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Symbolic Music Generation from
Graph-Learning-based Preference Modeling and

Textual Queries
Xichu Ma , Yuchen Wang , and Ye Wang

Abstract—This paper investigates the domain of automatic
music generation (AMG) and its capacity to produce music
that is aligned with user preferences. The incorporation of user
music preference (UMP) awareness in AMG technology has the
potential to reduce reliance on musicians and domain experts
while encouraging users to engage in activities that promote
human health and potential. Current research in AMG has
been limited to the qualitative control of a constrained set of
attributes in the generated music such as selecting a genre from
a given list. This constraint makes it challenging to develop
music that is both aligned with UMP and suitable for practical
text query-based applications. To address this challenge, we
propose to apply deep-graph-networks on music community
data, jointly modeling UMP and music features. Moreover,
users’ textual descriptions of expected music can be transformed
into graphs that are compatible with UMPs. Node embeddings
representing user queries’ connotation are extracted to condition
the music generator. The results on objective and subjective
metrics demonstrate a significant improvement in UMP accuracy
by 31.3%, UMP-aware AMG by 63.5%, and text-to-music AMG
effectiveness by 76.5%. Our detailed analysis indicates that the
generated music aligns best with queries comprised of short
sentences and commonly used words.

Index Terms—Music Preference, Music Generation, Text to
Music, Graph Learning

I. INTRODUCTION

THE use of appropriate and preferred music as an accom-
paniment to activities has been observed to encourage in-

dividual participation in these activities; this may be beneficial
for promoting activities associated with human growth and de-
velopment. These activities include language learning [1], [2],
[3], physical fitness routines [4], and mindfulness meditation
[5]. Individuals are likely to engage in these activities with
greater efficacy, frequency, duration, and notably, enhanced
experiential outcomes [3], [6]. This study seeks to address
the three primary obstacles to delivering suitable music for
particular activities at any time and place: modeling user music
preference (UMP), incorporating UMP into automatic music
generation (AMG) systems, and integrating activity-specific
requirements as textual queries into AMG.

A common representation of UMP in AMG systems is
through a weighted summation of a user’s preferred music’s
features [7]. The UMP embedding is converted into four
controlling parameters for a rule-based music generator. The
model claims to produce music tailored to users’ preferences,
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but its scope of personalization remains limited as it adheres
strictly to widely accepted composition rules for pop music.
What is worse, the system lacks the ability to regulate the
produced music to meet specific domain-related demands of
a task. Queries such as “Provide a fast-paced folk song that
is inspiring and preferably sung in choral form,” are not
feasible because the model cannot connect specific music
features with embeddings. The main issue is that current
studies oversimplify the analysis of UMP by treating songs
as either liked or disliked samples [8], without thoroughly
examining the relationship between UMP and the multifaceted
features of music.

Another research area aims to create music based on
descriptive text. In audio domain, it involves transforming
music description into a latent representation and subsequently
translating it into musical audio. In audio music domain,
Jukebox [9], Mubert [10] and MusicLM [11] project text
and its paired audio into a latent space, allowing for mu-
sic generation through reconstruction and resample from the
space. However, their various methods for coupling music
and text all exhibit drawbacks such as poor audio quality,
computational unscalability, potential copyright infringement,
and the need for professional description. In symbolic music
domain, current research on symbolic music generation from
text is limited to seq-to-seq mapping lyrics or descriptions to
melodic notes [12], [13], [14]. However, these attempts fall
short in the precise semantic comprehension of descriptions,
as well as the effective imposition of expected constraints in
music generation.

To address these challenges, we propose to employ deep
graph learning to extract UMP by modeling the graph-like
relationships between users and their preferred songs. This
methodology utilizes the varied feature tags of both users and
songs, as well as their internal and mutual relationships. The
outcome is a UMP model that is multi-faceted, interpretable,
and compatible with AMG. Additionally, we propose to trans-
form the user’s current expectations (in texts) into virtual
graphs to refine the UMP embedding. In short, the UMP is
built upon the users’ music community relationship, and nu-
anced revisions can be achieved through further descriptions.

Concretely, a music community graph is created by rep-
resenting users and songs’ feature tags as nodes and their
relationships (such as liking, being liked, and subscribing) as
edges. During the training phase, we collect representative
graphs based on the most active users in the community.
We aim to enhance a graph-transformer model through self-
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supervised learning, which involves predicting the presence of
relationships between nodes. During the inference stage, a de-
scriptive text query, can be transformed into nodes compatible
with the graph constructed for the user. The graph calculates
the embedding of the user’s node, which includes both the
UMP and queried features, as input for a music transformer
[15] model. The model generates music that is both UMP-
aware and demand-satisfying for human activities.

Our study shows that the proposed graph model improves
UMP prediction accuracy by 31.3% compared to the base-
line. The utilization of UMP embedding enhances AMG’s
user likability by 63.5%. Our method enhances the match
of expected features between textual queries and generated
music by 76.5%. In the comprehensive performance evaluation
experiment, our proposed model outperformed various state-
of-the-art (SOTA) models in the personalized music generation
task, particularly concerning UMP awareness and description
correspondence. Furthermore, our thorough analysis of the
queries suggests that a concise query comprising commonly
utilized words yields music the most aligned with its semantic
connotation.

The main contributions of this paper are three-fold:

• We propose to model UMP via multi-facet features of
users and songs as well as their relations in the music
community. It allows us to examine how preferred songs
and subscribed users influence UMPs jointly.

• We present a novel approach utilizing a deep graph
learning model and self-supervised optimization to model
users, songs, and their relationships. This method ex-
tracts UMP embeddings that can be applied to a music-
transformer model.

• We are the first to generate personalized symbolic music
based on users’ textual queries and UMP. This is achieved
by converting descriptive texts into graph nodes and
updating UMP embeddings to jointly guide AMG.

II. RELATED WORK

A. User Preference Modeling

User preference modeling, which aims to predict and per-
sonalize users’ experiences, has been widely studied in fields
such as music [7], [16], fashion [17], [18], and e-commerce
[19], [20], [21] for item recommendation.

Common techniques in this domain include collaborative
filtering (CF) [22], [23], content-based filtering (CBF) [24],
and hybrid approaches [25] that merge both methods. CF al-
gorithms use user and item information, as well as interaction
histories, to connect users with items. This is achieved by
either recommending preferred items to similar users or sug-
gesting items similar to the ones users prefer. While effective
in recommending satisfying items, this technique is limited in
its ability to address tasks beyond recommendation, such as
personalized music generation, due to its lack of consideration
for the underlying reasons behind user preferences. CBF
generates compact embeddings from user interaction data and
utilizes them to forecast preferences for new items. Such
embeddings encounter challenges in supporting AMG due to

the unclear contributing factors in their formation, hindering
their effective integration.

