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Abstract—Current singing voice synthesis systems often strug-
gle in multi-singer scenarios due to limited training data that only
includes a few singers. Existing zero-shot multi-singer singing
voice synthesis systems are criticized for their reliance on global
timbre embeddings from single reference audio, which fail to
capture sufficient timbre details. This paper introduces SPSinger,
a multi-singer singing voice synthesizer that generates singer-
specific voices from brief reference audio (around 5 seconds)
without prior training on the singer’s voice. SPSinger builds on
the StableDiffusion framework by adding a global encoder to
capture consistent timbre features from short reference prompts
and an attention-based local encoder to capture detailed varia-
tions from long prompts, used only during training. To overcome
the challenge of requiring long audio prompts during inference,
we introduce the Latent Prompt Adaptation Model (LPAM),
a Transformer-based module that derives timbre features from
global embeddings. This approach eliminates the need for long
reference prompts. Additionally, we propose a novel pitch shift
algorithm that uses LPAM to predict the pitch shift values. Our
experiments show that SPSinger achieves high-quality singing
voice synthesis that preserves the identity of the target singer,
even when using only short reference audio inputs in zero-shot
scenarios.

Index Terms—Singing voice synthesis, Multi-singer singing
voice synthesis, Acoustic models, Diffusion models

I. INTRODUCTION

Singing Voice Synthesis (SVS) creates realistic artificial
singing voices, widely used in music production and virtual
singers. Recent advancements in deep learning have revolu-
tionized SVS, enabling the generation of highly realistic and
expressive vocals [1]–[7]. These systems excel in capturing
pronunciation, pitch, and duration, but their potential can be
expanded further by generating personalized voices, enhancing
the versatility and expressiveness of virtual singers for diverse
music production needs. This capability enhances the versatil-
ity and expressiveness of virtual singers and is invaluable in
various music production scenarios.

Previous research in multi-singer singing voice synthesis
(SVS) has often adapted methodologies from multi-speaker
text-to-speech (TTS) systems, employing global singer fea-
tures to encapsulate the vocal characteristics of a target singer
from reference audio, subsequently feeding these into the
synthesizer [2], [8]–[12]. However, the inherently expressive
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nature of singing—characterized by a broader range of pitches
and timbres—presents a stark contrast to spoken language.
This divergence renders a single, consistent timbre feature
insufficient for effective multi-singer SVS systems [13]. To
address these challenges, recent studies have shifted focus
towards capturing the time-varying aspects of singers’ perfor-
mances. [14] introduced a local style token module, leveraging
an attention mechanism to model time-varying features in
relation to both text and pitch. [15], [16] proposed the use of
multi-reference encoders to capture finer details and variations
in the target timbre from multiple reference audios.

In this paper, we introduce SPSinger, a novel zero-shot
multi-singer singing voice synthesis system that generates
singing voices closely resembling target singers using only
music scores and short reference audio prompts. Specifically,
(1) we developed a multi-singer singing voice synthesis system
based on StableDiffusion [17], incorporating both a global
encoder and a local encoder. The global encoder captures
timbre features from short reference audio prompts, while the
local encoder processes longer reference prompts to extract
more detailed timbre characteristics. (2) To enable high-quality
synthesis with short prompts during inference, we proposed
the Latent Prompt Adaptation Model (LPAM), a Transformer-
based model that directly extracts local timbre features from
music scores and global timbre hidden features, eliminating
the need for a local encoder and long prompts. (3) Inspired
by [15], we implemented a novel pitch shift method within the
LPAM framework, aligning the pitch range of the input music
score with the reference singer’s pitch range for more accurate
pitch representation. (4) To enhance zero-shot capability, we
pre-train our TTS generative model on a large, diverse speech
corpus, followed by fine-tuning on a smaller SVS dataset.
This approach ensures SPSinger is exposed to a wide range of
timbres, enabling it to effectively generalize to new singers.

We evaluated SPSinger against state-of-the-art (SOTA)
multi-singer singing voice synthesis systems, employing both
objective and subjective metrics to assess performance. Our
results demonstrate that SPSinger not only surpasses baseline
models in overall synthesis quality but also performs well
in accurately capturing the target singer’s style. Furthermore,
ablation studies confirm the effectiveness of the key modules
and methods introduced, highlighting their contributions to the



Fig. 1. Overall Architecture of SPSinger. em, eg , and el correspondingly represent the music score hidden sequence, global feature hidden sequence, and
local feature hidden sequence. êl represents the predicted local feature hidden. Concatenation and repeating operations are denoted by C⃝ and R⃝, respectively.
In this diagram, training is indicated by dashed lines, pitch shift is only performed during inference.

system’s improved performance. Some samples are provided
for listening1.

II. METHODOLOGY

A. Overall Architecture

The architecture of SPSinger, illustrated in Fig. 1, takes
the music score sequence m, including pitch mp, lyrics ml,
duration md, and slur ms sequences at the phoneme level,
along with a short audio prompt ãs from the target singer.
SPSinger consists of three main components: a music score
encoder, an acoustic model, and a vocoder.

