users to specify a
desired technique for synthesized singing voices. Little em-
pirical research exists on precise control within Singing Voice
Synthesis (SVS). Lee et al. [20] explored intensity control
for energy and timbre variations, but their study lacked
annotations and comprehensive evaluation. In the context
of singing voice conversion and editing, there are a few
works that discuss vocal technique control. [34] presents a
system capable of transferring vocal expressions that involve
variations and fluctuations in fundamental frequency, such
as ’vibrato’, ’kobushi’, and ’glissando’. While it can control
specific singing techniques by simply specifying their type, it
is limited to pitch-based techniques. Conversely, [35] proposes
a method to synthesize a singing voice by emulating the
timbre changes of a user’s singing voice. This method is
controlled based on the singer’s database rather than the type
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Fig. 1: The architecture of our proposed SinTechSVS system. It consists of three key components: singing technique annotator
(STA), singing voice synthesizer conditioned on singing techniques (SVS), and singing technique recommender (STR). The
’OR’ symbol in this figure means that the input of SVS is either by a user-input singing technique sequence or the predicted
singing technique sequence from the singing technique recommender.

of singing technique, and it exclusively includes timbre-based
techniques. As a result, we aim to contribute a general solution
with a reference value for singing technique control in SVS.
Our aim is to incorporate both pitch-based and timbre-based
singing techniques, allowing for the control of singing styles
by specifying their respective types.

C. Singing Techniques on Music Information Retrieval (MIR)
research

Singing techniques play a crucial role in musical and emo-
tional expression. Prior research, such as the Phonation Mode
framework [36] categorizes singing into phonation modes
like ’Breathy’, ’Neutral’, ’Flow’, and ’Pressed’. The VocalSet
dataset [37] classifies techniques within scales, arpeggios, long
tones, and excerpts, but its focus on opera-style singing and
varying definitions made it less relevant to our study on
commercial popular music. Datasets like KVT [38] and MVD
[39] capture singing techniques in commercial music contexts.
Yet, KVT prioritizes emotional expression labels over tech-
nique definitions, while MVD concentrates on extreme vocal
techniques in heavy metal music, diverging from our popular
music context.

Yamamoto et al.’s work [25] stands out for curating the
COSIAN dataset from J-POP songs, offering precise defini-
tions and clear descriptions of 17 distinct techniques catego-
rized as ’Timbre’ and ’Pitch.’ This dataset formed the basis
for our research on singing technique control in commercial
popular music.

We thoroughly analyzed Yamamoto’s research and COSIAN
dataset, aiming to extract insights into singing techniques and
their relationships. Notably, our analysis revealed significant
time overlaps between annotations of different singing tech-
nique types (e.g., timbral, pitch), suggesting their simultaneous
utilization. Also, we noticed that it’s rare for the same singing

technique to occur simultaneously. Therefore, we opted to
categorize the singing techniques into two distinct groups,
pitch and timbral, to facilitate independent control over both
parameters and allow for their joint usage in singing. We also
added the ’Belting’ technique [40], which is commonly used
to convey intense emotions in climactic parts of songs. The
’Miscellaneous’ category was disregarded as it was deemed
irrelevant to singing. Due to the abundance of existing litera-
ture and research on ’Vibrato’ in both classification [41] and
SVS tasks [28], [22], we decided to exclude it. Vibrato was
excluded due to its abundance in previous research in SVS
[28], [22]. At the same time, ’Whisper’ and ’Hiccup’ tech-
niques were removed because they had a negligible amount
of labels in comparison to the other classes, as illustrated in
Table III.

Table I shows the singing techniques that we focused on
and their corresponding descriptions defined in Yamamoto et
al.’s [25] paper, with the exception of ’Belting’ which was
defined by us. ’Straight’ pitch and ’Regular’ timbre refer to
the absence of any other singing technique listed in Table I.

III. METHOD

A. Model Architecture

The overall architecture of the proposed model is shown in
Fig. 1. The proposed model is composed of three key com-
ponents: a singing technique annotator (STA), a singing tech-
nique synthesizer conditioned on singing techniques (SVS),
and a singing technique recommender (STR). The details of
these components are described as follows.

Singing Technique Annotator (STA): The singing tech-
nique annotator annotates the singing techniques on the origi-
nal SVS dataset M = {mp,ml,md,ms,a}, where mp, ml,
md, ms respectively represents the phoneme-level pitch se-
quence, the lyrics sequence, the duration sequence, and the slur
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Fig. 2: The detailed architecture of SinTechSVS with symbol
representations.

sequence, a represents the singing audio signal. More specif-
ically, mp represents the sequence of pitch symbols (C4, D4,
...), while ml denotes the sequence of phonemes. Ultimately,
the annotated SVS dataset M̃ = {mp,ml,md,ms, sp, st,a}
is obtained, where sp and st respectively represents the pitch
singing technique sequence and the timbral singing technique
sequence. The singing technique sequences correspond to
phoneme-level sequences of singing technique labels. There-
fore, the lengths of mp,ml,md,ms, sp, and st are identical.
The STA module contains two parts: the manual annotator,
which annotates 10% of the original SVS dataset M through
meticulous human labeling for precision and reliability; and
the singing technique classifier C, annotating the remaining
90% of the dataset automatically. The architectural specifics

TABLE I: The description of each singing technique.

Technique Type Description

Falsetto Timbre Sung by falsetto register.

Breathy Timbre Sung by breathy sound.