Deep learning models, including CNNs [26], [25], RNNs
[27], deep belief networks (DBNs) [28], and GANs [29],
[30], have been utilized to extract UMPs. Studies have also
examined the correlation between UMPs and traits such as
emotions and personalities [31]. Due to UMP’s long-term
stability [32], they are often represented as an average aggre-
gation of preferred artists and songs, or as the primary cluster
of samples. In contrast, visual arts preferences, especially in
fashion, tend to change periodically due to social trends [17],
[18]. Meanwhile, e-commerce preferences change frequently,
necessitating the use of reinforcement learning to update
preferences in real-time [33], [34]. Research on the integration
of UMP is limited to music recommendation. Therefore, it
is important to investigate its potential value in more music-
generation-related tasks.

B. Music Generation from Texts

Deep learning has gained popularity in AMG tasks, despite
being less interpretable and controllable than statistics-based
and rule-based methods. CNNs [35], [36], RNNs [37], [38],
[39], [40], GANs [41], [42], and Transformers [43], [44] are
commonly employed due to their capacity to identify pat-
terns, manage long-term dependencies, and replicate authentic
compositions. Language models such as Transformer-XL [45],
[46], [47], [48], [49] and GPT-2 [50] have been utilized in
AMG to capture longer and structural music dependencies.

Recently, with the advent of ChatGPT1 and image gener-
ation from texts, some works have attempted to use text to
condition music generation as well. Although a few attempts
of mapping lyrics or descriptions to symbolic musical notes
[12], [13], [14] have been made, there is currently no known
methods for generating multi-track symbolic music from text.
In the domain of text-to-audio, Jukebox attempts to project
text and its paired audio into a latent space for reconstruction,
enabling new text input to be sampled and decoded into
music [9]. This was followed by Mubert [10] which maps
user input to a tag list, finding matching audio segments for
concatenation. Recently, MusicLM [11] maps long texts to
a cross-model audio-text embedding through Mulan [51] and
decodes the semantic and musical embeddings together into
new pieces.

Despite the progress made in text-to-music generation meth-
ods, existing approaches still face several limitations such as:
(1) Potential copyright disputes, since these methods involve
sampling and concatenating pre-existing audio clips rather
than composing a new piece. (2) Low audio quality: they
mainly employ a single track with a low sample rate of 24kHz
and a 6kbps compression, and thus are subject to the sub-
standard quality of outdated audio files and the considerable
reliance on computing resources. This leads to suboptimal tone
quality, especially for music genres that demand superior audio
separation, such as orchestral ensembles. (3) User-friendliness
and personalization, since generating satisfactory personalized

1https://openai.com/blog/chatgpt
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results necessitates extensive, precise, and comprehensive tex-
tual input, which can be a daunting task for the majority of
users. Disparities in listener perceptions and language usage
when describing music can result in biases and systematic
errors.

C. Controllability in AMG

The foundation of a demand-satisfying AMG is controllabil-
ity. Controllable music generation allows users to customize or
control the generated music by specifying certain parameters
or characteristics. This method allows for a specific and
interactive generation process that cannot be achieved through
traditional AMG techniques. The generation should ideally
be able to understand and reflect free-form descriptions from
users.

A typical working paradigm of control can be found in
many controllable music generation systems where various
constraints are encoded as conditional embeddings and infused
into deep-learning based models to control AMG. Prevalent
conditions include emotions [52], styles [53], and text de-
scriptions [54] as well as two widely used techniques include
embedding infusion [49] and disentanglement [55], [41].

1) Categories of Control:
a) Emotion.: Music generation based on emotion la-

bels utilizes valence-arousal dimensions to classify emotions
such as happy, calm, agitated, and suspenseful. Emotion-
conditioned music generation has been previously explored
through deep generative models [56], [57]. These early ap-
proaches utilize a generator and an emotion classifier to control
polyphonic music generation based on specific emotions. Sub-
sequent efforts have been made to further integrate emotions
into generated music. Emotional vectors are commonly used
to encode emotion tags and guide the generator in the process
[52], [58], [59], [60], [61]. Certain algorithms are designed
for particular purposes, such as generating background music
for role-playing games [62], producing audio books [63], or
providing musical accompaniment for images [60]. However,
most existing works have a limited range of emotion tags,
which does not meet our need for generating descriptions
freely.

Style. Styles can serve as a form of guidance too. Music in
works guided by this condition is created either by following
fixed target styles [53] or by using styles obtained from
existing composers and pieces [64], [55]. Certain musical
compositions produce melodies that are dependent on other
musical elements, such as chords [65], [66], [67], lyrics [68],
[69], [70], or a leading theme [71]. Conversely, these elements
can also be dependent on the melody [72], [73], [74], [75].
The existing techniques utilize datasets with interdependent
stylistic parameters. However, the underlying logic remains
unclear, and these parameters are not labeled for training.
Consequently, it is uncertain what the neural network learns for
these parameters. This limits controllability and describability.
Further, certain studies have demonstrated that users can
modify musical attributes, such as pitch contours and rhythmic
complexity. However, such modification can only apply to
existing pieces [76], [55].

Text. Textual inputs are utilized as conditions to enhance
the descriptive capability of music generation [54]. An active
learning based music generation model with pre-embedding
has been proposed and trained with the Lakh Pianoroll Dataset
[41], [77]. The BERT model [78] is utilized to embed input
texts, which are subsequently translated into musical output.
The model is trained to generate diverse outputs based on
texts with varying semantics. The lack of semantic connection
between words and music, however, results in an inexplicable
and unpredictable text-to-music flow, as there exist arbitrary
mappings from different points in the distribution to different
generated pieces.

2) Techniques of Control:
a) Embedding Infusion: Controllable music generation

can be achieved through an embedding infusion technique that
utilizes condition embeddings to regulate the music generation
process. Two types of embeddings exist: discrete tokens [79],
[80], [49] and continuous tokens [58]. Meanwhile, infusion can
occur in two ways: concatenation in the input tokens or in the
hidden states [58]. We utilize continuous tokens to prevent
information loss caused by binning of continuous value or
truncation of the generated sequence. Conditioning the model
on a specific embedding enhances the ability to control the
generated music’s characteristics, thereby serving as a potent
manipulation of music generation and synthesis [81], [82],
[83], [84].

Disentanglement. Disentanglement pertains to the parti-
tioning and grouping of distinct musical features in control-
lable AMG, enabling users to designate and regulate particular
facets of the produced music. Considerable research has been
dedicated to the creation and assessment of disentangled mod-
els for music generation. These models aim to separate musical
elements and characteristics, such as melody, harmony, and
rhythm [76], [55]. However, these works typically concentrate
on a fixed set of factors and are difficult to accommodate
unrestricted description.

