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Abstract

Acoustic foundation models, fine-tuned for Au-
tomatic Speech Recognition (ASR), suffer from
performance degradation in wild acoustic test
settings when deployed in real-world scenar-
ios. Stabilizing online Test-Time Adaptation
(TTA) under these conditions remains an open
and unexplored question. Existing wild vi-
sion TTA methods often fail to handle speech
data effectively due to the unique character-
istics of high-entropy speech frames, which
are unreliably filtered out even when contain-
ing crucial semantic content. Furthermore, un-
like static vision data, speech signals follow
short-term consistency, requiring specialized
adaptation strategies. In this work, we pro-
pose a novel wild acoustic TTA method tailored
for ASR fine-tuned acoustic foundation mod-
els. Our method, Confidence-Enhanced Adap-
tation, performs frame-level adaptation using
a confidence-aware weight scheme to avoid fil-
tering out essential information in high-entropy
frames. Additionally, we apply consistency
regularization during test-time optimization to
leverage the inherent short-term consistency of
speech signals. Our experiments on both syn-
thetic and real-world datasets demonstrate that
our approach outperforms existing baselines
under various wild acoustic test settings, in-
cluding Gaussian noise, environmental sounds,
accent variations, and sung speech 1.

1 Introduction

Deep learning-based acoustic models have exhib-
ited remarkable performance in scenarios where the
training and test sets adhere to the independent and
identically distributed (i.i.d) assumption. However,
real-world applications frequently involve domain
shifts between training and test sets, such as noise
variations due to environmental sounds (Reddy

†Corresponding Author
1Code is publicly available at https://github.com/Waffle-

Liu/CEA.
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Figure 1: Robustness analysis of Wav2vec2 Base and
Large under wild acoustic test settings including 1)
Noise (N): additive noises on LibriSpeech test-other
set, 2) Accent (A): accents of L2 learners on L2-Arctic
subset 3) Singing (S): sung speech on DSing test set. In-
Domain (ID) indicates the performance on LibriSpeech
test-other set without additive noises. WER is short for
Word Error Rate.

et al., 2019), and timbre variations due to accent
or pronunciation changes (Yang et al., 2023b).
While recent acoustic foundation models, such as
Wav2vec2 (Baevski et al., 2020), fine-tuned on
Automatic Speech Recognition (ASR) achieve ex-
cellent performances, they exhibit notable perfor-
mance degradation when confronted with the test-
time speech in the wild, as depicted in Figure 1.
Consequently, there exists an emergent demand
to adapt these acoustic foundation models in wild
acoustic test settings when deployed in the real
world.

Prior methods for mitigating domain shifts re-
quire access to domain-specific source data under
the unsupervised domain adaptation setting (Bell
et al., 2020), limiting the application to online sce-
narios where speech data come from the wild world
with mixed distribution shifts. Test-Time Adap-
tation (TTA) emerges as a critical paradigm for
addressing distribution shifts at inference time, en-
abling online updates of models on test data in a
source-free way. Recent work, SUTA (Lin et al.,
2022), presents a pilot study on TTA for ASR mod-
els by applying entropy minimization to speech

https://github.com/Waffle-Liu/CEA
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frame adaptation, demonstrating impressive perfor-
mance on single-utterance TTA. However, SUTA
focuses on mild test settings, e.g., testing on speech
with synthetic and real noises. In the dynamic
wild world, acoustic foundation models may face
arbitrary test speech data with severe distribution
shifts, such as sung speech. As such, stabilizing on-
line TTA under wild acoustic test settings remains
an open and unexplored question. Recent work,
SAR (Niu et al., 2023), proposes an efficient op-
timization scheme for stabling online TTA in the
wild vision test settings. However, direct adoption
of SAR to speech data is challenging because SAR
characterizes high-entropy noisy speech samples as
unreliable and potentially harmful for model adap-
tation and proposes to filter them out for stabling
under wild vision test settings.

In this work, we empirically identify a sub-
stantial proportion of noisy frames within non-
silent speech segments under wild acoustic test
settings. We observe that these frames contain
vital semantic information crucial for accurate
recognition and merely discarding these noisy
frames may adversely affect model performance.
Consequently, rather than excluding these noisy
non-silent frames, we propose Confidence En-
hanced Adaptation (CEA), which performs frame-
level adaptation using a confidence-aware weight
scheme. CEA prioritizes uncertain frames and en-
courages models to focus more on these uncertain
frames by ‘denoising’ their intermediate represen-
tations. Additionally, we emphasize that frames
within a short speech segment are temporally coher-
ent, largely due to the consistent nature of phone-
mic content within such windows, thus proposing
short-term consistency regularization to stabilize
wild acoustic TTA. This contrasts with image sam-
ples in a batch, which are frequently treated as
independent entities. We conduct a wide range
of experiments for ASR fine-tuned acoustic foun-
dation models on both synthetic and real-world
datasets, systematically assessing the model’s ro-
bustness against Gaussian noises, environmental
sounds, accents of second language (L2) learners,
and singing (a.k.a. sung speech). The experimental
results demonstrate the effectiveness of our method
under wild acoustic test settings.

In summary, our contributions are summarized
as follows:

• We are the first to address wild acoustic TTA
and observe that in wild acoustic test settings

high-entropy noisy speech frames are often
located within non-silent segments crucial for
semantic understanding. We introduce CEA
with a confidence-aware weight scheme to
efficiently adapt noisy non-silent frames.

• We highlight the consistent nature of phone-
mic content within short speech segments and
introduce short-term consistency regulariza-
tion to further stabilize acoustic wild TTA.

• We perform a wide range of experiments on
both synthetic and real-world datasets, in-
cluding new experiments on real-world sung
speech datasets for the first time. Empirical
results substantiate the efficacy of our method
under wild acoustic test settings.

