
Lead Instrument Detection from Multitrack Music
Longshen Ou

School of Computing
National University of Singapore

Singapore
oulongshen@u.nus.edu

Yu Takahashi
Research and Development Division

Yamaha Corporation
Hamamatsu, Japan

yu.takahashi@music.yamaha.com

Ye Wang
School of Computing

National University of Singapore
Singapore

wangye@comp.nus.edu.sg

Abstract—Prior approaches to lead instrument detection pri-
marily analyze mixture audio, limited to coarse classifications
and lacking generalization ability. This paper presents a novel
approach to lead instrument detection in multitrack music audio
by crafting expertly annotated datasets and designing a novel
framework that integrates a self-supervised learning model with
a track-wise, frame-level attention-based classifier. This attention
mechanism dynamically extracts and aggregates track-specific
features based on their auditory importance, enabling precise
detection across varied instrument types and combinations.
Enhanced by track classification and permutation augmentation,
our model substantially outperforms existing SVM and CRNN
models, showing robustness on unseen instruments and out-of-
domain testing. We believe our exploration provides valuable in-
sights for future research on audio content analysis in multitrack
music settings.

Index Terms—Audio content analysis, multitrack music, lead
instrument detection, track-wise attention, feature fusion

I. INTRODUCTION

Audio content analysis is a crucial area of study within
audio processing and music information retrieval, focusing on
tasks like identification, transcription, and segmentation [1].
Beyond these foundational tasks, a critical aspect of human
musical perception involves identifying the lead instrument—
the instrument that captures the listener’s attention with its
dominant auditory presence. This could range from the lead
vocals [2] and guitar solos [3] in rock and pop, to lead
saxophone or trumpet [4] as well as drum solos [5] in jazz.
Automating lead instrument detection can not only facilitate
the creation of audio thumbnails and music structural analysis
but also potentially simplify audio mixing workflows and
enhance music recommendation systems.

However, prior research on lead instrument detection has
primarily focused on analyzing mixture audio [6]–[11] or
isolated single instrument tracks [12]–[14], limiting their abil-
ity to capture high-level, instrument-specific properties like
roles and interactions within a song, essential for identifying
lead instruments. These studies often involve coarse-level
classification, confined to predefined categories like vocals
or guitar solos [11], [12], restricting applicability in real-
world settings where any instrument can serve the lead role.
Additionally, many works rely on Support Vector Machine
(SVM) models [6]–[12], [15], constrained by the necessity to
include all potential lead instruments in training data, thus
failing to identify new instruments absent from training.

The analysis of multitrack music, where each track con-
tains specific instrument audio in a time-synchronized, multi-
stream format, remains significantly underexplored. To our
knowledge, there is no existing work that outlines neural
network designs specifically for handling multitrack audio
inputs in content analysis tasks. While prior studies on auto-
matic mixing tasks have utilized deep learning models [16]–
[19], these approaches often assume a fixed number and type
of instruments, which limits their applicability in real-world
scenarios, where track counts and instrument types can vary
significantly. Recently, [20] introduced a framework capable
of handling arbitrary track combinations for automatic mixing,
sharing some design similarities with our model.

The pre-train and fine-tune paradigm with self-supervised
learning (SSL) models like wav2vec 2.0 [21] and HuBERT
[22] has revolutionized audio and speech domains, advancing
music information retrieval [23] and reducing reliance on in-
domain data [24], [25]. Music-specific SSL models have also
achieved state-of-the-art results in various tasks [26], but their
use remains largely limited to single-stream audio. Extending
these models to multitrack audio requires adapting single-
track architectures to multitrack context and enabling effective
cross-track feature integration. Addressing these issues is
crucial for enhancing SSL applications in complex multitrack
environments.

This paper develops neural network models for detecting
the lead instrument at any moment in multitrack music audio,
extending conventional vocal and guitar solo detection to
any type of lead instrument while adapting to the multitrack
setting without assumptions about track count or type. We
created two expertly annotated datasets and compared various
model designs. Our model uses a shared SSL audio encoder
across tracks, with a novel track-wise attention mechanism
that aggregates features from each instrument track based on
its importance relative to the mixture track. To further enhance
performance, we introduced a track permutation augmentation
strategy to diversify the training data. Our key contributions
include:

• Initiate the task of lead instrument detection from
multitrack music, with expertly annotated datasets, and
strong baseline models across multiple settings, including
analyses for both segment-level and frame-level, both



multitrack and single mixture tracks.1

• Superior performance compared to existing models,
including SVM- and CRNN-based approaches, and also
generalizable to unseen instruments and new domains.

• Evaluated multiple model designs, demonstrating the
advantages of the proposed track-wise attention and track
classification.