To conclude, current methods are limited in their capacity
to generate personalized and high-quality music. (1) Current
UMP models face challenges accommodating multi-facet user
preferences of music characteristics, leading to a mixed-up
generation result of all listened music. (2) Existing text-
to-music generation is inadequate in generating high-quality
symbolic music that allows secondary editing or collaboration
between humans and computers. (3) The imposed conditions
impact only a fraction of music characteristics.

III. METHODOLOGY

In this study, we present a novel method for generating mu-
sic that is tailored to individual tastes and has characteristics
that are in line with textual queries. The three modules of
our methodology are UMP extraction, query conversion, and
music generation. Figure 1 displays the system’s workflow.
First, we propose a graph-learning based model for UMP
extraction, which represents users and songs in a music sharing
community as two types of nodes and describes their con-
nections using three types of directed edges (Figure 1-a). We
suggest using unsupervised optimization to enhance the ability
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Fig. 1. System framework. (a) Music sharing community graph. The graph comprises user and song nodes. The edges are directional and can be classified
into three types: user-user, user-song, and song-user. (b) Textual query-converted graph. The process of converting a textual query into a graph involves
creating a center query node, expanding the graph by connecting relevant nodes to the query node, and executing the graph propogation. The center node’s
embedding is desirable to condition music generation. (c) Multi-facet UMP conditioned music generator.

of the extracted UMP to forecast specific users’ preferences
for particular songs or other users. This architecture resolves
the challenge of organizing multi-type data in UMP models by
utilizing a graph that inherently depicts users, songs, and their
topological relations. The foundation of a UMP is a specific
user’s node embedding. By creating new nodes from the user’s
textual query and connecting relevant song nodes to the user
node (Figure 1-b), we can further grow the graph based on
the fundamental UMP. After information propogation within
the graph, the user node displays the optimized UMP features
with the queried attributes. To generate a multi-track musical
composition based on the embedding of the user node (Fig-
ure 1-c), we propose a transformer-based music decoder. Since
it complies with the domain-specific requirements outlined in
the input text and is also in line with the UMP embedding,
the generated music is expected to encourage participation in
beneficial activities.

A. Problem Formulation

The process of generating UMP-aware music from text can
be divided into three formal stages:

UMP Extraction: A graph G{V,E} is constructed to
represent a music community, given a set of users U =
{u1, u2, ..., uN}, a set of music pieces M = {m1,m2,
...,mK}, and their likability relations. The sets V and E repre-
sent the nodes and edges respectively, where |V | = |U |+ |M |.
User nodes are initialized with their profiles, and song nodes
are initialized with the bag-of-word encoding of their tags. The
UMP extraction model Oθ(G) generates embeddings h ∈ Rd

for all nodes, representing the users’ fundamental UMP and
the songs’ properties. The trainable parameters of the UMP
extraction model are denoted by θ.

Query Conversion: The provided textual query, denoted as
q = {t1, t2, ..., tF }, wherein each tf signifies a lexical token,
delineates the user’s expectation of the music to be generated.
This query undergoes a process of refinement into a set of tags,
subsequently conversion into a virtual node that encapsulates
the position and context of such expected songs that match the
textual query in the music community. During the conversion
process, the pertinent song nodes are incorporated into the
graph denoted as G and subsequently connected to either a
virtual query node or an existing user node, contingent upon
the user setting. This conversion yields the graph G′. To obtain
an embedding that encapsulates the queried features and the
user’s UMP, the virtual/user node’s embedding hu is updated
to hu

′
through a recalculation of graph propagation in the

updated graph Oθ(G
′).

Personalized Music Generation: Conditioned on the the
embedding of a node hu and optionally seed music as primer
p, the music generator Aγ(hu, p) composes a new music
piece m′ that conforms to the UMP and satisfies the desired
characteristics outlined in the query. γ is the music generator’s
trainable parameters.

B. Graph-based UMP Embedding Model

We propose a graph transformer-based UMP embedding
model for learning song embeddings and users’ musical prefer-
ence embeddings. The model is designed to jointly learn both
user profiles and musical features of songs from community
data. The optimized embeddings can serve as conditions in
UMP-aware music generation.

1) Graph Creation: This study involves the construction of
a graph to depict the entities and their relationships within a
music community. The graph comprises user and song nodes.
The edges are directional and can be classified into three types:
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Fig. 2. Graph network architecture. (a) Graph construction. (b) Graph model feedforward propagation of one layer. (c) Graph model optimization.

user-user, user-song, and song-user. For instance, when user
a follows user b, a directional edge is created from b to a
to account for the influence of b on the computation of a’s
embedding during graph propagation. Likewise, when a user
likes a song, it results in the formation of mutual connections
between them.

Song and user nodes possess associated features utilized in
the calculation of the embeddings. Song features include tag
list, play count, song name, artist name, and album name.
Meanwhile, user features include the username profile and
the country. All features are projected into a hidden space
and represented as vectors of equivalent dimensions for graph
propagation [85].

The graphs constructed for training typically revolve around
“center users” who serve as the initial nodes in a community
network. According to our findings of the datasets, followers
of active users also frequently engage in active behavior. Ideal
“center users” have a ton of followers, tags, and favorite songs,
which creates more graph edges and minimizes the chance
of underfitting. The most active, tag-diverse, and impactful
individuals are selected as the “center users”. Next, graphs
are expanded with k hops by connecting more preferred songs
and followed users of the peripheral nodes. In inference, an
exclusive graph of a user is built similarly starting from this
newcomer user as the center.

2) Model Architecture: Our UMP embedding model is
based on the graph transformer proposed in [85]. The graph
input consists of two node types (users and songs) and three
edge types (user-to-user, user-to-song, and song-to-user). The
nodes and edges’ embeddings are vectors of dimension d,
collecting information from neighboring nodes and iteratively
updating for T rounds (layers). As shown in Figure 2, each
round of graph propagation is parallelly conducted to nodes
and edges. Afterwards, we take the final embeddings of user
nodes as their fundamental UMPs.

Node and edge embeddings (h and e) are initialized as

stacked feature embeddings that undergo linear mappings:

h0
mi

= L(concat(emb(tags), emb(play count),
emb(song name), emb(artist name), emb(album name)))

(1)

h0
ui

= L(concat(emb(username), emb(country))) (2)

e0 = L(emb(edge type)) (3)

where emb represents a linear mapping from the feature’s
original size to the hidden dimension, L represents another
linear mapping from the concatenated feature size to the
hidden dimension d, and edge type is in the set 0,1,2 denoting
the three edge types.