2 Related Work

2.1 Test-Time Adaptation.

Test-time adaption plays an essential role in ad-
dressing distribution shifts encountered in test sam-
ples, enabling online updates of models during the
test phase using unsupervised objectives. Most
prior TTA methods in the computer vision do-
main rely on Batch Normalization layers (Ioffe
and Szegedy, 2015; Lim et al., 2023; Niu et al.,
2022) and assume sample independence within the
same batch (Wang et al., 2022; Gong et al., 2022)
despite addressing non-i.i.d data streams in fluctu-
ating environments, rendering them less applica-
ble to speech data. Additionally, real-world data
shifts, including both covariate and label shifts,
pose significant challenges for deployment (Koh
et al., 2021; Niu et al., 2023; Zhou et al., 2023).
From another line of research, (Huang et al., 2022)
introduced a training-free TTA framework that han-
dles non-stationary covariate shifts by leveraging a
latent continuous-time dynamical system to infer
model parameters. Recent work provides a pilot
study on TTA for ASR models under mild test
settings (Lin et al., 2022), and improves TTA for
general ASR models via sequence-level general-
ized entropy minimization (Lin et al., 2022). Our
work focuses more on stabilizing online TTA for
ASR models under wild acoustic settings. We em-
pirically analyze frame-level entropy distribution
and underscore the short-term consistency nature
of speech signals.



2.2 Robustness for ASR.

There is a long history of developing robust speech
recognition methods (Li et al., 2014). For exam-
ple, Huang and Mak (2017, 2018) enhances the
robustness of acoustic models by incorporating
higher-order features, while Huang et al. (2019,
2021) improves the noise robustness by guiding
the model to focus on inferred informative latent
acoustic events. Different from improving model
robustness by training with large-scale augmented
data (Radford et al., 2023), there are various adap-
tation approaches for acoustic distribution shifts.
Recent works explore input reprogramming (Yang
et al., 2021, 2023a) with supervised optimization
targets. Unsupervised domain adaptation (UDA)
approaches investigate the feature alignment (Hou
et al., 2021), data augmentation (Hsu et al., 2017),
domain adversarial training (Sun et al., 2017, 2018),
knowledge distillation (Li et al., 2017), and self-
training (Li et al., 2017). However, these methods
require access to the source data with severe la-
tency and heavy computation, and tackle distinct
acoustic shifts, such as speaker (Deng et al., 2022)
and accent adaptation (Yang et al., 2023b) in iso-
lation, limiting their applications to online scenar-
ios. Early test-time method for traditional acoustic
models, LUHC, with parameterized activation func-
tions (Swietojanski and Renals, 2014; Swietojanski
et al., 2016) also deals with specific acoustic shifts,
lacking the generalization ability under wild acous-
tic test settings. Despite the success of prior adap-
tation methods, the development of online TTA for
modern ASR-fined acoustic foundation models un-
der wild acoustic test settings remains an open and
unexplored question.

3 Preliminary

We center our focus on the fully Test-Time Adapta-
tion framework, characterized by episodic model
adaptation, where the model is reset after process-
ing each utterance. We denote the ASR fine-tuned
acoustic foundation model as fΘ(y|x). We investi-
gate the popular acoustic foundation models such
as Wav2vec2 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), WavLM (Chen et al., 2022), which can
be typically decomposed into two constituent com-
ponents: a feature extractor gϕ(z|x), parameterized
by ϕ, and a transformer encoder hθ(y|z), param-
eterized by θ. This decomposition is expressed
as:

fΘ(y|x) = hθ(gϕ(x)) (1)

where Θ = {θ, ϕ} represents the collective set of
model parameters. The feature extractor gϕ takes as
input waveform audio or log-mel spectrogram. The
transformer encoder hθ serves as an audio encoder
and outputs acoustic representations. Considering
a test-time speech sequence x1:n of variable length
n in the wild, typically with arbitrary domain shifts,
the primary objective entails adapting the acoustic
foundation model fΘ to enhance its performance
for x1:n.

4 Method

In this section, we first analyze the common source
of domain shifts in the wild acoustic test settings,
and then provide our findings and methods for ad-
dressing the wild acoustic shifts. The overview of
our method is presented in Figure 2.

4.1 Wild Acoustic Test Settings

Wild acoustic distribution shifts encountered within
the speech domain may originate from several
sources, including:

Speaker Changes. Timbre variations in speech
stemming from changes in the speaker’s identity.

Environmental Noises. Perturbations intro-
duced by ambient noises in the recording environ-
ments.

Pronunciation Changes. Alteration in pronun-
ciation characteristics such as accent or singing.

Text-Domain Changes. Shifts in the linguistic
content or context of the speech data.

It is noteworthy that speaker changes, environ-
mental noises, and pronunciation changes are typi-
cally categorized as covariate shift, as they pertain
to variations in the input data distribution. In con-
trast, text-domain changes are categorized as label
shift, as they involve alterations in the output dis-
tribution. Furthermore, it is important to acknowl-
edge that real-world speech data often exhibit shifts
stemming from multiple sources simultaneously,
rendering the adaptation under wild acoustic test
settings complex and challenging.

4.2 Confidence Enhanced Adaptation

To gain insights into the behavior of ASR fine-
tuned acoustic foundation models under wild acous-
tic test settings, we empirically analyze the frame-
level entropy distribution of speech data in the
wild. We conducted experiments using both the
LibriSpeech test-other dataset, which was deliber-
ately corrupted by additive Gaussian noises, and
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Figure 2: The overall framework of the proposed method. The figure takes a Connectionist Temporal Classification
(CTC) based acoustic foundation model as an example. This framework involves two steps. The confidence enhanced
adaptation is first performed to boost the reliability of noisy frames. The temporal consistency regularization is
employed across the entire input sequence and jointly optimized with entropy minimization.
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Figure 3: Frame-Level Entropy Distribution in ASR
fine-tuned Acoustic Foundation Models: the entropy
distributions are computed for Wav2vec2 Base models
on the LibriSpeech noise-corrupted test-other and DS-
ing test datasets across adaptation steps. We employ a
threshold of 0.4 ∗ lnC, as recommended in Niu et al.
(2022), where C represents the number of task classes.
Frames with entropy values exceeding this threshold are
highlighted in red, indicating high-entropy (h) frames,
while low-entropy (l) frames are marked in blue. We
use • to denote non-silent (non-sil) frames and △ for
silent (sil) frames and take the blank symbol as an ap-
proximate indicator. The training steps range from 0 to
9, and the results presented in each subfigure are based
on the average of 100 random samples.

the sung speech dataset, DSing-test. These exper-
iments were performed with the ASR fine-tuned
Wav2vec2 Base model. We subsequently evaluated
the percentages of high-entropy and low-entropy
frames for both non-silent and silent speech seg-
ments. The classification of frames as silent or
non-silent was determined based on pseudo labels
derived from model predictions.