II. METHOD

A. Problem Definition

The task involves identifying the lead instrument at any
given timestep within a multitrack music recording, composed
of time-synchronized audio tracks from different instruments
of the same song. We assume only one lead instrument
at each timestep, indicated by track number or instrument
name. We also assume access to track-wise metadata including
instrument type and track ID, as well as a human-produced
mixture track, which we utilize to aid the detection.

B. Crafting Datasets

To establish a foundation for this new task, we created
two datasets with expert annotations from two different audio
sources. They include an internal dataset named MJN includes
multitrack recordings from five live events, each featuring
performances by 4 to 6 bands, and the MedleyDB dataset
[27], known for its use in various MIR tasks. Annotations
were performed by experts using Adobe Audition, who marked
lead instruments based on audio playback and observing
waveforms. The process involved identifying onsets, offsets,
and instrument types, with specific rules for overlapping leads
and minimum segment durations. For more details, please refer
to our dataset documentation1. The resulting datasets were
7.10 h and 5.57 h in duration, with further elaboration on
splitting strategies in Section III-A.

We highlight some important properties of the datasets. In
both MJN and MedleyDB, frequencies of lead instrument type
exhibit a long-tailed distribution, with vocals being the most
frequent lead instrument, followed by electric guitar. Notably,
the MJN dataset, commonly used open microphones on stage,
contains considerable amount of bleeding sound. While Med-
leyDB offers a greater variety of instrument types—29 in
total, with 26 as leads (14 and 13 in MJN), MJN shows a
more balanced distribution among lead instruments, where the
frequency of the second most common lead is 53% that of
the most frequent, versus 37.1% in MedleyDB. Additionally,
MJN features more frequent lead instrument switches (23.05
s per change) than MedleyDB (29.33 s per change).

C. Lead Instrument Detection Model

Our model, depicted in Figures 1 and 2, integrates an
audio encoder with an attention-based classifier. Audio from
each track is processed through a shared encoder to generate
track-wise feature maps. We employ MERT [26], a music-
specific self-supervised learning (SSL) model, as our audio

1Please refer to https://github.com/Sonata165/LeadInstrumentDetection for
code, dataset annotations, and model checkpoints.

Fig. 1. Encoding information for each track.

Fig. 2. Track-wise frame-level attention and subsequent classification.

encoder due to its robust performance in timbre and pitch-
related tasks. Instrument types and track IDs are embedded and
added to the feature maps: instrument embeddings reduce the
encoder’s burden by delegating timbre-to-instrument mapping,
while track embeddings enables track classification. A track-
wise attention mechanism aggregates these features into a
single feature map, which a frame-wise linear classifier uses
to produce the final classification results.

To aggregate multitrack information effectively, we de-
signed a frame-level track-wise dot-product attention mech-
anism. For each frame, the mixture track serves as the query,
while individual instrument tracks act as keys and values. This
setup enables the dot product to perform a nuanced comparison
of each instrument track against the global mixture, deter-
mining the importance level of each track at every timestep.
Subsequently, features from all tracks are aggregated into a
single feature map through a weighted sum, with weights
derived from the initial comparisons’ attention scores. This
aggregation prioritizes tracks that contribute most significantly
to the overall auditory effect. This design emphasizes track-to-
mixture content comparisons to highlight the prominence (or
relevance) of specific sound sources within a complex multi-
track environment, mirroring the selective auditory attention
of humans.

Direct instrument classification faces challenges with gen-
eralizability. It fails to accurately classify untrained instru-
ment types, instead misclassifying them as similar-sounding
instruments. Moreover, it cannot distinguish between multiple



instances of the same instrument type across different tracks,
which limits its practical applicability. To overcome these
issues, we adjusted the classification scheme from instrument
types to track IDs of lead instruments. This modification
not only enable generalization to unseen instruments but also
improves performance in out-of-domain testing.

Despite the potential for higher generalization, track clas-
sification faces a challenge with the fixed content–track rela-
tionship, caused by consistent instrument type within a track
throughout a performance, leading to homogenize feature map,
biasing the attention-based classifier to make predictions based
on simple track ID cues rather than actual audio content.
We introduce track permutation augmentation to overcome
this limitation. In training, track IDs are randomly permuted
and reassigned across all tracks, with corresponding label
adjustments. This approach effectively prevents the model
from relying on track IDs for classification, thereby making the
learning process more efficient and enhancing performance,
while preserves the integrity of the multitrack data.

III. EXPERIMENTS

A. Implementation Details

We primarily utilize the MJN dataset for our experiments
because it is organized by performance and minimizes in-
strument changes, which simplifies the control of testing
conditions. The validation set includes three challenging per-
formances to test model robustness, while the test set features
two typical band settings with a relatively balanced label
distribution. The remaining 20 performances make up the
training set. For MedleyDB, data is split at the song level,
with 15% randomly allocated to both validation and test sets.