Then the attention in the graph of each round is formulated
as:

Attention(ht
i, h

t
j , e

t
i,j) = LeakyReLU(AT [Wht

i||Wht
j ||Weti,j ])

(4)
where ht

i and ht
j are the hidden states of nodes i and j, eti,j

is the edge embedding of the edge i→j at round t, W is the
learnable weight matrix, || denotes concatenation, and A is a
learnable weight vector.

Next, the attention scores between nodes are computed as:

αt
i,j =

exp(Attention(ht
i, h

t
j , e

t
i,j))∑

k∈N (i) exp(Attention(ht
i, h

t
k, e

t
i,k))

(5)

where αt
i,j is the attention score between node i and j, and

N (i) is the set of nodes that are directed towards node i.
Last, the embeddings are updated with the attention scores:

ht+1
i = σ(

∑
j ∈ N (i)αi,jWhh

t
j) (6)

et+1
i,j = σ(

∑
k ∈ N (i)αi,kWee

t
i,k) (7)

where ht+1
i and et+1

i,j are the updated hidden states of node
i and edge (i, j), Wh and We are learnable weight matrices
and σ is the tanh function. After the graph propagation of
T rounds, h vectors of user nodes contain the information
collected and aggregated from the users’ favorite songs and
the preferences of other users they follow, thus representing
their own UMPs.
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3) Self-supervised Training Procedure: We utilize self-
supervised learning to train the UMP embedding model for
predicting user-song connections without labeled user prefer-
ence data. The edge prediction task is employed to optimize
the model with the edge data created from music communities.
The model is given an input graph and randomly selects x
existing and x non-existing edges as positive and negative
samples (denoted as Etrue and Efalse). The model then
predicts the presence or absence of these edges based on the
embeddings of their starting and ending nodes. With one graph
fed into the model per batch, we implement a random sampling
strategy for the 2x user-song edges to mitigate overfitting risk.

Etrue = rand(E, x), Efalse = rand(¬E, x)

PE = MLP (hT
i , h

T
j ), ∀ei,j ∈ Etrue ∪Efalse

Loss = BCE(PE , P
′
E)

(8)

where P ′
E denotes the ground truth of the sampled edges’

existence.

C. UMP-Aware Music Generation Model

We design a UMP-aware music generator that incorporates
UMPs and primers (seeds) to generate personalised music.
The music generator utilizes a user’s UMP embedding and
an optional primer as leading notes to produce music. UMPs
are obtained from the acquired node embedding h. While our
model can generate music from scratch, we consider primers
to be a supplementary sample representation of the UMPs,
despite their non-necessity.

1) Music Encoding: To obtain a structured representation of
symbolic music, we utilize the performance encoding proposed
by [86] which includes 128 NOTE-ON events, 128 NOTE-
OFF events, 100 TIME SHIFTs allowing for expressive tim-
ing at 10ms and 32 VELOCITY bins for expressive dynamics.
The encoding is implemented through a neural processor2

which converts MIDI files into numerical representations of
musical events, extracting information such as timing, velocity,
pitch, and instrument, as shown in Figure 3. The resulting
arrays provide a compact sequential representation of music
and can be combined with UMP embeddings for further
processing.
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Fig. 3. Data encoding. The input MIDI is encoded into a sequence of musical
events where each token is concatenated with identical UMP embedding.

2https://github.com/jason9693/midi-neural-processor

2) Model Architecture: The music generation model uti-
lizes a MusicTransformer architecture, inspired by the work
of [15], to produce music that resembles human-composed
music in both structure and aesthetics as well as having a long
duration. We select it because it is the state-of-the-art symbolic
generation model. Its autoregressive music generation method
also aligns well with our idea of incorporating UMP for precise
and multi-faceted control.

3) Training Procedure: The model was pre-trained on the
LPD-5-full dataset as presented by [41], [77]. The dataset
comprises samples with a five-track structure (Piano, Drum,
Strings, Bass, and Guitar), facilitating the generation of multi-
track music with long-term structures. After getting familiar
with the dataset’s general music style, the music generator
is fine-tuned using a subset data of 470 songs and their
corresponding node embeddings, which represent the listeners’
UMPs. The songs’ node embeddings are integrated into the
input music token sequences prior to being fed into the music
transformer, as depicted in Figure 1-c. The embedding is
appended to each time stamp of the input sequence to minimise
information loss, as discussed in subsubsection II-C2.

D. Music Generation from Textual Query

Our UMP embedding model enhances controllability over
AMG by leveraging the graph model’s capacity to integrate
diverse data types. AMG can be conditioned by the embedding
of a song node, a user node, or a combination of both. Various
methods for graph construction and embedding computation
can direct AMG to generate music in accordance with different
requirements. For instance, to produce a pop song that aligns
with a user’s preference, we limit the first hop of the user’s
graph to pop song nodes exclusively.

Moving forward, to generate music that aligns with the
desired characteristics described in the query, we propose
to model the textual queries as narrowed-down forms of
UMPs. Textual queries can be converted into graphs to obtain
their equipotent UMP embeddings. The query-converted UMP
embeddings can control music generation to reflect the desired
characteristics of the query. The process involves creating a
center query node, expanding the graph by connecting relevant
nodes to the center node, executing the graph propogation, and
using the center node’s embedding to conditionally generate a
song.

To obtain the UMP embedding of a textual query, initially,
we analyze the query text and rank the tags based on their
semantic relevance to the query using BERT [78]. Specifically,
extracting attributes from textual queries involves establishing
a semantic context match between a song’s tag repository (a
1 × 128 vector ∈ {0, 1} ) and the query text. To accomplish
this, we leverage the BERT model to compute word embed-
dings for both the tags in the song tag repository and the
user query. These embeddings enable a sorting mechanism
that ranks the tags based on their relevance to the query:

argmax
i

[BERT (ti) ·BERT (query)] (9)

Subsequently, a center query node is created. It can be initiated
as a virtual graph node that represents the query or copied
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from an existing user node. Then we select the top K tags
with the highest relevance ranks, and thereby activate the most
semantically relevant tags of the virtual/user nodes’ initial
feature vector.

Next, the graph for this query is further expanded from
the center virtual/user node. Specifically, we filter out the
songs nodes that have the highest cover ratio of tags with
the top K tags from the dataset, and connect them to the
center node. Then the graph is expanded in the same way
as described in subsubsection III-B1. Finally, the embedding
of the center node is derived from the graph transformer’s
propagation computation and utilized to condition the music
generation.