Vocal Fry Timbre Sung by a creaky voice and pulse register
phonation.

Belting Timbre Sung by a yell-like, powerful voice.

Scooping Pitch An upper continuous pitch change.

Drop Pitch A lower continuous pitch change.

Bend Pitch A short tremolo or U/inverted-U shaped
pitch change.

Melisma Pitch A musical arrangement in which several
notes are applied to one syllable of a lyric.

of the singing technique classifier are expounded upon in III-B.
The procedures for constructing the annotated dataset M̃ are
outlined in III-E, while IV-A describes it in full detail.

Singing Voice Synthesizer Conditioned on Singing Tech-
niques (SVS): The singing voice synthesizer processes the
annotated SVS dataset M̃ to produce synthesized audio â,
following a standard deep learning architecture structure de-
scribed in literature [1]. This architecture includes an encoder
E, an acoustic model A, and a vocoder V , consistent with
state-of-the-art SVS systems [30], [16], [17], [15], [42], [43]
The encoder architectures, follow the structure of DeepSinger
[15], consist of specific encoders: Ep

m encodes pitch sequence
mp, El

m encodes lyrics sequence ml, and Es
m encodes slur

sequence ms, transforming the sequences into embeddings,
respectively epm, elm, and esm. To integrate singing techniques
and improve control, we introduce singing technique encoders
and a Singing Technique Local Score (STLS) module. The
pitch and timbral singing technique encoders convert sp and
st respectively into embedding sequences eps and ets, following
the structure of the pitch encoder Ep

m, which includes an
embedding layer and several Transformer Blocks [15]. The
music score embedding sequence em is derived by combining
epm, elm, esm, and the singing technique embedding sequence
es formed by eps and ets. The STLS module processes the
embedding sequences (em, es) into a singing technique local
score vector ef . These embedding sequences (em and ef ) are
combined and extended in length using a duration sequence
md and a length regulator LR to match the spectrogram
sequences. The resulting music condition sequence ec serves
as input to the acoustic model A. Further details on the
STLS module’s architecture can be found in Section III-C.
Details regarding the architecture of the STLS module can
be found in Section III-C. Subsequently, the acoustic model
A takes ec as input and generates the mel-spectrogram M̂.
This mel-spectrogram is then processed by the vocoder V to
produce the synthesized audio â. We use a pre-trained HiFi-
GAN model [29] for the vocoder, which is designed for high-
fidelity speech and singing voice synthesis1. While there may
be better alternatives, it is worth noting that HiFi-GAN was
trained on the same dataset as ours, addressing potential issues
with imprecise pitch control. Additionally, for fair evaluation,
we chose to use the same vocoder as our comparison models.
Enhancing the vocoder’s capabilities could potentially boost
synthesis performance, which we intend to explore in future
work. The overall SVS process can be formulated as displayed
in (1):

em = epm + elm + esm, es = eps + ets

ef = STLS(em, es)

ec = LR(em + ef ,m
d)

â = V (A(ec))

(1)

Singing Technique Recommender (STR): The STR sys-
tem predicts pitch and timbral singing technique sequences,
denoted as ŝp and ŝt, based on the pitch, lyrics, and slur
sequences mp, ml, and ms. The STR reuses the pitch, lyric,

1https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-
model/0109 hifigan bigpopcs hop128.zip
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and slur encoders Ep
m, El

m, and Es
m from the SVS system

to obtain the corresponding embedding sequences epm, elm,
and esm. These embeddings are then combined to form the
music score embedding sequence em as shown in Eq. 1.
Subsequently, em is fed into the singing technique decoder Ds,
consisting of two location-aware attention-based GRU units
[44], to decode ŝp and ŝt in an autoregressive manner. The
process of STR can be expressed as shown in (2):

ŝp, ŝt = Ds(em) (2)

B. Singing Technique Classifier

Building upon the models in subsection III-A, this section
describes the implementation of the annotator mentioned in
the pipeline in full detail.

In recent years, CNNs have dominated audio classification
and recognition tasks, handling audio waveforms represented
as mel-spectrograms or MFCCs. Previous studies have shown
CNNs’ effectiveness, leveraging Transfer Learning with net-
works like VGG19 or custom deep CNNs [45], [25], [46],
[47]. Similarly, we propose a deep CNN model for singing
technique classification. The singing technique classifier (STC)
takes word-level mel-spectrograms Mw as input, comprising
a feature extractor F s and an output head h. It predicts word-
level timbre and pitch techniques, denoted by wt and wp,
respectively. The formulation of the STC is as follows.

wp,wt = h(f(Mw)) (3)

A detailed breakdown of our classifier’s parameters can
be seen in Table II. Our classifier has the following key
customization: (1) Temporal Pyramid Pooling [48] to handle
variable-sized inputs; (2) Transfer Learning to compensate
for the lack of data. We employ the Temporal Pyramid
Pooling (TPP) layer, derived from He et al.’s Spatial Pyramid
Pooling (SPP) layer [49], to convert variable-length audio
segments into fixed-length feature vectors. The TPP layer
pools input solely along the time dimension. Additionally,

TABLE II: The parameters of the CNN-based singing
technique classifier. BN=Batch Normalization, B=Batchsize,
W=Width of the output feature map. The input size of the
singing technique classifier (STC) is B×C×W×H, C = 2
since the audios are in stereo format; W is the width of the
mel-spectrograms; H is the height of the mel-spectrograms.

