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Abstract
Recent advances in discrete audio codecs have significantly im-
proved speech representation modeling, while codec language
models have enabled in-context learning for zero-shot speech
synthesis. Inspired by this, we propose a voice conversion
(VC) model within the VALLE-X framework, leveraging its
strong in-context learning capabilities for speaker adaptation.
To enhance prosody control, we introduce a prosody-aware au-
dio codec encoder (PACE) module, which isolates and refines
prosody from other sources, improving expressiveness and con-
trol. By integrating PACE into our VC model, we achieve
greater flexibility in prosody manipulation while preserving
speaker timbre. Experimental evaluation results demonstrate
that our approach outperforms baseline VC systems in prosody
preservation, timbre consistency, and overall naturalness, sur-
passing baseline VC systems.
Index Terms: voice conversion; audio codec; prosody control

1. Introduction
Voice conversion (VC) is an advanced speech processing
technique that facilitates the transformation of one speaker’s
voice into another’s while preserving the underlying content
[1, 2]. By effectively separating linguistic content from speaker-
specific features such as timbre and prosody, VC enables the
synthesis of speech that preserves the original message while
adopting the vocal characteristics of a target speaker. This tech-
nology has gained significant attention for its diverse applica-
tions, enhancing communication and user experience. VC is
vital to preserve privacy through voice anonymization and em-
powers individuals with speech impairments to express their de-
sired vocal identity. Its ability to manipulate voice attributes
makes VC a transformative tool in speech synthesis and human-
computer interaction, driving innovation and improving acces-
sibility in various domains [3].

Recent advances in deep learning have transformed VC
by improving the quality of synthesized voices, leading to
more natural intonation, clearer articulation, and greater emo-
tional expression for a more authentic auditory experience
[4, 5, 6, 7, 8, 9]. However, two major challenges still present
opportunities for further advancement. The first is to achieve
robust disentanglement between speech content and speech fea-
tures, as well as between different features such as prosody and
timbre, to enable more precise control over voice characteris-
tics. The second challenge lies in improving zero-shot voice
conversion, where the system must generate high-quality voice
transformations for unseen speakers without requiring extensive
training data.

*These authors contributed equally to this research.

Most VC systems focus primarily on disentangling con-
tent from speaker-specific features [10, 11, 12], but disentan-
gling within the speaker features themselves, such as separating
prosody, timbre, and pitch, is equally critical. Achieving this
finer level of separation is essential for enabling more expres-
sive voice conversion and providing greater control over voice
characteristics, allowing for nuanced transformations that cap-
ture the full range of human speech dynamics. There are several
studies have concentrated on disentangling prosody and timbre
for voice conversion [13, 14, 15]. [14] introduces an innova-
tive method that employs a unit encoder, speaker verification,
and a prosody encoder, enhanced by an adversarial content pre-
dictor. This approach effectively minimizes information over-
lap between prosody and content embedding, facilitating more
distinct and controlled representations. [15] introduces a self-
supervised method that learns disentangled pitch and volume
representations from augmented speech, effectively capturing
prosody styles and enhancing zero-shot voice conversion while
mitigating prosody leakage.

Zero-shot voice conversion remains a key challenge due to
the need for systems to adapt to unseen speakers without prior
training. Previous studies have employed speaker embeddings
to capture timbre information from reference speakers, enabling
systems to generalize to new voices without fine-tuning, thereby
improving the adaptability of voice conversion technologies
across diverse speaker identities [16, 17]. However, a major
limitation of this approach in both zero-shot voice conversion
and text-to-speech (TTS) is the dependency on a robust, well-
trained speaker encoder, which requires access to a large and di-
verse dataset to perform effectively. Recently, researchers have
explored the potential of in-context learning (ICL) to overcome
this challenge in TTS. By employing a target speech prompt-
ing strategy, ICL enables systems to generate speech for previ-
ously unseen speakers without the need for a pretrained speaker
encoder [16, 17]. This innovative approach significantly en-
hances zero-shot performance by bypassing the requirement for
explicit speaker embeddings, making TTS systems more flexi-
ble and scalable.