Advantageously, a query node embedding is compatible
with the embeddings of both users and song nodes’ UMP
embeddings. The query can either condition AMG alone by
connecting to virtual center node or function as a supplement
to a user’s fundamental UMP by connecting to an actual user
node. This reduces the precision demands for the description
in text-to-music generation. For example, if a user inputs the
query “A fast-paced classical song”, and provides some songs
as references, but the songs that the user provides as “classical”
are actually contemporary symphonic and those provided as
“fast” are actually what other users consider as medium speed,
the use of the graph network ensures that for this compound
embedding, medium-speed contemporary symphonic songs are
tagged as “fast” and “classical”, so the user’s requirements are
embedded correctly from the user’s subjective point of view.

Our method improves upon existing text-based music gen-
eration by utilizing the user’s network as the fundamental
control, thus obviating the requirement for musical proficiency.
Our model incorporates both textual inputs and UMPs to
mitigate biases arising from imprecise music descriptions and
the musical perceptions that vary from person to person.
This achieves a more personalised generation process for
individual users. The utilization of a symbolic music generator
enables genuine composition and amplifies the possibility for
subsequent editing and collaboration between humans and
machines.

IV. EXPERIMENT CONFIGURATION

A. Implementation Details
Our UMP embedding model is implemented based on the

graph transformer described in [85]. The hyperparameters,
such as the number of layers T of 10, the number of attention
heads of 8, and the utilization of residual networks, remain
unchanged. The tag number, denoted as K, is set to 3 for
textual-query graph construction. Given that most songs in the
Last.fm dataset possess between 3 to 5 tags, we assert that
this lower bound selection optimizes representativeness and
compatibility. Consequently, this approach mitigates the issue
of certain perfect match neighbors being erroneously neglected
due to their lower tag count thus lower tag cover ratio. The
hidden dimension d is set to 64, which is equivalent to the
output embedding dimension. Binary cross-entropy loss is
utilized for edge prediction. An Adam optimizer with βs=(0.9,
0.999) is utilized to update the parameters, with an initial
learning rate of 7e-4.

We implement our music generation model with the Mu-
sicTransformer [15]. The model adheres to the configuration
of 6 layers, 8 heads, 512 hidden dimensions, and 1024
feedforward dimensions. The UMP embedding is integrated
into the input music sequence through the conditioning method
of concatenation. Cross-entropy loss is utilized to evaluate
the dissimilarity between the generated sequence and the
ground truth. The model with the highest validation accuracy
is selected for practical inference.

B. Data Preparation

1) Data Collection: We collected 3,477,790 songs and
79,914 users from Last.fm3, a music platform that enables
users to monitor their listening histories and subscribed users,
as well as explore new music. The platform offers APIs to
access pertinent data on songs and users. To ensure diversity
and representation in the dataset, we initially selected 50
common songs that correspond to the top tracks of the 50 most
popular tags. The commenters who give the highest ratings
on these songs are referred to as “initial users.” We expanded
“music networks” of our “initial users” by utilizing Last.fm’s
API to gather information on their followers and followees,
and identified the most active users within these networks with
the most listening events. These users are defined as “centre
users”. Our collected data comprises the graphs expanded from
“center users” with a radius k of 5 hops.

2) Feature Selection: User and song nodes’ features gath-
ered from Last.fm involve users’ name and country, and songs’
name, album, artist, play count, and tags (127 most popular
tags are taken into account). The 127 tags are represented as
bag-of-word vectors of 127 dimensions. Future work may ex-
pand the available information beyond the current limitations
of the last.fm API. The model’s robustness to changes in graph
features enables easy updating and retraining without altering
the model architecture.

3) Graph Division: To optimize the efficiency of training,
we divided large graphs into subgraphs containing approxi-
mately 10k nodes each. To maintain the potential connections
between subgraphs, we adopted a 50% overlap rate of the
songs and users included in the subgraphs. This training
strategy allows us to train the model on smaller, more man-
ageable subgraphs while still capturing the complexity and
connectivity of the larger graphs [87].

V. SUBJECTIVE EXPERIMENT

The purpose of this experiment is to determine whether
the suggested UMP embedding model and the suggested
music production model are effective in modeling UMPs and
producing music that fits those UMPs. We also seek to test
how well our algorithm can produce music based on user-
provided textual queries. Building upon this foundation, we
aim to assess the overall performance of the proposed model in
personalized music generation tasks that require simultaneous
consideration of UMP awareness and textual descriptions.

3https://www.last.fm/
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A. Evaluation of UMP
1) Compared UMP Modelings: We conducted a compara-

tive analysis of various UMP acquisition methods to determine
the optimal approach for constructing a graph that produces
accurate UMP embeddings. These methods for extracting
UMP embedding differ in their focus, including feature tags,
preferred songs, subscribed users, and listening histories, in-
cluding:

• U2A: based on preferred tags—the user node in the graph
connecting to the song nodes that match the tags the most;

• U2B: based on preferred songs—the user node in the
graph connecting to the preferred song nodes;

• U2C: based on subscribed users—the user node in the
graph connecting to the users he/she follows;

• U2D: the average of (U2A, U2B, and U2C)
• Urand: a randomly generated vector as the control group
• U1: derived from the state-of-the-art UMP model M1

proposed in [7]. It calculates UMP embeddings as the
weighted summation of users’ listening histories.

2) Measurement of UMP Embeddings’ Effectiveness: To
assess the compared UMP models’ performance, a down-
stream task is chosen to predict the likelihoods of user-
song edge’s existence based on their node embeddings. The
hypothesis posits that the stronger the predicted likeability of
a user-song edge, the more likely the user likes the song.
To conduct the test, we chose the most recommended songs
associated with each UMP that result in the highest edge lika-
bility, and selected the least recommended songs accordingly.
The UMP embedding model’s effectiveness is evaluated by
measuring users’ ratings on the songs. Specifically, we propose
incorporating an offset likability factor in the selection of top
recommended songs to mitigate the influence of highly popular
songs:

likabilityoffset = likability − likabilitybase (10)

where likabilitybase is the likability between songs and a
zero-initialized vector, representing the popularity of songs
under mainstream music preference. Subtracting likabilitybase
from predicted likability minimizes the dominating influence
of popular songs and facilitates the identification of users’
individual preferences.

Higher ratings obtained by top recommended songs (those
with the highest predicted offset likability values), lower
ratings obtained by the least recommended songs (those with
the lowest predicted offset likability values), and the large net
difference between the high and low ratings all indicate better
performance of our proposed UMP model. They all show that
the model grasp the UMP and can predict songs they would
like/dislike.

B. Evaluation of UMP-Aware AMG
Our attention is also directed towards examining the effec-

tiveness of integrating UMP into AMG. We conducted tests on
different combinations of UMP models and primers (leading
music) that occur in various AMG scenarios, such as gener-
ating music for non-professional individuals and collaborating
with musicians using their input primers.