Module Parameters Output Size

Feature Extractor

Conv(2,32,(3×3))+BN+ReLU B×32×64×W
MaxPool((2,1)) B×32×32×W
Conv(32,64,(5×5))+BN+ReLU B×64×32×W
MaxPool((2,1)) B×64×16×W
Conv(64,128,(3×3))+BN+ReLU B×128×16×W
MaxPool((2,1)) B×128×8×W
Conv(128,128,(5×5))+BN+ReLU B×128×8×W
MaxPool((2,1)) B×128×4×W
AvgPool((2,1)) B×128×2×W
TPP((1,2,4)) B×128×14
FC1(1792,64)+BN+ReLU B×64

Output Head FC2(64,10) B×10
Softmax(5), Softmax(5) B×5, B×5

Fig. 3: An illustration of the proposed singing technique local
score module (STLS).

we apply Transfer Learning [50] by training our classifier
on the larger COSIAN dataset [25] and fine-tuning it on
our smaller Opencpop dataset [51] to address limited labeled
data. Following Yamamoto et al.’s methodology [25], we used
Gaudio Studio2 to extract singing voice from accompaniment
in the COSIAN dataset. For our classification task, we used
two softmax functions to handle separate single classification
problems, generating distinct labels for pitch and timbre
singing techniques.

C. Singing Technique Local Score Module (STLS)

The proposal of the Singing Technique Local Score (STLS)
module is motivated by the findings of Lee et al. as doc-
umented in their study [20]. They demonstrated that the
various components of musical expression in singing can be
deduced from a given input text and pitch sequence, implying
that the music score inherently encapsulates the elements of
singing expression. In the context of our current endeavor, this
signifies that the music score inherently embodies character-
istics germane to singing technique. To effectively capture the
relationship between the singing expression features derived
from the music score and the singing technique features, we
make modifications to the attention mechanism and introduce
the STLS module as our proposed approach. The architecture
of STLS module is shown in Fig. 3. As mentioned in III-A,
the STLS module accepts five embedding sequences (epm, elm,
esm, eps , ets). Primarily, we obtain the music score embedding
sequence em by adding epm, elm, esm and the singing technique
embedding sequence es by adding eps , ets. Subsequently, the
STLS module employs multi-head self-attention (MHSA) in
tandem with residual shortcuts to distill global relationships
within the features pertaining to the music score and singing
techniques, respectively. Consequently, we introduce a style
encoder Eϕ, which is comprised of ten stacked gated convolu-
tional (GCNN) layers, informed by the methodology proposed
in [52], and enriched with skip connections. This architecture
is purposed to extract singing expression features denoted as
zs from the music score embedding em. Subsequent to this,

2https://studio.gaudiolab.io/gsep
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we employ multi-head cross-attention (MHCA) between zs
and es, wherein es serves as the reference, offering queries,
while es is regarded as the source, yielding keys and values.
Specifically, MHCA facilitates the capture of interdependen-
cies and interactions existing between the singing technique
features and the singing expression features, derived from the
music score. The STLS module is formulated as shown in (4):

e′m = LN(MHSA(em) + em), e′s = LN(MHSA(es) + es)

zs = LN(Eϕ(e′m) + e′m)

ef = LN(MHCA(zs, e
′
s) + e′s),

(4)
where the input order of the MHCA(·, ·) operation is source
(K and V ) then reference (Q); LN represents layer normal-
ization.

D. Objective Function
To address class imbalance in our Opencpop dataset, analo-

gous to Yamamoto et al.’s findings in the COSIAN dataset,
we adapted their methodology by employing a weighted
Cross Entropy Loss function with a smoothing factor [41],
enhancing model stability. Our objective in this study for
singing technique classification is to minimize the weighted
cross entropy loss function LWCE between the ground truth
word-level singing technique labels (w) and the predicted
labels (ŵ), as described below.

LWCE(ŵ,w) = − 1

N

N∑
i=1

C∑
c=1

wc ·wc log ŵc

wc =
1

nα
c

,

(5)

where nc denotes the count of training samples within class c,
and α represents the smoothing factor that governs the level
of smoothing applied to the loss weights.

The loss function of the acoustic model backbone, denoted
as LSVS, closely aligns with the loss function employed in
DiffSinger as described in Liu et al. [30], which is founded
on the principles of the stable diffusion model. The diffusion
process is composed of an equally weighted sequence of
denoisers ϵθ(Mt, t, ec), t = 1, · · · , T , which are trained to
predict ϵ added in the diffusion process. The training objective
for the singing voice synthesizer can be concisely summarized
as follows.

LSVS = EM,ec,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(Mt, t, ec)∥22

]
, (6)

where Mt is the noisy mel-spectrogram, t is the time step, ec
is the music condition sequence.

To achieve the singing technique recommendation, the
sequence-to-sequence (S2S) loss LS2S is required to train the
singing technique decoder Ds. The S2S loss is calculated
based on the difference between the ground truth sequence s =
(s1, s2, · · · , sT ) and predicted sequence ŝ = (ŝ1, ŝ2, ..., ŝT ),
where T is the length of the sequence. The S2S loss can be
formulated as below.

LS2S(ŝ, s) = −
1

T

T∑
t=1

|V |∑
i=1

st,i log ŝt,i (7)

Algorithm 1 Constructing the Database with Singing Tech-
niques Annotations (Training of STC).