As illustrated in Figure 3, our findings reveal that,

prior to any adaptation (Step=0), within the non-
silent frames category, there exists a prevalence of
high-entropy frames compared to low-entropy ones
for Base models. Conversely, the opposite trend
is observed within the silent frames category. It
is worth noting that existing literature (Niu et al.,
2023) provides heuristic insights suggesting that
high-entropy samples may be unreliable and could
potentially have a detrimental impact on model
adaptation. However, it is crucial to recognize that
these noisy frames contain essential content infor-
mation that is critical for speech recognition. While
prior research suggests that filtering out such un-
reliable samples may aid in stabilizing adaptation
under wild vision test settings and improving per-
formance, this approach proves infeasible in our
specific case.

In response, rather than dropping these high-
entropy noisy frames, we propose a learning-
based approach, Confidence Enhanced Adaptation
(CEA), which performs frame-level adaptation us-
ing a confidence-aware weight scheme. CEA pri-
oritizes uncertain frames and encourages models
to focus more on these uncertain frames by ‘de-
noising’ their intermediate representations. Denot-
ing ŷci = fΘ(c|x1:n) as the predicted probability
of class c for i-th frame, we quantify uncertainty
through entropy, defined as:

E(xi) = −
∑
c

ŷci log ŷ
c
i (2)



Instead of heuristically relying on manually set
thresholds for filtering out data samples of high
entropy, CEA utilizes pseudo labels ŷi assigned
to each frame xi and applies entropy minimiza-
tion with a confidence-aware weight scheme on
these non-silent noisy frames, without the need
for setting thresholds. Specifically, we define the
confidence-aware optmization scheme as follows:

min
Θ′={ϕ,θLN}

n∑
i=1

S(xi)E(xi) (3)

where θLN denotes the affine parameters asso-
ciated with layer normalization in the transformer
encoder h, and S(xi) represents confidence-aware
frame-level weights, defined as:

S(xi) =
1

1 + exp(−E(xi))
Iŷi̸=c0(xi) (4)

where c0 signifies the index corresponding to
silent frames, and I is an indicator function. Such
design empowers the model to assign greater impor-
tance to frames where it exhibits lower confidence.
The increased weight encourages the model to fo-
cus more on these uncertain frames during adapta-
tion, potentially leading to heightened model con-
fidence on such frames. Note that this adaptation
process entails an update of the feature extractor
gϕ. This empowers models with the capability to
adapt to wild acoustic shifts, even in the presence
of substantial covariate shifts. As evidenced in Fig-
ure 3, the count of high-entropy frames diminishes
while low-entropy frame counts increase with each
adaptation step, underscoring the effectiveness of
CEA.

4.3 Short-Term Consistency Regularization

In the domain of speech signal processing, a salient
characteristic is the short-term stability, where
successive speech frames often convey the same
phoneme or speech unit. This intrinsic temporal
correlation is a defining attribute of speech data,
making it essential for stabilizing online TTA un-
der wild acoustic test settings. Nevertheless, prior
TTA methods largely overlook this inherent tempo-
ral correlation within individual speech sequences.

To address this limitation, we propose a feature-
wise short-term consistency regularization tech-
nique. We perform this regularization step after
the confidence enhanced adaptation process. This
sequencing is deliberate as introducing temporal

regularization over representations of noisy frames
can potentially confuse models and yield undesir-
able optimization outcomes. Concretely, the reg-
ularization is jointly optimized alongside entropy
minimization, as represented by the following equa-
tion:

min
ΘLN

n∑
i=1

E(xi)+α
n−k+1∑
i=1

||z′k+i−1−z′i||2Iŷi ̸=c0(xi)

(5)
where α denotes the weight assigned to the reg-

ularization loss, and ΘLN represents the affine pa-
rameters associated with layer normalization across
the entire acoustic foundation model. Here, zi sig-
nifies the feature representation of i-th frame ob-
tained from the fine-tuned feature extractor, and
z′i represents the modified feature representation
achieved through a parameter-free self-attention
operation. The parameter k denotes the size of the
window considered as the neighborhood of frame
xi. This regularization technique effectively cap-
tures the inherent temporal consistency found in
speech data by compelling the representation of xi
to closely resemble that of its neighboring frames
within a predefined window. Despite the possible
peaky behavior of CTC, the proposed temporal con-
sistency can be treated as introducing the inductive
bias of "short-term stability" in the adaptation (Ra-
biner et al., 2007).

5 Experiments

In this section, we undertake an evaluation of the
robustness of ASR fine-tuned acoustic foundation
models under wild acoustic test settings. We dis-
cuss the robustness against synthetic noises includ-
ing Gaussian noises and real-world environmental
sounds in Section 5.2, real-world data shifts includ-
ing L2 accents and singing voice (sung speech) in
Section 5.3, and decoding strategy pertaining to
language models in Section 5.4. We provide more
evaluation results using various acoustic models in
Appendix B.4.

5.1 Experimental Setup

Datasets. Our experiments involve the utiliza-
tion of four distinct datasets: two synthetic and
two real-world datasets. The first synthetic dataset,
named LS-C, represents the LibriSpeech (Panay-
otov et al., 2015) test-other set Corrupted by ad-
ditive Gaussian noises. We introduce five levels



Method Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Average

δ 0 0.005 0.01 0.015 0.02 0.03

Source 8.6 13.9 24.4 39.5 54.5 75.7 31.6
Tent 7.7 11.6 19.7 32.2 46.3 69.2 31.1
SAR 8.2 12.7 21.5 35.0 49.2 72.0 33.1
TeCo 7.6 13.6 19.7 32.2 46.3 69.3 31.5
SUTA 7.3 10.9 16.7 24.6 34.7 56.5 25.1
Ours 7.3 10.7 16.2 24.0 34.1 56.5 24.8

Table 1: WER (%) results on LS-C over five severity levels δ of Gaussian noises using Wav2vec2 Base with greedy
decoding. δ = 0 represents the uncorrupted case. The best results are bold.

of severity to simulate various degrees of corrup-
tion as per (Hendrycks and Dietterich, 2019) for
evaluating the trend of model robustness. Higher
levels indicate more severe corruption although
heavily corrupted speech data may not be common
cases in the real world. Subsequently, the second
synthetic dataset, named LS-P, is the LibriSpeech
test-other set Perturbed by real-world environmen-
tal sounds. This dataset encompasses eight diverse
types of environmental sound, including Air Condi-
tioner, Babble, Munching, Shutting Door, Vacuum
Cleaner, Airport Announcements, Copy Machine,
and Typing. These environmental sounds are from
the MS-SNSD noise test set (Reddy et al., 2019).
Each type is added to the original audio with five
distinctive signal-to-noise ratios (SNRs) represent-
ing five levels of severity. Our study further extends
to two real-world datasets. The L2-Arctic (Zhao
et al., 2018) dataset comprises speech data from
second language (L2) learners originating from six
countries with different first languages (L1): Ara-
bic, Mandarin, Hindi, Korean, Spanish, and Viet-
namese. Furthermore, we broaden our investiga-
tion to encompass music datasets, DSing (Dabike
and Barker, 2019) and Hansen (Hansen and Fraun-
hofer, 2012), featuring singing voice (sung speech).
More details of dataset statistics can be found in
Appendix A.1 and details of implementation can
be found in Appendix A.2.