In this paper, we present a novel zero-shot VC system
that combines disentangled prosody control with the ICL ca-
pabilities of advanced pretrained models. Our proposed sys-
tem aims to achieve high speaker similarity and preservation
of prosody in voice conversion. Specifically, (1) we achieve
explicit prosody disentanglement from other speech attributes
(content and timbre) by proposing a Prosody-Aware Codec En-
coder (PACE), enabling finer control over expressive varia-
tions. (2) We leverage the pretrained VALL-E X model [18],
a well-performed TTS system with emergent ICL capabilities,
as the backbone of our VC system. This allows for high-quality
speech generation while preserving key speaker attributes, even



Figure 1: Overall architecture of the proposed voice conver-
sion system. Dotted lines denote components used only during
training. Prosody features are derived from the prosody prompt
during inference.

for unseen speakers. (3) To align PACE-generated audio codes
with those of VALL-E X, we train the PACE module using
VALL-E X audio codes as targets. Our results show that our
VC system outperforms baselines in speech quality, timbre
similarity, and prosody controllability, enabling a high-quality
zero-shot VC system that preserves both speaker identity and
prosodic consistency.

2. Methodology
2.1. Overall Architecture

The proposed voice conversion (VC) system, depicted in Fig-
ure 1, is built upon VALL-E X [18], a state-of-the-art (SOTA)
end-to-end text-to-speech (TTS) model. VALL-E X has demon-
strated strong generalization across diverse languages and
speech tasks, particularly in zero-shot cross-lingual TTS and
speech-to-speech translation (S2ST). The original VALL-E X
framework processes both a text prompt and a speech prompt
as inputs. The text prompt is transcribed into a phoneme se-
quence using a grapheme-to-phoneme (G2P) module, while the
audio codec encoder [19] maps the speech prompt to an embed-
ding representation. This embedding undergoes residual vector
quantization (RVQ) to derive the corresponding audio codes.
The neural codec language model then autoregressively predicts
audio codes conditioned on the phoneme sequence and speech
codes, and the audio codec decoder subsequently synthesizes
the output speech waveform.

To exploit the emergent in-context learning (ICL) capabil-
ities of VALL-E X in timbre modeling for VC, we adapt the
model for this task. In the VC setting, the model takes as in-
put a source speech prompt ws ∈ RLs×1 and a target prompt
wt ∈ RLt×1. The objective is to generate the converted speech
o ∈ RLo×1, where Ls, Lt, and Lo denote the lengths of the
source prompt, target prompt, and output, respectively, and the
second dimension 1 indicates monaural audio. The generated
speech retains the linguistic content of the source speech prompt
while adopting the style of the target prompt.

For the source speech prompt, we use Whisper-Medium
[20] for automatic speech recognition (ASR) to transcribe the
speech into text, which is then processed by a grapheme-to-
phoneme (G2P) module to obtain the phoneme sequence p ∈
{0, . . . , N − 1}S , where S is the sequence length and N is the

phoneme vocabulary size.
According to the target speech prompt, a straightforward

approach is to directly input it into the audio codec encoder
to obtain speech codes. However, this approach lacks prosody
control. To address this, we extract prosodic features from the
target prompt, including fundamental frequency (f0) and un-
voiced/voiced (uv) indicators, following [21, 22, 23]. We fur-
ther introduce the Pitch-Aware Codec Encoder (PACE) module,
which derives speech codes conditioned on these prosody fea-
tures. The PACE module is trained using the extracted prosody
features alongside the target speech prompt.