Initialize: θF s , θho , θhc ; M; N1, N2, N3 are number of
epochs.

1: sp10, s
t
10 ←M10

2: for all i← 1 to N1 do
3: repeat
4: Sample batch (Mc, sc)
5: f c ← F s(Mc), ŝc ← hc(f c)
6: Compute LWCE based on (5)
7: θF s , θhc

+← −∇θFs ,θhc (LWCE)
8: until Batch over
9: end for

10: for all i← 1 to N3 do
11: repeat
12: Sample batch (M10, s

p
10, s

t
10)

13: fo ← F s(M10), { ˆsp10,
ˆst10} ← ho(fo)

14: Compute LWCE based on (5)
15: if i ≤ N2 then
16: θho

+← −∇θho (LWCE)
17: else
18: θF s , θho

+← −∇θFs ,θho (LWCE)
19: end if
20: until Batch over
21: end for
22: sp90, s

t
90 = hoF s(M90)

23: M̃ =M∪ {sp10, st10} ∪ {s
p
90, s

t
90}

Output: M̃

E. Training of SinTechSVS

SinTechSVS follows a multi-step training regimen, depicted
in Fig. 4. Initially, we construct the SVS dataset with singing
technique annotations by training the singing technique clas-
sifier. This involves: (1) manually annotating 10% of the SVS
dataset M10 to acquire singing technique labels sp10, s

t
10; (2)

training the classifier with the extensive singing technique
datasetMc; (3) freezing feature extractor F s and training the
header (ho) of the classifier withM10; (4) unfreezing F s and
training it withM10. Subsequently, the trained classifier infers
singing technique labels sp90, s

t
90 for the remaining 90% of the

SVS datasetM90, yielding the annotated SVS dataset M̃. The
algorithm for this process is detailed in Algorithm 1.

The second step is to train the SVS. During this stage,
the encoders, the acoustic model, and the STLS module are
optimized using the LSVS loss. In the final step, while training
the STR, the encoders remain fixed, and only the singing
technique decoder Ds is trained. This structured approach
ensures the effective training of SinTechSVS, enabling it to
generate high-quality singing audio with associated singing
techniques.

F. Inference of SinTechSVS

With our meticulously trained models, we are able to syn-
thesize a highly nuanced expressional singing voice through
the use of appropriate singing techniques. We offer two distinct
inference modes.
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(a) The training of STA. The top line represents training the singing
technique classifier using the singing technique dataset (Mc and
sc). The middle line depicts fine-tuning the classifier with manually
annotated SVS dataset (M10, sp10, and st10). The bottom line conducts
inference on the remaining SVS dataset to obtain a fully annotated
SVS dataset (M90, sp90, and st90).

(b) The training of STR. the training of STR utilizes the pre-trained music
score encoder obtained from the previous step (c) and trained the singing
technique decoder. ŝp and ŝt represent the predicted singing technique
sequence, whereas sp and st represent the annotated singing technique
sequence, which obtained from the previous step (a).

(c) The training of SVS. During this step, all modules including the
music score encoders, STLS module, and acoustic model undergo
training. We utilized annotated SVS dataset, including the singing
technique sequence sp and st obtained from step (a), the music score
sequence mp, ml, ms, md, and the mel-spectrogram M.

(d) During the inference phase, singing audios with specific techniques
can be synthesized in two ways: (1) manual technique control and (2)
technique recommendations based on music scores. spm and stm denotes the
singing technique sequence manually created, whereas spr and str denotes
the singing technique sequence predicted by STR.

Fig. 4: The training process of SinTechSVS consists of three steps, with each step laying the foundation for the next. Modules
depicted with full shadows remain unfixed during the training step, while those with half shadows are first fixed and then
unfixed during training. The symbol ’OR’ represents the logical operation of either given two inputs, while ’+’ signifies
addition. (Top-left): Training of STA; (Bottom-left): Training of STC; (Top-right): Training of STR; (Bottom-left): Training of
STA; (Bottom-right): Inference of SinTechSVS.

Manual Singing Technique Control: In this mode, users
have the ability to manually control the input singing technique
sequences within SinTechSVS. This control permits users to
interpret songs and evoke desired expressions by specifying
their own singing technique labels. The manual singing tech-
nique sequences are represented as spm, stm.

Predictive Singing Technique Control: Inspired by MsE-
moTTS [53], which controlled emotion in speech synthesis
through text analysis, we apply a similar method to singing
voice synthesis. Using a trained Singing Technique Rec-
ommender (STR), we predict singing technique sequences
from music scores. In predictive mode, the STR recommends
techniques based on input music scores mp,ml,ms, resulting
in sequences spr , s

t
r. These sequences are then fed into Sin-

TechSVS for cohesive and expressive singing voice synthesis.
This method avoids potential mistakes that can happen with
manual skills, giving a strong way to control singing voice
synthesis.

IV. EXPERIMENTAL SETUPS

A. Database Construction

In the previous section, we provided an algorithm 1 to
outline the entire flow of our dataset construction process. This
section explains our implementation of that algorithm in full
detail.

We train our model using the Opencpop dataset [51],
comprising 3756 singing utterances from 100 Mandarin
songs. Each utterance includes six sequences: word-level and
phoneme-level lyrics, phoneme-level pitch, word-level and
phoneme-level durations, and slur sequences. We select this
dataset for its focus on commercial pop music and its proven
effectiveness in training SVS systems, as shown by the success
of DiffSinger [30].