Baselines. To assess the adaptation performance
of our proposed method, we consider the follow-
ing TTA baselines. Tent (Wang et al., 2020) adapt
transformation layers with the objective of entropy
minimization. Despite it being initially proposed
for batch normalization, we refer to updating the
affine parameters of layer normalization as Tent
in our work. In addition, we involve the base-
line TeCo (Yi et al., 2023), originally proposed

for video classification with temporal coherence
regularization, due to its applicability to sequential
data. Our comparison also includes the SAR (Niu
et al., 2023), specifically designed to address data
shifts in the dynamic wild world. Furthermore, we
also introduce comparisons with SUTA (Lin et al.,
2022) using entropy minimization and minimum
class confusion, and SGEM (Kim et al., 2023) us-
ing sequential-level generalized entropy minimiza-
tion in conjunction with beam search employing
language models.

10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 2: WER (%) results on Air Conditioner sound
over five severity levels using Wav2vec2 Base with
greedy decoding. SNRs (dB) are listed in the first row.
The best results are bold.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 3: WER (%) results on Typing sound over five
severity levels using Wav2vec2 Base with greedy de-
coding. SNRs (dB) are listed in the first row. The best
results are bold.



Method
DSing-dev DSing-test Hansen Average

Base Large Base Large Base Large Base Large

Greedy Search

Source 61.8 40.6 60.1 38.8 64.3 43.7 62.1 41.0
Tent 55.7 34.8 56.1 33.2 60.2 39.1 57.3 35.7
SAR 58.8 40.6 57.2 38.2 62.7 42.7 59.6 40.5
TeCo 56.2 35.0 55.6 33.1 60.0 39.1 57.3 35.7
SUTA 53.9 34.9 51.3 33.6 58.0 39.3 54.4 35.9
Ours 53.5 34.0 50.1 31.2 58.0 37.9 53.9 34.4

Beam Search

Source+LM 58.6 41.1 55.3 37.6 60.1 43.5 58.0 40.7
SGEM 54.4 34.4 50.8 33.0 57.8 38.6 54.3 35.3

Ours+LM 53.2 33.3 50.0 30.3 57.7 37.5 53.6 33.7

Table 4: WER (%) results on DSing-dev, DSing-test, and Hansen with greedy search and beam search. Base and
Large denote Wav2vec2 Base and Wav2vec2 Large respectively. The best results are bold.

5.2 Robustness to Synthetic Noises

Gaussian Noises. In the initial phase of our ex-
periments, we focus on synthetic data and assess
the robustness in the presence of various levels of
Gaussian noise injected into the test speech audio.
The outcomes are reported in Table 1. It is observed
that our proposed method consistently outperforms
existing baseline approaches across five levels of
noise. Notably, our approach achieves a relative im-
provement of 21.5% on average in terms of WER,
when compared to using the source model without
adaptation.

Furthermore, it is imperative to note that SAR,
designed for addressing wild vision data shifts,
demonstrates comparatively less improvement
compared with the Tent method. This observation
underscores the limitations of filtering noisy frames
for speech recognition. Instead, the learning-based
adaptation adopted in our method shows superi-
ority. Moreover, we discover that TeCo provides
marginal improvement compared to Tent, indicat-
ing that coherence regularization is limited in the
context of noisy frames. In contrast, our confi-
dence enhanced adaptation yields further benefits
for temporal consistency regularization.

Environmental Sounds. We further evaluate
the robustness on LS-P, which introduces eight
common environmental sounds in the test audio
at five levels of severity. The results of adding Air
Conditioner sound and Typing sound are reported
in Table 2 and Table 3 respectively (Full experi-
mental results can be found in Appendix B.8). It

is noticeable that our method can yield over 30%
relative improvements in low-SNR scenarios. No-
tably, for the case with 5 dB SNR in Table 2, our
method demonstrates a substantial 41.7% relative
improvement, suggesting its efficacy in mitigating
the impact of real-world environmental sound cor-
ruption.

5.3 Robustness to Real-World Data Shifts

L2 Accents. Data shifts resulting from accent
variations are a common occurrence in real-world
scenarios, arising from differences in dialects or
non-native speech patterns. Another pertinent in-
stance of such shifts is encountered in children’s
speech, which is also a common pronunciation
change and one type of accent in the real world. In
order to assess the robustness to such pronunciation
variations, we undertake the test-time adaptation
to accents exhibited by L2 learners using the L2-
Arctic dataset. To comprehensively evaluate the
performance, we evaluate all speakers for each L1
and present the speaker-level results for each L1 in
Appendix B.9. The experimental findings consis-
tently underscore the superiority of our proposed
method across different L1 categories.

Singing Voice. In this session, we discuss the
robustness of ASR fine-tuned acoustic foundation
models to singing voice for the first time. Singing,
also referred to as sung speech, is characterized
by a distinctive pronunciation pattern. Notably,
it encompasses various frequency fluctuations, in-
cluding the apparent pitch variations along with



Method Conformer Transducer

Source 62.2 48.8
SUTA 55.9 44.8
SGEM 55.7 44.5
Ours 55.4 43.0

Table 5: WER (%) results on DSing-test using
Conformer-CTC and Conformer-Transducer.

the melody. This constitutes a tremendous covari-
ate shift, rendering the adaptation from speech to
singing more challenging than that from speech to
speech. Moreover, the existence of professional
singing techniques further compounds the chal-
lenges associated with adaptation. For instance,
the elongation of word pronunciation, a common
occurrence in singing, is a departure from typical
speech patterns.