We have selected the following primers for comparison:
1) P1, a song preferred by the user from the LPD-5 dataset
2) P2, a randomly selected song from the LPD-5 dataset
3) P3, no primer, music generation from scratch
Measurement of UMP satisfaction. Each compared UMP

embedding is used as a condition to generate three songs
from the three primers. There are two candidate methods of
UMP embedding conditioning music encodings. The “adding”
operation combines the tensors of UMP embedding and music
encoding element-wise by summing their corresponding ele-
ments while the “concatenation” operation appends them along
a specified axis, creating a new tensor with double dimensions.

A preliminary case study was conducted to compare the
generated music conditioned by “adding” or “concatenation”
operations. We have opted to adopt “concatenation” in our
system and experiments, as it produces musically more satis-
factory music (rating 3.2) compared to the “adding” (rating
2.5) operations, based on the feedback received (+28%).
The addition operation is appropriate when considering one
input as a residual ”correction” or ”delta” to the other input.
Concatenation, on the other hand, is preferable when the two
inputs present less element-wise relation. We argue that UMP
affects music encodings holistically rather than on an element-
wise basis, elucidating the advantage of concatenation in our
experiments.

A total of 18 generated songs are listened to and rated by
users on a ten-point scale to determine the optimal UMP-
primer combination in different AMG scenarios. We analyze
the ratings to determine the combinations of UMPs and
primers that are most effective for vast audiences.

C. Evaluation of AMG from Textual Queries
Our evaluation involves assessing our system’s ability to

produce music based on textual queries. Besides the six UMPs
above, we have developed a UMP embedding U2T , which
utilizes tags converted from a textual query. It is derived from
a graph where the user node connects to the songs that are the
closest to the converted tags. Three songs are generated from
U2T using three primers for comparison.

Measurement of Textual Query Satisfaction. Urand serves
as the control group for assessing the effectiveness of U2T
in comprehending textual queries and producing appropriate
songs. Users will rate songs produced by two UMPs based on
description correspondence to a given query. Higher ratings are
anticipated for the songs generated by U2T if it can effectively
capture meaningful semantic associations from the query.

D. Evaluation of Personalized AMG
For a comprehensive evaluation of our proposed optimal

personalized music generator (U2D+P2), we opted for rep-
resentative models in the same category as baseline models.
These include the text-to-symbolic-music generator based on
a language model BART [14] (recognized as superior among
a series of language models in music generation tasks [14]), a
commercial symbolic music studio WavTool4 based on GPT-
4, and a rule-based UMP-aware music generator [7]. These

4https://app.wavtool.com/
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three models either represent the SOTA in text-to-symbolic-
music generation or UMP-aware music generation.

In this experiment, participants provide a textual description
of the desired song, which is then input into the comparative
BART model [14] and WavTool for music generation. The
BART model generates ABC-notation format songs from text,
which are rendered into audio. In WavTool, we consistently
pick the primary recommendation generated by the system
based on the description, resulting in lead sheet music com-
prising melody, chord, and bass components. Subsequently,
following the UMP embedding extraction of U2D in subsub-
section V-A1 and the equiponent UMP embedding calculation
of textual queries described in subsection III-D, a concatenated
UMP embedding of U2D and the input query is fed into
our adopted music generator (MusicTransformer-based [15])
for music generation. Finally, the participants’ extracted UMP
embedding U1 is input into [7] for music generation.

By contrasting metrics such as music quality, preference sat-
isfaction, and descriptive correspondence in generated music,
we believe it is desirable to effectively assess the music mod-
eling capabilities, personalized music generation capabilities,
and performance in balancing textual query and UMP of our
proposed model.

Measurement of Personalized AMG.
• Music Quality: By assessing the musicality of generated

music, we aim to evaluate the proposed music generation
model’s proficiency in music modeling and general music
generation capabilities;

• Description Correspondence: Evaluating the alignment
between generated music and input textual descriptions
allows us to assess the proposed music model’s under-
standing of textual queries and the effectiveness of their
transformation into conditioning factors;

• Humanity: A primary concern with existing text-to-music
generator models is their deficiency in accounting for
the structural elements, repetitions, and motifs commonly
considered by human composers during song composition
[88]. Therefore, we evaluate the model’s generated music
in comparison to human compositions;

• Preference: Rating satisfaction with preferences enables
the evaluation of the efficacy of UMP-aware AMG,
while also assessing the model’s ability to balance user
preferences and textual queries in weighting constraints
during music generation.

E. Participant Recruitment

We recruited the participants via email by advertising our
research study to undergraduate and graduate students of
National University of Singapore. In total, 50 volunteers
registered for the study, 16 of them who claimed they were
definite about their musical tastes were recruited for our study,
and 15 completed the experiment end-to-end. The 1 participant
who did not finish the study dropped off at the rating phase,
which can be attributed to the significant user efforts required
from listening to and rating the considerable amount of music
files at this step. In summary, we collected valid responses
from 15 participants, among whom 8 were female and 7 were

male. Participants who completed the subjective experiment
were rewarded 30 SGD (approximately 22.4 USD).

F. Experiment Procedures

To obtain a participant’s U2A, U2B, and U2C, we create
three graphs that connect a virtual user node with the partic-
ipant’s favorite music tags, songs, and subscribed users. We
calculate U2D by averaging the first three UMPs and creates
Urand with random values. We obtain U1 using the baseline
model M1 from the participant’s preferred songs.

We evaluate the effectiveness of UMP models in music
recommendation by predicting the likelihood of connections
between each UMP and songs in our dataset. Participants
listen to and rate the most and least recommended songs
based on their music preferences (1-10 scale). U1 recommends
songs based on cosine similarity between the UMP and song
embeddings, as in the original work.

We evaluate the UMP-aware music generator and com-
pare different combinations by generating songs using all
combinations of six UMPs and three primers mentioned in
subsection V-B. Participants are asked to rate the songs (1-10
scale).

We evaluate our text-to-music generation method by re-
trieving U2T from a graph that centers on a virtual node
representing a random textual query built from a set of music
tags. We predict the most and least recommended songs from
U2T and Urand. Participants will rate the songs based on their
description correspondence to the textual query (1-10 scale).

We evaluate our UMP-aware text-to-music generation sys-
tem by generating songs with 4 compared personalized AMG
models, inputting the same user-specified text descriptions.
Participants rate the songs based on music quality, description
correspondence, humanity and preference satisfaction (1-10
scale).

During experiment, the UMP, primers and music generators
where the songs come from are made invisible to participants.
All songs are shuffled in order.