2.2. Prosody-Aware Codec Encoder (PACE)

The Prosody-Aware Codec Encoder (PACE) module, as shown
in Figure 2, is designed to extract the audio codec representation
from the target speech prompt while conditioning on prosody
features. PACE is built upon the audio codec encoder from
SoundStream [19] but is structurally modified by splitting the
encoder into two stages. The original codec encoder consists
of four convolutional blocks, downsampling speech length by
factors of [2, 4, 5, 8]; we retain the first three layers to extract
the speech embedding ef ∈ R

L
40

×D , where D denotes the em-
bedding dimension, and L

40
represents the sequence length after

downsampling.
To disentangle the prosody information from the ef , we

minimize the mutual information (MI) estimation between ef

and the prosody embeddings ef0 , euv through contrastive log-
ratio upper bound (CLUB), following [24, 25, 26]. We first ex-
tract the prosody features (f0, uv) via a Prosody Feature Extrac-
tor. Specifically, we employ the harvest function from pyworld1

to compute f0 and uv with a frame shift of 40
24000

× 1000 = 5
3

ms, ensuring length alignment with ef . The f0 sequence is
then normalized to [0, 1], quantized into 256 discrete values,
and represented as f0 ∈ {0, 1, · · · , 255}

L
40 , while uv is as

uv ∈ {0, 1}
L
40 . The MI minization estimation for both f0 and

uv is shown in Equation 1 and 2.
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(2)
After obtaining the prosody-invariant audio embedding ef , we
incorporate the prosody information back by summing it with
the prosody embeddings ef0 and euv . These embeddings are
derived by passing f0 and uv through an embedding layer.

To ensure the generated audio codes align with those used
in the neural codec language model, we employ the trained
codec encoder from VALLE-X to first generate the target au-
dio embedding ec ∈ R

L
320

×D′
, which serves as the input to

the residual vector quantizer (RVQ), where D′ denotes the em-
bedding dimension, and L

320
results from downsampling L

40
by

1https://github.com/JeremyCCHsu/Python-Wrapper-for-World-
Vocoder



Figure 2: Architecture of proposed Prosody-Aware Codec En-
coder (PACE) module. Dotted lines denote components used
only during training. Prosody features and embeddings are de-
rived from the prosody prompt during inference.

a factor of 8. We propose a scale layer to align the values
of the predicted êc and target ec embeddings within a simi-
lar range. This scale layer consists of a Conv1D layer and an
Average Pooling layer, which predict a scaling factor K and a
bias term B. These values are then applied to scale the audio
codec embedding, which is subsequently passed through an-
other Conv1D layer, as illustrated in Equation 3 to obtain the
scaled audio codec embedding êc.

êc = Conv1D(K × ẽc +B), (3)

where ẽc denotes the audio codec embedding before scaling. To
ensure accurate reconstruction, we minimize the mean squared
error (MSE) loss between the predicted and target audio codec
embeddings as defined Equation 4,

Le
recon = LMSE(êc, ec). (4)

The generated audio codes ĉ ∈ {0, 1, · · · , 1023}
L

320
×8, where

8 represents the number of codebooks used, are then obtained
by passing the predicted audio embedding êc ∈ R

L
320

×D′

through the RVQ, conditioned on the prosody features.
Beyond the mutual information loss, we adopt the the ad-

versarial loss Ladv , the feature loss Lfeat, and the multi-scale
spectral reconstruction loss for generator, Lrec following [19].
These losses jointly guide the training of the PACE module, fa-
cilitating high-quality speech generation. Additionally, we fol-
low [19] in employing a discriminator D with the corresponding
loss LD to enhance perceptual quality. The overall objective for
generator loss of the PACE module is formulated in Equation 5,

LG = λMILMI + λe
reconLe

recon + λadvLadv

+ λfeatLfeat + λrecLrec,
(5)

where LMI = Lf0
MI + Luv

MI .

2.3. Training and Inference Scheme

The model training follows a three-stage process. In the first
stage, the PACE module is trained without f0 and uv as in-
put by minimizing the loss of reconstruction of the audio codec

embedding Le
rec. In the second stage, the prosody information

is disentangled using the codec encoder parameters learned in
stage one, optimizing mutual information loss LMI along with
Le

rec. Finally, in the third stage, the PACE encoder, audio codec
decoder are jointly trained by optimizing the total loss.