To evaluate the adaptation performance under
shifts from singing voice, we conduct experiments
on three datasets, utilizing both Wav2vec2 Base
and Wav2vec2 Large models. The outcomes are
presented in Table 4. The results indicate that our
proposed method consistently attains the best per-
formances for both Base and Large models. In
addition, the Wav2vec2 Large model exhibits supe-
rior robustness than the Base model. Nevertheless,
it still experiences a noticeable performance degra-
dation when compared with adaptation in noise
and accent robustness evaluations, suggesting the
limited ability of acoustic foundation models under
wild acoustic test settings.

5.4 Decoding Strategies

We discuss the decoding strategies employed in
experiments in this session. In our preceding exper-
iments, we mainly utilize greedy decoding, which
does not explicitly tackle the text-domain changes.
In the subsequent analysis, we compare our pro-
posed method with SGEM, which leverages beam
search for decoding. The results are presented in
Table 4. Notably, our findings reveal that even in
the absence of explicit adaptation for the language
model, our approach still consistently outperforms
SGEM. We also observe that the results achieved
by our method using greedy search can, on aver-
age, surpass those of SGEM. We conjecture that
our proposed short-term consistency regularization
addresses the label shift implicitly by fostering la-
bel coherency among neighbor frames. Moreover,
it is discovered that the enhancements facilitated

Method Noise Accent Singing

Ours 24.0 23.0 50.1
w/o STCR 25.1 23.4 51.0
w/o CEA 35.9 26.9 54.5

Table 6: Ablation study of core components proposed
in our work. WER (%) results are reported.

by adaptation are more pronounced compared to
the ones achieved through beam search, indicating
the significance of test-time adaptation for acoustic
foundation models.

6 Analysis

6.1 Generalization on Different ASR Models

We examine the robustness of CTC-based acous-
tic foundation models in our main experiments
and Appendix B.4. To verify the efficacy of our
method on other end-to-end ASR models such as
Conformer and Transducer, we conducted experi-
ments on Conformer-CTC (Gulati et al., 2020) and
Conformer-Transducer (Burchi and Vielzeuf, 2021)
as per Kim et al. (2023). For consistent setting and
fair comparison, we experimented with DSing-test
and reported the results in Table 5. The empirical
results illustrate that our proposed method can be
generalized to different end-to-end ASR models
and outperform SUTA and SGEM baselines.

6.2 Ablation Study

We conduct the ablation study on Noise, Accent,
Singing shifts respectively using Wav2vec2 Base
with greedy search to dissect the individual impact
of two core components proposed in our methods.
The results presented in Table 6 illustrate that the
removal of short-term consistency regularization
(STCR) leads to a relatively modest decline in per-
formance, in contrast to the more substantial dete-
rioration observed upon the removal of confidence
enhanced adaptation (CEA). This observation un-
derscores the significance of our proposed CEA.
Furthermore, the introduction of STCR yields ad-
ditional performance gains when employed in con-
junction with CEA. These experimental findings
also indicate a pronounced efficacy of our method
in mitigating noise shifts as opposed to accent and
singing shifts. We conjecture the reason could be
that the shift caused by Gaussian noises for each
frame is consistent while other shifts such as accent
shift could be different within frames.



Model Level 1 Level 2 Level 3 Level 4 Level 5

Whisper-Base 20.7 25.6 30.1 36.6 50.3
Whisper-Base.en 13.9 20.1 22.2 26.6 36.8

Table 7: WER (%) results on LS-C over five severity levels using Whisper-Base and Whisper-Base.en.

6.3 Latency Analysis

We did the adaptation with a single coming utter-
ance and counted the difference between the time
when the utterance has ended and the time when
the adaptation process has ended. We calculate
the average latency over all samples of Librispeech
test-other set on Wav2vec2 Base and obtain the
latency of 1.07 seconds. The average recognition
run-time on A5000 is 1.20 seconds. We believe this
could be an acceptable delay due to large parameter
sizes for acoustic foundation models. We provide
additional comparisons in terms of computing in
Appendix B.2.

6.4 Comparison with Whisper

State-of-the-art models such as Whisper (Radford
et al., 2023) improve noise robustness by leverag-
ing a large training corpus with data augmentation
by adding noise. To gain an insight on how our TTA
method for improving noise robustness compares
with Whisper, we conduct additional experiments
on LS-C using Whisper and report the performance
in Table 7. We choose Whisper-Base due to its com-
parable parameter size to Wav2vec2 Base. Note
that it is impossible to make a fair comparison since
both Whisper Base (74M) and Small (244M) have
different parameter sizes to the Wav2vec2 Base
( 90M). It is interesting to observe that the per-
formances of adapted Wav2vec2 Base in Table 1
can surpass those of unadapted Whisper-Base for
severity levels 1 to 4, and the unadapted Whisper-
Base.en for severity levels 1 and 2, demonstrat-
ing the effectiveness of the proposed TTA method.
This also indicates that training with augmented
data like Whisper brings more robustness to more
severe corruption. However, whether these results
generalize to wilder acoustic test settings, which
are beyond the scope of Whisper’s objective but
central to ours, remains an open question for future
investigation.

7 Conclusions

In this paper, we study the Test-Time Adaptation
of ASR fine-tuned acoustic foundation models

under wild acoustic test settings. By investigat-
ing the role of high-entropy noisy frames within
non-silent speech segments, we introduce Con-
fidence Enhanced Adaptation with a confidence-
aware weight optimization scheme to prioritize
these noisy frames for efficient adaptation via de-
noising their intermediate representations rather
than discarding them. Moreover, our emphasis on
short-term stability of speech signals leads us to ap-
ply consistency regularization, yielding further im-
provement for stable online TTA. Our experimental
findings suggest a consistent improvement for dif-
ferent types of acoustic shifts and different degrees
of corruption on synthetic and real-world datasets,
demonstrating the efficacy of our approach under
wild acoustic test settings.