G. Results

UMP Capture and Incorporation. As shown in Table I,
the results of music recommendation show that U1 and all U2s
perform better than Urand. This suggests that user information,
music community relationships and listening histories can be
used to effectively learn music preferences for recommenda-
tion and generation.

Compared to the baseline M1, which relies solely on users’
listening history, our proposed model improves recommenda-
tion and UMP-aware AMG by 31.3% and 63.5% respectively.
The 31.3% improvement in recommendation is calculated as:

(
RU2B −RU1

RU1
− NRU2B −NRU1

NRU1
)/2 (11)

and the 63.5% improvement in UMP-aware AMG is calculated
as AV GU2B −AV GU1. This demonstrates that listening his-
tory alone does not suffice to reflect a user’s music preference.
Also, M1’s average operation over all songs can result in an
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TABLE I
PREFERENCE RATINGS OF UMP MODELS’ RECOMMENDATIONS AND PRIMER-UMP-GENERATED SONGS. THE VALUES WITHIN PARENTHESES DENOTE
THE T-TEST STATISTICS BASED ON THE CONTROL GROUP Urand WHERE N1=N2=15 THUS THE THRESHOLD IS 2.13 AT A CONFIDENCE LEVEL OF 0.05.

(R: MOST RECOMMENDED; NR: LEAST RECOMMENDED; INCR.: INCREMENT IN RATINGS = R-NR; AVG: AVERAGE.)

Recommendation Generation
UMP R ↑ NR ↓ Incr. ↑ P1 ↑ P2 ↑ P3 ↑ AVG ↑
U2A 5.93 (1.25) 5.04 (2.90) 0.89 (2.44) 2.57 (0.62) 2.14 (0.30) 2.86 (1.68) 2.52 (1.04)
U2B 7.20 (3.0) 4.52 (2.96) 2.68 (3.35) 3.86 (1.96) 4.00 (2.18) 3.57 (1.77) 3.81 (3.11)
U2C 6.93 (2.80) 5.38 (1.74) 1.55 (2.81) 3.43 (1.50) 3.14 (1.44) 2.86 (1.37) 3.14 (1.50)
U2D 5.93 (1.23) 6.04 (0.42) -0.11 (1.15) 2.57 (0.62) 3.43 (2.09) 4.57 (3.63) 3.52 (2.68)
Urand 5.14 (/) 6.26 (/) -1.12 (/) 2.29 (/) 2.00 (/) 2.00 (/) 2.09 (/)

U1 5.56 (0.67) 6.76 (1.04) -1.2 (0.11) 2.14 (0.35) 2.14 (2.09) 2.71 (1.27) 2.33 (0.65)

over-smooth modeling, which inaccurately describes personal
preferences.

Among the proposed UMPs, U2B has the highest accuracy
in capturing users’ preferred and disliked song features by
learning from selected songs. This can be attributed to to the
extensive features and abundant song samples in our dataset.
In contrast, U2D, which seeks to draw on the strengths of
other UMP variants, performs poorly. This highlights the
limitations of combining music preference embeddings from
various sources, and suggests that future research should focus
on a single modeling dimension to increase efficiency.

Moreover, U2B is also a superior approach for music
generation, indicating that successful UMP modeling can
guide personalized music generation effectively. However, the
performance of various primer and UMP combinations varies,
making it difficult to determine the impact of primers on
personalized music generation. This can explain the less than
ideal performance of the baseline due to its heavy dependency
on seed songs, which is disadvantageous compared to neural
network-based approaches.

T-tests were performed on subjective experimental out-
comes for validation. As illustrated in Table I, the t-value
for U2B group (proposed) versus Urand group in the context
of the “Recommendation Improvement” criterion stands at
3.35, markedly exceeding the critical t-value of 2.13 (where
n1=n2=15) at a 0.05 confidence level. Moreover, the compari-
son of music generation ratings between these groups (Gener-
ation - AVG) yields a t-value of 3.11, likewise surpassing the
threshold. In consequence, our subjective experimental results
exhibit statistical significance in our subjective experimental
results, affirming the effectiveness of our proposed model in
capturing UMP and guiding AMG.

A collection of recommended and generated song demos of
one participant can be found on the Soundcloud platform.

TABLE II
PREFERENCE RATINGS OF UMP MODELS’ RECOMMENDATIONS UNDER

DIFFERENT OFFSETTING FACTOR c VALUES.

c values 0.0 0.1 1.0 5.0 10 20

Preference
Satisfaction 4.22 4.58 4.42 6.56 7.03 3.91

As stated in subsubsection V-A2, we propose an offset
likability factor to mitigate the impact of mainstream music

preferences. If not addressed properly, popular songs can dom-
inate music recommendations and limit the expression of indi-
vidual music preferences, thus failing to provide personalized
music recommendations and generation. In addition, we try
a second method that manipulates song embeddings directly.
Specifically, we obtain a weighted embedding eweighted as
eoriginal−c∗epopular, where epopular represents the embedding
of the most popular songs. As shown in Table II, a value of
c = 10 minimizes the influence of popular songs, based on our
experimentation with various values. It ensures that at least
one top-K tag of the most recommended song corresponds
to the user’s selected tags/songs. We apply this method to
U2D and obtain its weighted version, U2D′, which achieved a
better song recommendation score of R = 7.03 (+18.5% over
RU2D) among all tested c values. This shows that processing
song embeddings directly is more effective in reducing the
dominance of mainstream songs.

TABLE III
(A) SUBJECTIVE DESCRIPTION CORRESPONDENCE RATINGS OF AMG
FROM QUERY-BASED UMP V.S. RANDOM UMP. THE VALUE WITHIN

PARENTHESES DENOTES THE T-TEST STATISTICS BASED ON THE CONTROL
GROUP Urand WHERE N1=N2=15 THUS THE THRESHOLD IS 2.13 AT A

CONFIDENCE LEVEL OF 0.05. (B) OBJECTIVE RELEVANCE OF
HUMAN-WRITTEN AND QUERY-BASED GENERATED SONGS.

(a) Subjective Ratings (b) Objective Scores

Query U2T Urand
(1)

MusicCaps
(2)

Last.fm
(3)

U2T

Description
Correspondence (DC) 4.29 (2.89) 2.43 (/) 0.85 1.03 1.24

Text-to-Music Generation. As demonstrated in Table III-
(a), our proposed system shows advantages in query-based
music generation with a +76.5% improvement, calculated as

DCU2T −DCUrand

DCUrand

(12)

The query-converted UMP embeddings are successfully ap-
plied to generate music that aligns well with the description.
Similarly, we conducted a t-test, and its outcomes surpass-
ing the threshold further substantiate the significance of this
inference.