Audio are normalized to -0.1dB, converted to mono, re-
sampled to 24000 Hz, and segmented into 5-second clips
with 2.5-second overlaps. We use MERT-v1-95M2 as our
audio encoder with full parameter fine-tuning. The track-wise
attention is implemented with a 12-head multihead attention,
with layer normalization and large dropout (p=0.8) afterwards.

Training utilizes the AdamW optimizer [28] with a weight
decay of 0.01. Learning rates are set at 1e-5 for both the
audio encoder and track-wise attention, and 1e-3 for the linear
classifier. Cross entropy loss is used as the objective function.
The model undergoes two training epochs with a batch size of
4, supplemented by 4-step gradient accumulation to achieve a
total batch size of 16. Validation occurs every quarter epoch,
with checkpoint selection based on the Macro F1 score on the
validation set. Training is performed on an RTX 3090 GPU
(24GB).

B. Metrics

We utilize accuracy and Macro F1 score as metrics, calcu-
lated directly at the frame level. Each metric is first averaged
over a 5-second sample and then across the entire test set.
Accuracy measures the percentage of correct detections made
by the model, while Macro F1 is chosen for its ability to

2https://huggingface.co/m-a-p/MERT-v1-95M

TABLE I
COMPARISON OF CLASSIFICATION MODULE DESIGNS. CLS. REFERS TO

CLASSIFICATION SCHEMES.

Validation set (hard) Test set (balanced)
Model Cls. Track F1 Inst F1 Inst Acc Track F1 Inst F1 Inst Acc

From mix Inst. - 66.78 73.88 - 57.17 72.69
Track avg. Inst. - 69.34 75.57 - 73.02 83.67
Track attn. Inst. - 77.42 83.96 - 83.32 91.28
Track attn. Track 80.56 83.66 87.79 83.76 83.76 91.20

equally weigh the performance of each class—crucial in our
datasets, where lead instrument distribution is imbalanced.
For instrument classification models, we calculate instrument
F1 (Inst F1) and accuracy (Inst Acc) directly. For track
classification models, we first compute Macro F1 for track
predictions (Track F1), then map these to instrument types
using the known track–instrument relationships to compute
instrument-level Macro F1 and accuracy, facilitating cross-
scheme comparisons.

C. Baseline Models

To show the effectiveness of our track-wise attention, we
implement two variants of our model: From mix, a straight-
forward implementation using a MERT model with a linear
classifier processing only the mixture track; and Track avg.,
where the classifier operates on the averaged feature maps
from all tracks. Finally, Track attn. is our model incorporating
track-wise attention.

Additionally, we compared against two external models.
The first is a CRNN model from [29], designed for sound
event detection tasks with multi-channel audio as inputs. The
second baseline is an SVM model from [12], which focuses
on segment-level binary classification of guitar solos using
mixture audio. We adapt our “From mix” model for segment-
level classification by implementing average pooling across all
frames in the feature map before classification with a linear
classifier.

IV. RESULTS

A. Comparison on Classification Module Design

As Table I illustrates, the track avg. model aid perfor-
mance with signal from instrument track to achieve better
performance than the from mix model, but without enough ro-
bustness as the performance enhancement varies significantly
between easier (+15.85% instrument F1 on the test set) and
challenging cases (+2.56% on the validation set). Model with
track-wise attention more effectively utilizes track information,
as evidenced by gains in both validation (+8.08%) and test
(+10.03%) sets, compared to track avg. model. Moreover,
switching to track classification further enhances performance,
particularly in difficult cases, with a notable +6.24% increase
in instrument F1 on the validation set. Overall, the combina-
tion of track-wise attention and track classification gives the
strongest performance.3

3Recordings in the test set lack multiple instances of the same instrument
type within each performance, leading to identical Track F1 and Inst F1 values.



TABLE II
ABLATION STUDIES

Validation set (hard) Test set (balanced)
Model Track F1 Inst F1 Inst Acc Track F1 Inst F1 Inst Acc
Ours 80.56 83.66 87.79 83.76 83.76 91.20

w/o track perm 63.71 69.55 70.20 78.44 78.44 89.59
w/o inst emb 68.15 71.60 74.29 78.88 78.88 89.36

w/o track emb 33.64 42.16 35.53 21.38 21.38 24.86
Freeze MERT 31.13 34.98 47.71 26.41 26.41 38.30
FT last layer 56.89 60.59 74.51 43.87 43.87 71.31

w/o oracle mix 80.48 82.94 86.88 83.08 83.08 90.44

TABLE III
CROSS-DATASET TESTING RESULTS

Training set Test set (MJN) Test set (MedleyDB)
Cls MJN MedleyDB Inst F1 Inst Acc Inst F1 Inst Acc

Inst. Y 82.04 90.53 57.68 63.06
Track Y 81.34 89.50 74.13 69.01
Track Y 52.30 60.16 84.72 78.87
Track Y Y 84.56 92.11 84.47 83.25

Additionally, we demonstrate the generalization capability
of track classification using the organ—an instrument not
present in the training set, with timbre similar to that of
the electric guitar. While instrument classification frequently
mislabels it as electric guitar (75.68%), with no correct
classifications, track classification achieves 62.42% accuracy,
showcasing enhanced adaptability to unseen instruments.