The music score encoder Em, based on the Transformer
architecture [18] from DeepSinger [4], converts the music
score sequences m into hidden sequence em. The acoustic
model utilizes the StableDiffusion architecture [17], which
has demonstrated success in generative modeling [17], [19],
[20]. To control vocal characteristics precisely, we employ
both a global encoder Eg and a local encoder El. The global
encoder Eg captures consistent timbre features from short
audio prompts, while the local encoder El extracts time-
varying timbre features from longer audio prompts. To address
the impracticality of using long prompts during inference, we
introduce the Latent Prompt Adaptation Model (LPAM), a
Transformer-based module. LPAM predicts the local feature
hidden sequence el from the music score hidden sequence em
and the global feature hidden sequence eg , obviating the need
for long prompts. LPAM also predicts pitch shifts ∆p to adjust
the pitch sequence mp during synthesis.

For the vocoder, we utilized a pre-trained HiFi-GAN model
[21] designed for high-fidelity speech and singing voice syn-
thesis2, which is adopted by DiffSinger.

1https://danny-nus.github.io/SPSinger/
2https://github.com/MoonInTheRiver/DiffSinger/releases/download/

pretrain-model/0109 hifigan bigpopcs hop128.zip

B. Global & Local Encoder

Building on prior research [9], [10], we used a pre-trained
global encoder Eg to extract a fixed-size feature from a short
audio prompt ãs. This encoder, which includes the EPACA-
TDNN [22], commonly used in multi-speaker TTS systems
[23], [24], along with an additional linear layer, was adapted
for our synthesis model. The consistent global timbre feature
is replicated across the music score sequence, with only
the linear layer trained while keeping the speaker encoder
parameters fixed.

Inspired by [14], [15], the local encoder El captures dy-
namic timbre variations from long reference mel-spectrograms
M̃l in alignment with the music score sequence. It processes
the input through convolutional stacks to extract contextual
features, applies phoneme-level pooling using mel2ph to align
frame-level mel-spectrograms with phoneme-level music score
sequences, and utilizes multi-head self-attention (MHSA) with
residual connections to capture global relationships within
the music score and long prompt features. Multi-head cross-
attention (MHCA) is then used to model the interdependencies
between the music score hidden features hm and the long
prompt features hl.

We first compute the attention query Q = hmWq ∈ RL×D,
key K = hlWk ∈ RLp×D, and value V = hlWv ∈ RLp×D.
The local feature hidden sequence el is then calculated as:

el = softmax(
Q ·K⊤
√
D

) ·V. (1)

C. Latent Prompt Adaptation Model (LPAM)

The local encoder requires a long reference audio prompt
input, which is impractical for users. To address this, we
introduce a Transformer-decoder-based Latent Prompt Adap-
tation Model (LPAM) that generates the local feature hidden
sequence ef without the need for a long reference prompt



ãl. The LPAM module takes as input the concatenated global
feature hidden sequence eg and music score hidden sequence
em. A 1D convolutional layer projects this input to the
dimension of eg . The resulting output is then fed into four
Transformer-decoder layers to autoregressively infer êl, which
can be formulated as:

p(êl | eg, em; θ) =

L−1∏
i=0

p(êl,i | ˆel,<i, eg, em; θ). (2)

1) LPAM for pitch shift: Previous research on multi-singer
synthesis [15] and voice conversion [25], [26] highlights the
challenge of mismatched pitch ranges between target singers
and music scores. While naive pitch shift algorithms (NPS)
[15], [25] adjust the fundamental frequency (f0) based on
pitch differences, they often fail to capture the full vocal range
due to the limitations of short reference prompts. To address
this, we propose to utilize the LPAM module to predict the
necessary pitch shift, by adding a classifier head is after the
Transformer-decoder layers.

D. Training & Inference Strategy

The training of SPSinger involves two stages: (1) training
without the LPAM module using speech and singing voice
datasets; (2) training the LPAM module with the paired dataset
inferred from the first stage.

1) Training of SPSinger w/o LPAM: In the first stage,
we use StableDiffusion [17] as our backbone and follow the
training process of AudioLDM [20]. We initially train the
VAE encoder E and decoder D with a combined objective of
reconstruction loss, adversarial loss, and Gaussian constraint
loss, as described in [20]. We then train the latent diffusion
model (LDM) with the objective [17], [20]:

LLDM (θ) = EE(M),e,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, e)∥22

]
, (3)

where e is the hidden sequence, which is the concatenation
of em, eg and el; t is the time step. To enhance zero-shot
performance, we pre-train the model on speech data [27] using
a phoneme encoder from FastSpeech 2 [28] instead of the
music score encoder, while other modules remain unchanged.
We then fine-tune the model on a singing voice dataset [29].