During the inference phrase, we first extract the phoneme
sequence p from the source prompt ws with speaker A. Next,
we obtain the prosody features (f0, uv) from the prosody
prompt wp (which can be any speech prompt) using the
Prosody Feature Extractor, with speaker X (can be A and B).
These prosody features, along with the target prompt wt (from
speaker B), are then input into the PACE module to generate
the prosody-adaptable speech codes ĉ. Subsequently, the neural
codec language model is utilized to generate the target speech
codes co, which are passed through the audio codec decoder to
produce the target speech o. This generated speech o retains
the content of ws, the timbre of wt, and the prosody of wp.

3. Experiments
3.1. Training Setup

We train our model on a 54-hour LibriTTS-clean-100 dataset
[27] and evaluate it on the test-clean set. The training set con-
sists of 33,236 speech samples from 247 speakers, all resam-
pled to 24 kHz. For zero-shot evaluation, we select 10 male and
10 female speakers from LibriTTS. During training, we ran-
domly extract 2-second segments from the speech clips, with
zero-padding applied to clips shorter than 2 seconds.

The encoder and decoder of PACE module follows the ar-
chitecture in [19]. The f0 and uv embedding layers have a di-
mension of 256, with vocabulary sizes of 256 and 2. The scale
layer includes a Conv1D layer (128, 64) with a kernel size of 3
for scale and bias extraction, followed by a linear layer (64, 1),
and a final Conv1D layer (128, 128) with a kernel size of 3. Our
experiments are implemented in PyTorch and PyTorch Light-
ning, our model was trained on NVIDIA RTX A5000 GPUs for
360k, 60k, and 180k steps across the three training stages.

3.2. Evaluation Methods

For evaluation, we use the following metrics. The ASV-Score
[18] measures speaker similarity by calculating the cosine dis-
tance between speaker embeddings from a pretrained WavLM
model. The ASR-WER [20] evaluates intelligibility by compar-
ing synthesized speech to ground truth transcriptions using the
Whisper model. We assess naturalness with the NISQA-TTS
model2 [28], providing a score from 0 to 5 for fluency, clarity,
and expressiveness. The MOSNET model3 [29] offers an objec-
tive MOS score, reflecting overall speech quality. For prosody
matching, we compute the F0 distance [30], measured as the
normalized distance between the F0 contours of converted and
reference speech. Subjective evaluation involved mean opinion
scores (MOS) and speaker similarity (SMOS), with 22 partici-
pants rating audio samples from various systems on a scale of 1
to 5, where 5 represented the highest quality.

3.3. Effectiveness of Pitch-Aware Codec Encoder (PACE)
module

We compare PACE module with the pretrained 24 kHz En-
Codec4, the audio codec encoder originally used in VALL-E X

2https://github.com/gabrielmittag/NISQA
3https://github.com/aliutkus/speechmetrics
4https://huggingface.co/facebook/encodec 24khz



Table 1: Evaluation for PACE v.s. Baseline encodec encoder.

Model ASV (↑) ASR-WER (↓) NISQA (↑) MOSNET (↑)

Baseline Codec Encoder 0.6813 0.1239 4.1662 3.8755
PACE 0.6620 0.1104 3.9805 3.6592

Ground Truth - - 4.6382 4.0233

Table 2: Objective and Subjective Evaluation of Proposed and
Baseline VC Systems.

Model ASV (↑) ASR-WER (↓) NISQA (↑) MOSNET (↑) MOS (↑) SMOS (↑)

VALLE-X 0.8429 0.1151 4.3034 3.6059 4.1880 3.8251
TriAAN-VC 0.7199 0.1298 4.2527 3.5451 4.0667 3.7870
Proso-VC 0.7025 0.1632 3.2520 2.9105 3.9520 3.2542

Ours 0.9078 0.1010 4.3320 3.5746 4.3627 3.9386
-w/o LMI 0.8751 0.1314 4.2892 3.4178 3.7696 3.4074
-w/o scale layer 0.8771 0.1574 3.9424 2.7236 3.2876 2.8333
-w/o Le

rec 0.5882 0.2286 3.0974 2.0822 2.4831 2.3550

Ground Truth - - 4.5890 3.9328 4.3940 4.1585

(Baseline Codec Encoder), across objective evaluation metrics.
As shown in Table 1, while there remains a slight gap in perfor-
mance between the original EnCodec and our proposed PACE
module, this difference does not significantly impact overall
performance. This suggests that our PACE module effectively
retains much of the original EnCodec’s capabilities. Notably,
the ASR-WER demonstrates a substantial improvement, reflect-
ing enhanced speech intelligibility.