We annotated singing technique labels on the Opencpop
dataset following the method outlined in Sections III-A and
III-B, involving three semi-professional musicians: one with
14 years of piano experience and 10 years in choir and
conducting, another with 10 years in POP music singing, and
the third, a vocalist of jazz band, with three years of jazz
singing. Using mel-spectrogram representations from [25] as
benchmarks, we assigned pitch and timbral technique labels
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based on the closest match. The labeled dataset distribution is
shown in Table III.

To enhance the robustness of the dataset, we apply the
following data processing steps: (1) Given that the COSIAN
dataset comprises stereo audio files and the Opencpop dataset
contains mono audio files, we standardize all files to stereo
to avoid potential information loss; (2) Remove silence by
clipping sections with waveform values below a specified
threshold to eliminate unwanted noise and enhance segment
clarity; (3) Normalize audio segments using pydub3 for con-
sistency and stable training; (4) Convert audio segments into
mel-spectrograms with 64 mel bands, a window size of 1024,
and a sample rate of 44.1kHz, scaled to a decibel range
with a minimum cut-off of -80db; (5) We divided training
mel-spectrograms into short (0-100), medium (101-200), and
long (201-300) groups based on duration, padding each to its
maximum length within the respective bin to minimize zero-
padding, facilitating efficient batch training and exposure to
multi-sized inputs during training [49]. To clarify, during Sin-
TechSVS acoustic model training, we resample all Opencpop
audio samples to 24kHz to meet HiFiGAN requirements and
expedite training, despite the singing technique classifier being
trained on 44.1kHz mel-spectrograms.

The subsequent paragraphs detail the characteristics of our
manually annotated Opencpop dataset.

Fig. 5 illustrates the joint distribution of phonemes and
pitch within the manually annotated section of the Opencpop
dataset. Our random sampling covers a wide pitch and
phoneme domain, highlighting key pitch-phoneme pairings.
Furthermore, comparing Fig. 6 with Figure 1 in [25] our
observation underscores the language independence of the
chosen singing techniques, as evidenced by the resemblance
between the mel-spectrograms of the COSIAN and Opencpop
datasets. This aligns with our successful classifier transfer from
a Japanese to a Chinese singing dataset.

To train our Singing Technique Classifier, we utilized a
subset of the Opencpop dataset and the COSIAN dataset,
allocating 15% for validation and 85% for training. To address

TABLE III: Distribution of manually annotated portion of
Opencpop dataset. The singing techniques ”whisper” and
”hiccup” are removed due to the small amount of labels.

Singing Technique Train Test Total

Falsetto 628 111 739
Breathy 765 135 900
Vocal Fry 63 11 74
Belting 1273 225 1498
Regular 1289 228 1517
Whisper - - 12

Scooping 864 152 1016
Drop 161 28 189
Bend 108 19 127
Melisma 68 12 80
Straight 2819 497 3316
Hiccup - - 4

Total 8038 1418 9456

3http://pydub.com/

Fig. 5: The joint distribution of the phoneme and the pitch of
the singing techniques.

Fig. 6: The mel-spectrograms of the timbral and pitch singing
techniques with a sketch of pitch contour sampled from the
manually annotated Opencpop dataset.

the imbalance in technique distribution, particularly in songs,
we applied a smooth weighted Cross Entropy Loss method
discussed in Section III-D.

B. Implementation Details

In the course of our experiments, SinTechSVS and all
other SVS models in the ablation studies are trained using
a single RTX-A5000 GPU equipped with 23GB of mem-
ory. Here, we provide a comprehensive breakdown of the
training process for the SVS models. The initial phase of
our experimentation involved training the classifier, which
was accomplished by following the procedures outlined in
Algorithm 1. The COSIAN dataset served as the training
dataset for this phase. The following hyperparameters were
employed: (1) Adam optimizer with learning rate = 10−3

and weight decay = 0.03, (2) batch size = 32; (3) epochs =
100. Subsequently, transfer learning was applied to fine-tune
the pre-trained classifier using the Opencpop dataset. During
this fine-tuning process, we adjusted the hyperparameters as
follows: (1) Adam optimizer with learning rate = 0.0001 and
weight decay = 0.05, (2) batch size = 32; (3) epochs = 73. In
both stages of classifier training, we implemented a learning
rate reduction strategy. Specifically, we reduced the learning
rate by half whenever there were three consecutive epochs
with no observed increase in validation accuracy.
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The subsequent phase of our experiments involved training
the singing technique synthesizer and recommender, in ac-
cordance with the procedures outlined in Section III-E. This
training process spanned a duration of 12 hours and utilized the
following hyperparameters: (1) Adam optimizer with learning
rate = 10−3; (2) batch size = 48; (3) epochs = 160K.

C. Evaluation Methods

In this section, we outline the various evaluation methods
used to assess the synthesis capabilities and singing technique
controllability of SinTechSVS4.

Synthesis Capability Evaluation: For objective eval-
uation, we employed Mel Cepstral Distortion (MCD) [54]
and Root Mean-Squared Error of Fundamental Frequency
(F0-RMSE) [55]. For subjective evaluation, we conducted
a Mean Opinion Score (MOS) survey with formal singing
training and strong knowledge of singing techniques [21],
[16], [17] to evaluate the naturalness and sound quality of
singing voices synthesized by various SVS models. The survey
used a 5-point scale (with 5 being the highest) to rate the
overall pleasantness of the synthesized outputs as evaluated
by 20 participants. Participants rated each audio sample for
naturalness, pronunciation accuracy, and overall quality. The
MOS survey results will be further discussed in Sections V-A
and V-B.