B. Ablation Studies

Table II presents three sets of ablation study results. First,
we assess the impact of omitting key components. The removal
of track permutation significantly diminishes performance,
particularly in challenging scenarios, and fails to achieve
results comparable to the model with instrument classification
in Table I. Similarly, excluding instrument embeddings leads to
substantial performance losses. Eliminating track embeddings
causes the track classification model to nearly fail at making
predictions.

We then explore fine-tuning configurations to justify our
choice of full parameter fine-tuning. Freezing the MERT
model did not yield meaningful results, while fine-tuning its
last transformer layer along with the attention and classifier
significantly boosted performance, approaching that of our
final model. This indicates that training more parameters in
the audio encoder leads to higher performance.

Additionally, we evaluate the model’s dependency on the
human-produced mixture track by excluding it (w/o oracle
mix) and replacing it with a pseudo mixture track, created by
averaging all single-instrument tracks at the waveform level.
This adjustment results in only a very slight performance
decrease, suggesting that our model remains functional without
the human-produced mixture track, making it applicable in
fully automated scenarios.

C. Cross-Dataset Testing

Table III4 presents the results for out-of-domain testing.
When trained on the MJN dataset, the track classification

4This experiment used a smaller batch size (=1), leading to slightly weaker
performance on the MJN test set compared to Table I.

TABLE IV
COMPARISON WITH CRNN

Validation set (hard) Test set (balanced)
Model Input FT MERT Inst F1 Inst Acc Inst F1 Inst Acc

Ours MERT feat. Y 77.42 83.96 83.32 91.28
CRNN Mel spec. NA 37.64 46.36 17.15 24.93
CRNN MERT feat. N 57.62 60.16 23.20 26.48
CRNN MERT feat. Y 57.62 60.16 23.20 26.48
CRNN + attn. MERT feat. Y 57.62 60.16 26.50 31.40

TABLE V
COMPARISON WITH SVM ON SEGMENT-LEVEL GUITAR SOLO DETECTION

Validation set (hard) Test set (balanced)
Model Acc Guitar F1 Macro F1 Acc Guitar F1 Macro F1
Ours 93.02 82.17 88.91 92.20 87.50 90.91
SVM 75.50 26.03 55.67 56.44 20.80 45.38

model not only maintains strong in-domain performance but
also excels in out-of-domain tests, showing a +16.45% im-
provement in instrument F1 on MedleyDB over the instrument
classification model. Training with both datasets yields the
best overall performance, highlighting the importance of data
quantity and diversity. Moreover, training with MedleyDB and
testing on MJN results in a significant performance drop (-
32.26% in instrument F1), but this decline is less pronounced
when reversing the training and testing sets (-10.34%), sug-
gesting MJN is a more effective training set for this task. This
observation highlight key strategies for future dataset construc-
tion with limited resources: tolerating data imperfections like
bleeding sound and less instrument diversity, ensuring a more
balanced distribution of lead instruments and more frequent
switches of lead instruments.

D. Comparison with Prior Works

1) CRNN: The comparison with CRNN is presented in
Table IV. Overall, the CRNN model performs poorly on our
task, regardless of whether the audio features used are mel
spectrograms or MERT features, and whether MERT is fine-
tuned or not. The performance gap between CRNN and our
model is substantial.

2) SVM: As shown in Table V, the SVM model also
struggles on our dataset, achieving only 26.03% F1 for guitar.
In contrast, our model maintains competitive performance
in segment-level classification, demonstrating a significant
advantage over the SVM model.

V. CONCLUSION

In this paper, we introduced the task of lead instrument
detection in multitrack music and developed two annotated
datasets specifically for this purpose. Our proposed model,
which incorporates an SSL audio encoder, instrument and
track embeddings, track-wise attention, track classification,
and track permutation augmentation, effectively addresses this
task and is capable of generalizing to unseen instruments.
We established robust baselines on these datasets and demon-
strated the superiority of our approach through comparative
studies with CRNN and SVM models. This exploration of
multitrack audio content analysis provides valuable insights
for future research on similar tasks.
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