3.4. Voice Conversion: Speaker Timbre Control and Over-
all Quality

We evaluated the overall quality of voice conversion by compar-
ing our model with baseline models: VALLE-X, TriAAN-VC,
and ProsoVC, as shown in Table 2. TriAAN-VC [31] enables
nonparallel conversion from any to any through adaptive atten-
tion normalization, while ProsoVC [14] controls prosody us-
ing hybrid bottleneck features. Our model outperforms these
baselines in most metrics, achieving the highest ASV score, a
lower ASR-WER, and the best NISQA score, indicating supe-
rior preservation, intelligibility, and naturalness of the speaker
identity. Although the MOSNET score is slightly lower than
the VALLE-X, it is still higher than other baselines, underscor-
ing our model’s overall effectiveness in voice conversion. Ab-
lation studies demonstrate the effectiveness of our method, sig-
nificantly outperforming the model without the scale layer and
reconstruction loss training, while achieving a slight improve-
ment over the variant without mutual information loss training.
Subjective evaluation results indicate that our model achieved
strong performance in both naturalness and speaker similarity,
particularly outperforming ablated variants, demonstrating the
effectiveness of the proposed modules.

3.5. Voice Conversion: Capability in Prosody Alignment

We evaluate prosody matching in two scenarios: prosody
from the source speech and from a prompt. Results in Table
3 are compared with VALLE-X, TriAAN-VC, and ProsoVC
using normalized F0 distance. VALLE-X is excluded from
the ”source” scenario, and TriAAN-VC/ProsoVC from the
”prompt” scenario, as they lack these functions.

Our model outperforms the baselines in both scenarios. In

Figure 3: F0 contour comparison for our proposed method and
reference prosody prompt.

Table 3: Prosody Matching in Voice Conversion (F0-scaled Dis-
tance).

Models Prosody from Source Prosody from Target

VALL-E X - 3.1029
TriAAN-VC 3.4019 -
ProsoVC 3.3256 -

Ours 2.8239 2.6988
-w/o LMI 3.2751 3.0179
-w/o scale layer 3.9178 3.6237
-w/o Le

rec 4.7892 4.2649

the ”prosody from source” case, it leads, while VALLE-X, lim-
ited to prompt-based prosody conversion, cannot perform in this
scenario. In the ”prosody from prompt” case, VALLE-X shows
reasonable performance due to the ICL capability but still lags
behind our model, emphasizing the effectiveness of our disen-
tanglement approach for prosody matching. We visualize the
normalized F0 curves of the synthesized output and the refer-
ence prosody prompt. As shown in Figure 3, our method’s F0
curve closely aligns with the reference, demonstrating its effec-
tive prosody control. In ablation studies, our model outperforms
the ablated variants in both scenarios, with a more pronounced
advantage in the ”Prosody from Source” setting. While the
model trained without LMI achieves comparable performance
in overall quality and timbre similarity, the results highlight the
importance of mutual information loss in prosody control.

4. Conclusion
We propose a voice conversion (VC) model that explicitly
disentangles prosody from speaker timbre, enabling precise
prosody control while preserving speaker identity. To achieve
this, we introduce the prosody-aware audio codec encoder
(PACE), which conditions audio codes on specific prosodic fea-
tures, allowing fine-grained manipulation of prosody. By iso-
lating prosody from other acoustic attributes, our approach en-
hances prosody control, ensuring greater flexibility in voice
conversion tasks. Comprehensive evaluation results demon-
strate that our model outperforms baseline systems in prosody
alignment, timbre consistency, and overall speech quality. In
particular, our method achieves more natural and expressive
voice conversion that closely matches the target speaker’s style.
These results underscore the effectiveness of our disentan-
glement strategy and its broader applicability in controllable
speech synthesis and expressive voice conversion.
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