Singing Technique Controllability Evaluation: We eval-
uated SinTechSVS controllability using two metrics: Style Re-
classification Accuracy (SRacc) and Style Match Rate (SMR),
inspired by style conditioned synthesis [56]. SRacc measures
accuracy in reclassifying synthesized audio clips’ singing
techniques, whereas SMR assesses alignment between input
labels and listener perceptions of the technique class.

Style Reclassification Accuracy (SRacc) can be formulated
as in (8):

SRacc(x) =
1

M

M∑
i=1

1

Nm

Nm∑
i=1

1{C(xi,m) = m}, (8)

where x is the synthesized audio clips, C represents the
singing technique classifier, N is the number of audio samples,
M is the number of singing technique classes.

We conduct Style Match Rate (SMR) in two tasks: (1) SMR
for singing technique identification (SMR-I) and (2) SMR for
singing technique matching (SMR-M). Both use a generalized
accuracy formula as described in (9):

SMR(r,y) =

N∑
i=1

1{ri = yi}

N
,

(9)

where r is the listener’s response based on their assessment
of the synthesized audio clips with specific singing techniques
at a word or sentence level, y is the correct answer for each
survey question, and N is the number of samples.

The MOS survey consisted of four distinct segments, where
participants were tasked with identifying singing techniques

4This study has been approved by the Department Ethics Review Com-
mittee (DERC) at the National University of Singapore under soc-23-32

TABLE IV: The objective comparison of unconditional singing
voice synthesis between SinTechSVS, various SOTA SVS, and
Ground Truth audio samples from Opencpop (GT). Pron. Acc.
refers to Pronunciation Accuracy

Model MCD F0-RSME Naturalness Quality Pron. Acc.

GAN-Singer 4.95 0.0252 2.97 ± 0.15 3.48 ± 0.19 3.57 ± 0.17
CpopSing 4.93 0.0256 3.02 ± 0.21 3.26 ± 0.09 3.79 ± 0.11
DiffSinger 4.86 0.0233 3.27 ± 0.16 3.52 ± 0.12 4.13 ± 0.16

SinTechSVSSTR - - 3.21 ± 0.15 3.54 ± 0.21 3.82 ± 0.20
SinTechSVS 4.71 0.0228 3.29 ± 0.20 3.72 ± 0.15 4.02 ± 0.10

GT - - 4.09 ± 0.18 4.25 ± 0.18 4.38 ± 0.14

or matching singing techniques to the corresponding audio
samples:

• Participants identify pitch singing techniques in high-
lighted words in audio samples.

• Participants match audio samples with their correct pitch
singing techniques by comparing two samples with dif-
ferent techniques.

• Participants identify timbral singing techniques in high-
lighted words in audio samples.

• Participants match audio samples with their correct tim-
bral singing techniques by comparing two samples with
different techniques.

D. Compared Methods
We compare SinTechSVS against state-of-the-art SVS sys-

tems like CpopSing [51], GAN-Singer [57], and DiffSinger
[30]. For a fair comparison, we employed the same vocoder
(HiFi-GAN) across all systems. Given the absence of available
singing technique-controllable systems for direct comparison,
we evaluated our system’s controllability with evaluation met-
rics described in IV-C, using ground truth audio samples as
performance ceilings.

V. EXPERIMENTAL RESULTS

A. Results of Unconditional Singing Voice Synthesis
Table IV showcases our SVS system’s performance, present-

ing scores for Naturalness, Quality, Pronunciation Accuracy,
and overall MOS, each with a 95% confidence interval. We
conducted a comprehensive comparison with Ground Truth
samples, GAN-Singer [58], CpopSing [51], and DiffSinger
[30].

Ground Truth samples unsurprisingly outperformed across
all subjective metrics. However, our models demonstrated
comparable performance to DiffSinger and outperformed in
terms of MCD and F0-RMSE. These results underscore the
effectiveness of conditioning our system on implicit expression
features, as suggested in [1], to enhance naturalness and
robustness.

Additionally, we also compared our models with
SinTechSVSSTR, where singing technique sequences are
predicted by the STR. Results indicate that SinTechSVSSTR

performs slightly worse than both DiffSinger and SinTechSVS
(slightly better in Quality compared to DiffSinger), but better
than other baseline models as demonstrated by the baseline
models.
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Fig. 7: Comparing mel-spectrograms of audio samples generated by SinTechSVS with distinct pitch and timbral singing
techniques against the corresponding audios generated by SinTechSVS with no techniques applied. ’Straight’ represents mel-
spectrograms without pitch techniques, while ’Regular’ showcases mel-spectrograms without timbre techniques. The green
bounding boxes highlight regions demonstrating pitch singing technique control.

TABLE V: Results of Conditional Singing Voice Synthesis.
STan refers to singing technique annotated labels.