Limitations

Our work is subject to several limitations. Firstly,
further research endeavors could encompass a
broader exploration of adaptation techniques for
the decoder model, particularly for text-domain
adaptation. It remains challenging to adapt lan-
guage models to address text-domain shifts due
to the unavailability of target domain texts in the
TTA setting. Additionally, we mainly experiment
with ASR fine-tuned acoustic foundation models.
The broader applicability of our method to diverse
speech tasks, including but not limited to multi-
speaker-related scenarios, spoken language under-
standing, and general audio classification tasks re-
mains unexplored. Therefore, we consider adapting
our approach to these tasks under wild acoustic test
settings as the future work. Finally, our work is
not specifically tailored for online streaming ap-
plications and TTA under streaming scenarios for
latency reduction is definitely essential in future
work.
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A Experimental Details

A.1 Dataset Details

We show the statistics of datasets used in our work
in Table 8 where # Utt. indicates the total number
of utterances. We build our synthetic datasets on
LibriSpeech test-other set. For LS-C, we add the
Gaussian noises when preparing the data loader
and use the amplitudes {0.005, 0.01, 0.015, 0.02,
0.03} as level 1-5 severity. For LS-P, we use the
AirConditioner_6, Typing_2, Babble_4, Munch-
ing_3, ShuttingDoor_6, VacuumCleaner_1, Airpor-
tAnnouncements_2, CopyMachine_2 wave files
from MS-SNSD 2 as the environmental sounds and
synthesize audios with signal-to-noise ratios {10,
5, 0, -5, -10} seperately. For L2-Arctic, we use
the default splits of 24 non-native speakers with
a balanced gender and L1 distribution. For music
datasets, we use the default DSing dev and test sets
and the full Hansen set (no split).

Type Datasets # Utt. Duration

Noise
LS-C 14695 25.5 h
LS-P 117560 204 h

Accent L2-Arctic 26867 27.1 h

Music
DSing-dev 482 41 min
DSing-test 480 48 min

Hansen 634 34 min

Table 8: Statistics of evaluation datasets.

A.2 Implementation Details

In our experimental evaluations, we mainly em-
ploy the acoustic foundation model, Wav2vec2.

2https://github.com/microsoft/MS-SNSD

Specifically, we utilize its Connectionist Temporal
Classification (CTC) variants with different model
sizes, Wav2vec2 Base and Wav2vec2 Large. We
involve the usage of publicly available Wav2vev2
Base 3 and Wav2vec2 Large 4 models fine-tuned
on speech recognition tasks. The detailed struc-
ture of the CTC model is a single fully-connected
layer and softmax on top of the foundation model.
Given that CTC-based models do not explicitly
model silences, we take those with the pseudo la-
bel <BLANK> as silent frames and the rest as non-
silent frames as per (Kürzinger et al., 2020; Wei
et al., 2022; Yang et al., 2023c). We are inter-
ested in those frames carrying important semantic
information so we take the blank indicator as an
approximation. The advantage is to directly utilize
the test-time inference output without additional
computation such as a VAD module. Moreover,
we found taking the blank symbol as an indicator
has already achieved good performance in existing
work (Yoshimura et al., 2020) which serves as a
good support. We mainly conduct experiments on
these two models despite the applicability of our
method to other transformer-based architectures of
acoustic foundation models. To make a fair compar-
ison with methods employing beam search, we uti-
lize the same 4-gram language model 5 as SGEM.
Since our test-time setting requires no access to the
target text, we use the language model trained on
the speech dataset despite the text-domain shift.
For the Conformer and Transducer, we employ
Conformer-CTC 6 and Conformer-Transducer 7.
All speech inputs are sampled or resampled at
16Khz.

We use Pytorch and Huggingface Transformers
in our implementation. All experiments are run on
a single NVIDIA A5000 GPU (24G). We evaluate
the performance of all baselines after adaptation for
ten steps. We use the AdamW optimizer as default
for all experiments. The weight α of consistency
regularization is set to be 0.3. We consider the
learning rate in {2e-4, 5e-4, 8e-4} for tuning affine
parameters of layer normalization and consider the
learning rate in {2e-5, 5e-5} for tuning feature ex-

3https://huggingface.co/facebook/wav2vec2-base-960h
4https://huggingface.co/facebook/wav2vec2-large-960h-

lv60-self
5https://huggingface.co/patrickvonplaten/wav2vec2-base-

100h-with-lm
6https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/

models/stt_en_conformer_ctc_small_ls
7https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/

models/stt_en_conformer_transducer_small



tractor. Since the TTA setting has no validation
set, we follow SUTA and use the hyperparameters
obtained from Librispeech test-other set with noise
level δ = 0.01 as the default for the experiments.
For singing data experiments, we use the hyperpa-
rameters obtained from DSing-dev as the default
for experiments on DSing-test and Hansen.

B More results

B.1 More Ablation Study

Strategies for Frame Selection We proceed to
analyze strategies utilized for the selection of
speech frames optimized within the CEA frame-
work. We investigate three pseudo-label-based
strategies, namely a) selection of non-silent frames
(as used in our method), b) selection of silent
frames, and c) selection of all frames. The results
are detailed in Table 9. The empirical findings re-
veal that the optimization of silent frames or all
frames within CEA yields inferior performance
compared to the optimization of non-silent frames.
Moreover, it is observed that the degradation is not
so substantial, as optimizing silent or all frames
may also contribute to enhancing the reliability of
noisy frames.

Strategy DSing-dev DSing-test

Non-Silent 53.5 50.1
Silent 54.9 51.7

All 54.9 50.6

Table 9: Ablation study of strategies for frame selection.
WER (%) results are reported.

Efficacy of STCR on SUTA To further validate
the efficacy of short-term consistency regulariza-
tion, we did one more ablation study using SUTA
+ STCR on the DSing-test set, and observed that
the proposed SCTR can enhance SUTA with WER
decreasing from 51.3 to 50.9. However, the per-
formance of SUTA + STCR still lags behind our
method CEA + STCR with WER 50.1, which
demonstrates that our proposed CEA also con-
tributes to the final improvement.

B.2 Comparison of Adaptation Time

Given the same recognition run-time using the
same Wav2vec2 Base, we provide a comparison of
the average adaptation time using the DSing-test
set on A5000 in Table 10.

Method Runtime

Tent 0.328
SAR 0.733
TeCo 0.401
SUTA 0.483
Ours 0.879

Table 10: Comparison of adaptation time using
Wav2Vec2 Base.

B.3 Results on CHiME3

We have conducted additional experiments on
CHiME3 using Wav2vec2 Base, and the results,
shown in Table 11, demonstrate that our method
outperforms other baselines.

Method WER

Source 31.2
Tent 28.0
SAR 29.0
TeCo 28.0
SUTA 25.0
Ours 24.5

Table 11: WER (%) results on CHiME3 using
Wav2vec2 Base with greedy decoding.