Personalized AMG. As demonstrated in Table IV, our
proposed model significantly outperforms comparative models
in terms of description correspondence and preference satis-
faction metrics, showing +44.1% and +61.1% improvement
over the second best respectively. This highlights the efficacy

https://soundcloud.com/soundandmusiccomputinglab/sets/demos-of-ieee-mm-paper-submission?si=111e288068a5429499b804733cb42ab0&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
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TABLE IV
SUBJECTIVE RATINGS OF SONGS GENERATED FROM COMPARED

PERSONALIZED AMG MODELS.

Music
Generator

Music
Quality ↑

Description
Correspondence ↑ Humanity ↑ Preference ↑

BART 4.53 3.88 3.71 3.12
WavTool 5.06 3.18 4.23 3.65

Rule-based
(U1) 7.65 2.29 7.41 2.53

Proposed
(U2B+P2) 6.35 5.59 6.12 5.88

of graph modeling in capturing both user musical preferences
(UMP) and textual descriptions, striking a delicate balance
between these two crucial aspects in music generation. More-
over, our model achieves commendable results in terms of
music quality and Humanity metrics, indicating the superiority
of smaller decoder-based models (i.e., Music Transformer)
over larger general-purpose language models (e.g., BART,
GPT-4) in symbolic music generation tasks. It is noteworthy
that while integration of user textual descriptions into music
generation remains unsuccessful, rule-based models exhibit the
best performance in terms of music quality and humanity.
This observation suggests that effective modeling and appro-
priate integration of rules within deep learning models could
potentially enhance the performance of personalized music
generation further. We leave this as an open problem for
further investigation.

H. Meso Analysis

As part of our research in prompt engineering, we investi-
gated the properties of textual queries that can guide a music
generator to produce songs most aligned with their seman-
tic meaning. Specifically, we categorized the textual queries
provided by participants in terms of their length and relative
average word frequency within the dataset. Subsequently, we
compared the description correspondence ratings of songs
generated for each category and visualized the data samples
pairs of query length, rating and average word frequency,
rating as scatter plots to analyze their distribution patterns.

TABLE V
OBJECTIVE TEXT-MUSIC RELEVANCE AND SUBJECTIVE RATING OF

DESCRIPTION CORRESPONDENCE OF SONGS GENERATED FROM QUERIES
WITH DIFFERENT LENGTHS/WORD FREQUENCY.

Query
Length

Short
≤20 words

Middle
20-40 words

Long
≥40 words

Objective Relevance 2.26 0.91 0.56
Subjective Rating 7.33 5.13 3.33

Average Word
Frequency

Least 30%
Frequent Middle Most 30%

Frequent

Objective Relevance 0.67 0.85 2.21
Subjective Rating 5.20 5.60 6.83

As illustrated in Table V, for the proposed model, shorter
queries composed of high-frequency words yield songs that
best match the descriptions. This observation aligns with the
results of the third-order fitting conducted on our dataset (as

depicted by the green lines in Figure 4 and Figure 5). For
instance, an example of a short and high-word-frequency query
provided by a participant in the experiment is: ”J-Pop in major
scale. lively guitar riff in the foreground and a melodious
string pad background.cheerful, happy, and soothing.” This
query is translated into three tags: [J-pop, guitar, beautiful].
Correspondingly, it achieves a high description correspondence
score.

In contrast, such a feature is not reflected in other person-
alized AMG models. We attribute this phenomenon to the
unique modeling approach adopted in graph-based models.
The process of first converting text queries into tags for
semantic modeling allows for a more precise capture of
the core semantics of the query. However, the limited and
predetermined number of tags in graph-based models makes
them highly sensitive to query length and word frequency,
presenting a trade-off.
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VI. OBJECTIVE EXPERIMENT

Compared with UMP, evaluating the satisfaction of textual
queries’ embodiment in generated music is more quantifi-
able. We employ Mulan [51], a joint audio-text embedding,
to measure the relevance between textual queries and the
corresponding music. Mulan is trained on the MusicCaps
dataset (following [11]), which consists of 5,521 audio files
and their annotated captions. In our experiment, these captions
are used as equivalents to our textual queries. We calculate and
compare relevance scores for three music-query combinations:
(1) {query, original music} from MusicCaps’s test set, (2)
{query, original music} from our collected dataset (as detailed
in section IV), and (3) {query, generated music} from our
query-based music generation model. Our proposed AMG
model has a 76.5% higher accuracy in matching queries, as
shown in Table III-(b).

We speculate that our model converts queries into discrete
tags, allowing the music generator to correlate the tags with the
music strongly. Human annotations in setting (1) may differ in
word selection, expression and features they concern, resulting
in weaker correlation. Overall, our model can achieve human-
level understanding of music descriptions and incorporate
desired features into music generation.

Zooming into setting (3) {query, generated music} pairs
mentioned above, the prompt engineering of text-to-symbolic
music generation regarding query length and word frequency
yields results similar to those observed in subjective exper-
iments.. We divide the pairs into smaller subsets based on
query length and average word frequency of the query texts
and re-evaluate the cross-modal relevance of these subsets. As
shown in Table V, the higher cross-modal relevance scores
suggest that shorter queries and high-frequency words have
the highest correlation. This outcome reaffirms the efficacy
of the proposed model in reducing the accessibility barriers
for ordinary users who are unfamiliar with musical terms, by
making it more effective and user-friendly thus allowing them
to create music that suits their preferences and current needs.

VII. DISCUSSION

Music generation is a complex task that requires a deep
understanding of various musical concepts, such as rhythm,
melody, and harmony. While general language models like
ChatGPT have made significant progress in language tasks,
it remains a challenge to apply them to highly specific tasks
like music generation, which require the model to comprehend
complex concepts from language inputs with few examples
and to establish a correlation between generated samples and
expected attributes.

To address this challenge, we propose a research direction
that involves enabling large general language models to gener-
ate instructions that call on task-specific models. By doing so,
we can seamlessly integrate language understanding and task
execution, resulting in more accurate and personalized music
generation. For example, instead of generating music by itself,
ChatGPT can respond to a command like “music generate
-model huggingface/musicModelName -instruments [piano,
guitar, vocal] -attributes genre: pop, tempo: 100, artist: Adele”.

VIII. CONCLUSION

This study suggests a user music preference model that
utilizes deep graph learning to capture fundamental music
preferences from music communities in a multi-faceted and
interpretable manner. It finds that textual queries can be
accommodated into the graph to fine-tune the UMP, which
further generalizes the model to accommodate multi-modal
inputs. The experiment results demonstrate that the proposed
UMP model is effective in guiding the generation of symbolic
music from scratch that meets personal music preferences
and matches textual queries. In summary, the study provides
a solution to the increasing need for personalized music
generation that promotes positive human activities.
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