Singing Technique SRacc SMR-I SMR-M

STan SinTechSVS STan SinTechSVS STan SinTechSVS

Falsetto 90% 82% 68% 56% 85% 78%
Breathy 76% 63% 72% 70% 88% 80%
Vocal Fry 79% 71% 64% 62% 84% 74%
Belting 80% 74% 76% 84% 90% 94%

Scooping 85% 82% 84% 76% 92% 88%
Drop 77% 71% 82% 78% 86% 82%
Bend 52% 66% 71% 79% 82% 85%
Melisma 39% 51% 80% 66% 74% 82%

Average 72% 70% 75% 71% 85% 83%

B. Results of Singing Voice Synthesis Conditioned on Singing
Techniques by Manual Control

Table V displays results for Style-Reclassification Accu-
racy (SRacc) and Style Match Rate (SMR) obtained from
SinTechSVS generated audio samples compared to singing
technique annotated labels from the Opencpop dataset (STan).

Our model’s SRacc values closely align with those of STan,
indicating the singing technique classifier can effectively dis-
cern between the various singing techniques generated by
SinTechSVS.

In the SMR results, as anticipated, participants excelled in
matching tasks, known for their lower complexity. Our top-
performing model demonstrates precise control over singing
techniques, as evidenced by SMR values closely resembling
those of STan. This highlights SinTechSVS’s proficiency in
generating highly accurate and distinctive singing techniques.

In Fig. 7, we compare mel-spectrograms from audio samples
with distinct singing techniques against those generated by
SinTechSVS without specific techniques. This visual evidence
highlights SinTechSVS’s effectiveness in controlling singing
techniques.

TABLE VI: Comparison of MOS results of SinTechSVS
conditioned on singing techniques from various sources. Pron.
Acc. refers to pronunciation accuracy.

Model Naturalness Quality Pron. Acc.

SinTechSVSRand 2.39 ± 0.19 2.02 ± 0.20 3.56 ± 0.19
SinTechSVSNorm 3.00 ± 0.16 2.85 ± 0.18 3.66 ± 0.23
SinTechSVSSTR 3.21 ± 0.15 3.54 ± 0.21 3.82 ± 0.20

SinTechSVSGT 3.29 ± 0.20 3.72 ± 0.20 4.02 ± 0.22

C. Results of Singing Voice Synthesis Conditioned on Singing
Techniques by Singing Technique Recommendation

To demonstrate the effectiveness of the singing technique
recommender, we compare the synthesis results of Sin-
TechSVS with different inputs:

• SinTechSVSRand: the singing technique sequences input
is randomly generated {sprd, strd}.

• SinTechSVSNorm: the singing technique sequences input
with no singing techniques {spn, stn}. This is achieved
by assigning the pitch singing technique sequence to be
all ’Straight’ and assigning the timbral singing technique
sequence to be all ’Regular’.

• SinTechSVSSTR: the singing technique sequences input
is generated from the corresponding music score se-
quence {mp,ml,ms} by using STR {spr , str}.

• SinTechSVSGT: the singing technique sequences input
is the original annotated singing technique sequence
{sp, st}. SinTechSVSGT is actually same as SinTechSVS
mentioned in Table IV.

Table VI highlights the system’s performance across
these scenarios. SinTechSVSSTR lags slightly behind
SinTechSVSGT but outperforms SinTechSVSRand signifi-
cantly, emphasizing the value of the singing technique rec-
ommender. SinTechSVSNorm achieves superior scores to
SinTechSVSRand but falls short compared to SinTechSVSGT

and SinTechSVSSTR , underscoring the importance of fine-
grained control over singing techniques in SVS systems.
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TABLE VII: The evaluation results of Conditional Singing Voice Synthesis across ablated models. T-Average represents the
average value of the timbral singing techniques of a model across a metric, while P-Average represents the average value of
the pitch singing techniques of a model across a metric.

Singing Technique SRacc SMR-I SMR-M

SinTechSVS w/o-STLS w/o-STLSp w/o-STLSt SinTechSVS w/o-STLS w/o-STLSp w/o-STLSt SinTechSVS w/o-STLS w/o-STLSp w/o-STLSt

Falsetto 82% 74% 78% 80% 56% 62% 64% 53% 78% 73% 85% 71%
Breathy 63% 58% 65% 67% 70% 65% 66% 59% 80% 75% 77% 82%
Vocal Fry 71% 67% 73% 65% 62% 57% 71% 67% 74% 66% 70% 65%
Belting 74% 68% 62% 59% 84% 81% 78% 69% 94% 80% 88% 91%

T-Average 73% 67% 70% 68% 68% 66% 70% 62% 82% 74% 80% 78%

Scooping 82% 76% 67% 80% 76% 35% 46% 79% 88% 62% 56% 87%
Drop 71% 66% 68% 70% 78% 57% 42% 77% 82% 67% 74% 84%
Bend 66% 69% 64% 60% 79% 31% 39% 70% 85% 58% 70% 79%
Melisma 51% 41% 37% 56% 66% 43% 51% 69% 82% 74% 65% 76%

P-Average 68% 63% 59% 67% 75% 42% 45% 74% 85% 65% 67% 82%

Average 71% 65% 65% 68% 72% 54% 58% 68% 84% 70% 74% 80%

While we demonstrate STR’s effectiveness, it still falls short
of surpassing all metrics compared to all the other baseline
models, as shown in Table IV. This could be attributed to
the lack of a high-quality, large dataset for training STR,
which severely limits its capabilities. Besides, the current STR
is designed to predict singing technique sequences with a
limited length, as it was trained solely on the singing data with
utterance length. However, recommending singing techniques
with varying lengths, such as song-level or utterance-level, is
a topic we aim to explore in future research endeavors.