B.4 Results on More Acoustic Foundation
Models

In an extension of the main experiments, we delved
into the adaptation performance across diverse
acoustic foundation models. Specifically, our addi-
tional experiments utilize various models including,
Hubert-Base 8, Hubert-Large 9, WavLM-Base 10,
and WavLM-Large 11 from Huggingface. These
experiments are conducted to assess the adaptation
performance ain relation to different model sizes,
and training data sources. The outcomes on the
LS-C and DSing-test datasets are reported in Ta-
ble 12 and Table 13 respectively. We employ the
word error rate reduction (WERR) to measure the
relative improvement brought by our adaptation
method. We summarize the findings as follows:

8https://huggingface.co/danieleV9H/hubert-base-libri-
clean-ft100h

9https://huggingface.co/facebook/hubert-large-ls960-ft
10https://huggingface.co/patrickvonplaten/wavlm-libri-

clean-100h-base-plus
11https://huggingface.co/patrickvonplaten/wavlm-libri-

clean-100h-large



Size Level 1 Level 2 Level 3 Level 4 Level 5 Avg

Wav2vec2

Source
Base 13.9 24.4 39.5 54.5 75.7 41.6
Large 5.0 8.1 14.6 24.9 46.9 19.9

Ours
Base 10.7 16.2 24.0 34.1 56.5 28.3
Large 4.3 6.1 9.7 15.1 31.1 13.3

WERR (%)
Base 23.0 33.6 39.2 37.4 25.4 31.7
Large 14.0 24.7 33.6 39.4 33.7 29.1

Hubert

Source
Base 26.1 32.7 40.6 49.0 63.4 42.4
Large 5.0 6.4 8.9 12.8 24.3 11.5

Ours
Base 19.3 23.7 28.9 35.0 47.5 30.9
Large 4.3 5.2 6.9 9.1 16.1 8.3

WERR (%)
Base 26.1 27.5 28.8 28.6 25.1 27.2
Large 14.0 18.8 22.5 28.9 33.7 23.6

WavLM

Source
Base 24.1 35.9 48.2 59.8 76.7 48.9
Large 14.4 17.5 21.5 26.1 36.1 23.1

Ours
Base 15.1 19.8 25.9 32.8 47.6 28.2
Large 10.7 12.4 14.5 17.1 23.9 15.7

WERR (%)
Base 37.3 44.8 46.3 45.2 37.9 42.3
Large 25.7 29.1 32.6 34.5 33.8 31.1

Table 12: WER (%) results on LS-C over five severity levels of Gaussian noises using both base and large models of
Wav2vec2, Hubert, WavLM with greedy decoding. WERR stands for word error rate reduction.

Wav2vec2 Hubert WavLM

Base Large Base Large Base Large

Source 60.1 38.8 71.5 43.9 76.1 66.2
Ours 50.1 31.2 62.4 32.4 59.6 51.1

WERR (%) 16.6 19.6 12.7 26.2 21.7 22.8

Table 13: WER (%) results on DSing-test using both base and large models of Wav2vec2, Hubert, WavLM with
greedy decoding. WERR stands for word error rate reduction.



Model Sizes. A comparative analysis is con-
ducted between the base and large versions of each
model. The findings reveal that large models con-
sistently surpass base models. Furthermore, our
proposed approach uniformly improves both base
and large models. A notable observation is that our
method elicits a greater average improvement in
base models compared to large models within the
LS-C dataset. This trend is particularly pronounced
under lower noise levels ranging from 1 to 3. In
contrast, within the DSing-test set, the enhance-
ment for large models is more significant than for
base models. The phenomenon may be attributed to
the fact that large models already exhibit commend-
able performance under minor corruptions, even
without adaptation, thus providing limited scope
for further improvement. However, in scenarios
involving significant shifts, the expansive parame-
terization of large models facilitates more effective
adaptation, whereas base models face challenges.

Training Data Sources. A comparative eval-
uation of models trained with different datasets,
including Wav2vec2-Large trained with 960h Lib-
riSpeech set, Hubert-Large trained with 960h Lib-
riSpeech set, and WavLM-Large trained with 100h
LibriSpeech clean set, indicates that the larger-size
data set establish a stronger foundation for test-time
adaptation. A similar inference can be drawn when
comparing Wav2vec2-Base trained with 960h Lib-
riSpeech set, Hubert-Base trained with 100h Lib-
riSpeech clean set, and WavLM-Base trained with
100h LibriSpeech clean set.

In summary, our proposed unsupervised TTA
method demonstrates a considerable benefit across
diverse acoustic foundation models, reflecting sub-
stantial improvements for different model sizes and
training data sources.

B.5 Analysis on Large Vocabulary Size
Our proposed method can be generalizable to mod-
els with large vocabulary sizes. Theoretically, the
maximum entropy for non-silent frames is expected
to increase due to the larger number of classes.
Practically, this might also depend on the test input
and models. To analyze the entropy distribution for
non-silent and silent frames, we conduct an addi-
tional experiment using the Conformer-CTC model
with BPE tokenization, which has a larger vocab-
ulary size than the one of the Wav2vec2 model.
We observed an increase in entropy for non-silent
frames from 59.4% to 70.0%, as illustrated in Table
14.

Wav2vec2 Base Conformer-CTC

n-sil-h 0.594 0.700
n-sil-l 0.406 0.300
sil-h 0.362 0.497
sil-l 0.638 0.503

Table 14: Entropy Distribution at Step 0 for models
with different vocabulary sizes. "non-sil" and "sil" refer
to non-silent and silent frames, respectively. "h / l"
indicates frames with high or low entropy.

Type
Base Large

WER Params WER Params

Bias-Only 52.5 0.10M 31.8 0.28M
LNs 52.4 0.04M 31.4 0.11M

FE+LNs 50.1 4.63M 31.2 4.84M

Full 51.2 89.7M 31.9 307M

Table 15: Results with different parameterizations on
DSing-test using Wav2vec2 Base and Large models. We
consider (1) Bias-Only: all bias terms, (2) LNs: all scale
and shift terms of Layer Normalization, 3) FE+LNs:
parameters of the feature extractor and all scale and
shift terms of Layer Normalization, and (4) Full: all
parameters. Word Error Rate (%) and the number of
parameters (Params) are reported.

B.6 Connection with Existing Frozen Model
Adaptation

Our TTA-based method also exhibits parameter
efficiency. It is essential to emphasize that our
approach does not introduce additional layers of
normalization. Instead, we adapt the affine param-
eters (the scale γ and the shift β) of the existing
layer normalization from the pre-training phase,
which means no new trainable parameters are intro-
duced. It is noteworthy to highlight the difference
between our method and existing frozen model
adaptation methods, such as P-tuning, LoRA, and
Adapter. Unlike these techniques, our method con-
ducts source-free unsupervised adaptation using a
single utterance. Furthermore, our primary objec-
tive of adaptation is to address open-world acoustic
data shifts, rather than task adaptation.