D. Ablations of Singing Technique Classifier Architecture

We compare several different architectures for the ablation
study. (STC = Singing Technique Classifier)

• OblongSTC: a CNN that uses oblong convolutional filters
proposed by Yamamoto et al. [41].

• StandardSTC: a CNN that uses the architecture and
parameters outlined in Table II represents the ultimate
choice for our STC implementation.

• ResSTC: a CNN that uses residual blocks similar to
ResNet50 [59] for its success in the field of Computer
Vision.

We trained two versions of each model: one with weighted
loss (smoothing factor of 0.33) and one without weights, to
assess the impact on learning from imbalanced data. Addition-
ally, we tested transfer learning by training two more versions
of StandardSTC without pre-training on the COSIAN dataset.
The architecture of StandardSTC is detailed in Section III-B.

We evaluated each model with the following metrics for
both timbral and pitch techniques: Accuracy (Acc.), Top-2
Accuracy, Balanced Accuracy (BAcc.), Macro-F1 score (F1).

Table VIII and Fig. 8 show the evaluation results of classi-
fier models trained on pitch and timbral data. Initially, we
tried replicating Yamamoto et al.’s [25] Singing Technique
Classifier model but found it unsuitable. We then explored
a standard approach using 3×3 and 5×5 convolutional filters.
The StandardSTC model with a weighted loss function out-
performed the OblongSTC model across all metrics. Despite
experimenting with residual blocks to enhance performance
(ResSTC model), it didn’t surpass the StandardSTC model,

Fig. 8: Comparison of per-class accuracy across different
classifiers.

likely due to limited training data. Additionally, pre-trained
models showed a minimum 0.1 improvement across all met-
rics, confirming the benefits of transfer learning.

E. Ablations of Singing Technique Local Score Module (STLS)

In this ablation study, we explore the impact of the Singing
Technique Local Score (STLS) module on SinTechSVS per-
formance across four configurations:

• SinTechSVS: This represents our proposed SinTechSVS
system with all components intact.

• -w/o-STLS: In this setup, we remove the STLS module
from SinTechSVS, resulting in the condition where ec =
LR(em + es,m

d), where em = epm + elm + esm, and

TABLE VIII: Results of singing technique classification with
different model configurations. Models with (*) were not pre-
trained on the COSIAN dataset

Model Acc. Top-2 BAcc. F1

OblongSTC 0.665 0.878 0.521 0.437
OblongSTC, weighted 0.596 0.849 0.515 0.411
ResSTC 0.752 0.912 0.517 0.476
ResSTC, weighted 0.700 0.884 0.571 0.469
StandardSTC 0.820 0.948 0.628 0.551
StandardSTC, weighted 0.808 0.952 0.723 0.588

StandardSTC∗ 0.600 0.724 0.557 0.427
StandardSTC∗, weighted 0.692 0.811 0.622 0.483
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TABLE IX: The evaluation results of unconditional singing
voice synthesis across ablated models. Pron. Acc. refers to
Pronunciation Accuracy

Model MCD F0-RSME Naturalness Quality Pron. Acc.

SinTechSVS 4.71 0.0228 3.29 ± 0.20 3.72 ± 0.15 4.02 ± 0.10

w/o-STLS 4.82 0.0226 3.17 ± 0.12 3.66 ± 0.18 3.90 ± 0.15
w/o-STLSp 4.73 0.0233 3.36 ± 0.19 3.59 ± 0.13 3.86 ± 0.17
w/o-STLSt 4.77 0.0241 3.25 ± 0.13 3.70 ± 0.14 4.07 ± 0.16

es = eps + ets.
• -w/o-STLSp: Here, we keep the pitch singing technique

sequence from the STLS module operation, leading to
ef = STLS(em, ets) + eps .

• -w/o-STLSt: In this configuration, we keep the timbral
singing technique sequence from the STLS module op-
eration, leading to ef = STLS(em, eps) + ets.

One thing noteworthy is that all comparison models main-
tain access to singing technique information es and music
score information em, even in the absence of utilizing the
STLS module. Results in Table IX show comparable synthesis
capabilities across all configurations, suggesting a minimal
influence of STLS on general synthesis.

Evaluation then focuses on STLS’s effect on controllability.
Table VII shows that SinTechSVS with STLS consistently
achieves the highest scores in pitch and timbral tasks, indicat-
ing significant improvement in controllability during synthesis.
Notably, The STLS module is especially effective for tasks
related to pitch. This makes sense because musical scores
directly contain pitch information, whereas timbral details are
more inherent and subtle.

VI. CONCLUSION

In this paper, we present SinTechSVS, an innovative Singing
Voice Synthesis (SVS) system that offers precise control
over singing techniques. We begin by introducing a data-
efficient method for singing technique annotation. Specifically,
we manually annotate 10% of the Opencpop dataset and
construct a CNN-based singing technique classifier with a
Temporal Pyramid Pooling (TPP) layer to infer labels for the
rest of the Opencpop dataset. Subsequently, we extend the
SVS system to be controllable in terms of singing techniques
by incorporating style encoders and proposing an attention-
based singing technique local score (STLS) module, which
has been shown to enhance the system’s ability to accurately
control singing techniques during synthesis. Furthermore, we
develop a Seq2Seq singing technique recommender that can
recommend appropriate singing techniques based on the music
score. Our series of experiments demonstrate that SinTechSVS
exhibits satisfactory performance in terms of both general syn-
thesis capability and the controllability of singing techniques
while synthesizing singing voices.
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