B.7 Results on Different Parameterizations

In order to further evaluate the effectiveness of our
proposed method across diverse parameterizations,
we conduct additional experiments on the DSing-
test set using Wav2vec2 Base and Large models.
Specifically, we explore four distinct parameteri-



zation schemes and compute their corresponding
number of parameters: (1) Bias-Only refers to fine-
tuning only bias terms as per Zaken et al. (2021).
(2) LNs encompasses the adjustment of all scale
and shift terms associated with layer normalization.
(3) FE+LNs involves the parameters of the feature
extractor in addition to all scale and shift terms of
layer normalization. (4) Full entails the fine-tuning
of all parameters within the model. It is important
to note that all other experimental settings except
for parameterization have remained consistent. The
experimental results are presented in Table 15. Our
findings reveal that our method exhibits compat-
ibility with different parameterizations, yielding
comparable performances. Among these parame-
terizations, LNs demonstrate the smallest number
of parameters adjusted, thereby illustrating the pa-
rameter efficiency of our method.

B.8 Full Results for LS-P
We present the full WER results for eight environ-
mental sounds of five severity levels in Table 16 -
23. The first row denotes signal-to-noise ratios.

B.9 Full Results for L2-Arctic
We present the full speaker-level WER results for
each L1 in Table 24 - 29. The first row denotes the
speaker ID. The details of the speaker ID can be
found in the L2-Arctic 12.

12https://psi.engr.tamu.edu/l2-arctic-corpus/



10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 16: Air Conditioner.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 17: Typing.

10 5 0 -5 -10

Source 50.4 62.8 74.6 83.8 90.1
Tent 44.8 57.6 71.1 82.7 90.5
SAR 47.3 57.8 72.1 82.5 89.6
TeCo 44.8 57.6 71.1 82.7 90.5
SUTA 39.7 51.9 64.4 76.4 85.2
Ours 39.3 51.5 64.1 76.3 85.3

Table 18: Munching.

10 5 0 -5 -10

Source 19.2 23.6 29.7 37.0 45.0
Tent 16.4 20.5 26.0 33.0 41.5
SAR 17.7 22.0 27.7 35.0 42.7
TeCo 16.3 20.5 26.0 32.9 41.5
SUTA 14.9 18.5 23.6 29.9 37.7
Ours 14.8 18.3 23.4 29.7 37.4

Table 19: Shutting Door.

10 5 0 -5 -10

Source 57.8 76.6 91.5 98.2 99.9
Tent 49.7 69.2 87.2 97.0 99.6
SAR 52.6 72.7 88.5 96.9 99.8
TeCo 49.7 69.2 87.2 96.9 99.6
SUTA 39.8 56.7 76.6 93.2 98.6
Ours 39.3 56.0 76.0 93.0 98.6

Table 20: Vacuum Cleaner.

10 5 0 -5 -10

Source 40.9 54.3 66.3 75.8 83.4
Tent 36.1 49.3 62.8 73.7 82.4
SAR 38.2 51.0 64.0 74.3 82.2
TeCo 36.1 49.2 62.8 73.7 82.3
SUTA 31.2 43.8 58.3 70.4 79.3
Ours 31.2 43.7 58.1 70.5 79.7

Table 21: Airpoint Announcements.

10 5 0 -5 -10

Source 49.8 63.5 76.6 86.9 93.5
Tent 44.4 58.9 74.2 86.3 93.7
SAR 46.6 60.7 74.8 86.2 93.2
TeCo 44.4 58.8 74.2 86.2 93.7
SUTA 39.3 52.7 67.4 80.8 89.7
Ours 38.9 52.3 67.3 81.0 89.8

Table 22: Copy Machine.

10 5 0 -5 -10

Source 66.6 81.6 94.7 104.3 111.2
Tent 62.0 77.8 92.0 102.2 109.4
SAR 62.8 77.7 90.5 102.1 106.9
TeCo 61.9 77.8 91.9 102.2 109.4
SUTA 55.5 73.0 88.6 101.1 109.2
Ours 55.5 73.0 89.1 102.0 110.3

Table 23: Babble.



ABA SKA YBAA ZHAA

Source 21.0 32.5 16.7 17.3
Tent 18.4 28.4 14.5 14.4
SAR 19.4 30.3 15.7 15.3
TeCo 18.4 28.4 14.5 14.4
SUTA 17.8 27.2 13.7 14.0
Ours 17.7 26.8 13.5 13.9

Table 24: Arabic.

BWC LXC NCC TXHC

Source 28.5 33.5 26.9 21.1
Tent 24.1 29.2 22.8 18.1
SAR 26.3 30.9 25.0 19.5
TeCo 24.1 29.3 22.9 18.0
SUTA 23.3 27.6 21.5 17.4
Ours 23.0 27.7 21.3 17.3

Table 25: Mandarin.

ASI RRBI SVBI TNI

Source 14.3 15.7 19.8 18.6
Tent 11.7 12.9 15.7 15.6
SAR 12.7 14.0 17.6 16.7
TeCo 11.7 13.0 15.8 15.6
SUTA 11.3 12.5 14.3 14.9
Ours 11.3 12.2 14.3 14.8

Table 26: Hindi.

HJK HKK YDCK YKWK

Source 11.8 23.3 17.2 17.0
Tent 9.7 20.8 15.0 14.5
SAR 10.9 21.7 15.8 15.5
TeCo 9.8 20.8 15.0 14.5
SUTA 9.5 19.8 14.2 13.8
Ours 9.5 19.7 13.9 13.7

Table 27: Korean.

EBVS ERMS MBMPS NJS

Source 35.7 24.2 14.1 14.6
Tent 31.7 20.0 12.7 12.4
SAR 33.5 21.7 13.4 13.2
TeCo 31.7 20.0 12.7 12.4
SUTA 29.7 18.7 12.3 12.1
Ours 29.5 18.5 12.3 12.1

Table 28: Spanish.

HQTV PNV THV TLV

Source 41.6 18.5 38.1 41.1
Tent 38.0 16.4 34.4 38.1
SAR 40.3 17.6 36.2 39.4
TeCo 38.0 16.4 34.4 38.0
SUTA 36.5 15.5 33.2 36.8
Ours 36.3 15.5 32.9 36.8

Table 29: Vietnamese.
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