2) Training of LPAM: In the second training stage, we
infer hidden sequences em, eg , and el using the pre-trained
StableDiffusion model from the first stage. We then train
LPAM autoregressively by minimizing the MSE loss LMSE
between predicted êl and target el, excluding the classifier
head. The MSE loss is defined as:

LMSE(θ) =

L−1∑
i=0

∥êl,i − el,i∥22 . (4)

We then train the LPAM classifier head while keeping other
layers fixed. Specifically, we perturb the pitch sequence of the
input musics score sequence by δ ∈ [−6,+6] to obtain the
perturbed hidden sequence e′m. The pitch shift is computed
as ∆p = p′ − pl ∈ {0,±1,±2, . . . ,±15}, where pl is the
median pitch of the long reference prompt and p′ is the median

pitch of the perturbed pitch sequence. Using e′m and eg as
inputs and ∆p as the target, we train the classifier head with
class-distance weighted cross-entropy (DWCE) loss LDWCE,
which enhances accuracy by weighting the loss based on the
proximity of predicted pitch values to the target. LDWCE is
formulated as:

LDWCE =

1 +

∑
i∈c pi ·

∣∣∣i− ∆̂p
∣∣∣

C − 1

 · CE(∆p, ∆̂p), (5)

where ∆̂p and ∆p denote the predicted and target pitch shift
values respectively; c = [−15,−14, . . . , 15] represents the
vector of class values; pi is the softmax probability associated
with the i-th class.

3) Inference of SPSinger: During inference, the music score
and a short reference prompt are input to the StableDiffusion
model to infer em and eg . The LPAM module then predicts the
pitch shift ∆̂p, updating the pitch sequence to mp∗ = mp+∆̂p
and deriving em

∗. Using em
∗ and eg , the local feature el is

obtained with the LPAM module, excluding the classifier head.
The LDM condition e is formed by concatenating em

∗, eg ,
and el, which is then processed by the decoder and vocoder
to generate the singing voice.

III. EXPERIMENTAL SETUPS

A. Datasets

The experiments are conducted on two Mandarin singing
corpora, M4Singer [29] and OpenSinger [30], and a Mandarin
speech corpus, Magicdata [27]. We pretrain on Magicdata,
which provides 180 hours of speech from 663 speakers, with
duration sequences extracted via Kaldi [31] and reference au-
dio prepared similarly to M4Singer. Fine-tuning is performed
on M4Singer, which includes 700 Chinese pop songs by 20
vocalists with both short (5-second) and long (180-second)
prompts. For zero-shot evaluation, we leverage 10 male and
10 female singers from the OpenSinger dataset, integrating
M4Singer’s music score sequences to address the absence of
annotations in OpenSinger. All audio is down-sampled to 24
kHz with 16-bit quantization.

B. Implementation Details

Our model, implemented in PyTorch and PyTorch Light-
ning, was trained on NVIDIA RTX A5000 GPUs. We adopted
the UNet and VAE architectures from AudioLDM [20]. The
linear layer in the global encoder has size (192, 192). The
Conv1d layers in local encoder are (80, 256) with a kernel
size of 5, and the Multi-Head Attention blocks have a hidden
size of 256 and 8 heads [18]. The LPAM module includes a
1D convolution layer with dimensions (448, 256) and kernel
size 3, and Transformer-decoder layers with a hidden size of
256, 8 attention heads, and a feed-forward dimension of 512.
Training involved 50k steps for the VAE with a batch size of
48, 200k steps of pre-training and 50k steps of fine-tuning for
the LDM, and 50k steps for the LPAM module, utilizing the
AdamW optimizer (β1 = 0.9, β2 = 0.999, ϵ = 10−9).



TABLE I
OBJECTIVE AND SUBJECTIVE EVALUATION FOR SEEN SINGER SVS. LE DENOTES THE LOCAL ENCODER; MOS-N DENOTES THE NATURALNESS AND

MOS-SQ DENOTES THE SOUND QUALITY.

Model MCD (dB) (↓) F0-RMSE (logHz) (↓) COS (↑) MOS-N (↑) MOS-SQ (↑) SMOS (↑)

DiffSinger 4.82 0.0430 0.742 3.69±0.21 3.84±0.15 3.91±0.13
MR-SVS 5.83 0.2216 0.547 2.68±0.20 2.78±0.17 3.54±0.20
SPSinger - w/o Magicdata 4.62 0.0222 0.843 3.96±0.22 4.32±0.18 4.20±0.15
SPSinger - w/o LE & LPAM 4.78 0.0391 0.745 3.78±0.19 4.26±0.20 4.16±0.17
SPSinger 4.76 0.0312 0.855 3.82±0.16 4.25±0.22 4.32±0.12

Ground Truth - - 0.920 4.27±0.19 4.60±0.18 4.51±0.14

TABLE II
OBJECTIVE AND SUBJECTIVE EVALUATION FOR UNSEEN SINGER SVS.

Model COS (↑) MOS-N (↑) MOS-SQ (↑) SMOS (↑)

DiffSinger 0.629 3.84±0.17 3.79±0.16 3.28±0.19
MR-SVS 0.435 2.45±0.13 2.90±0.12 2.55±0.14
SPSinger - w/o Magicdata 0.735 4.06±0.18 4.25±0.13 3.85±0.18
SPSinger - w/o LE & LPAM 0.790 3.89±0.13 4.19±0.18 4.06±0.14
SPSinger 0.837 3.95±0.15 4.25±0.22 4.18±0.15

Ground Truth 0.907 4.15±0.11 4.37±0.15 4.40±0.12

Fig. 2. Comparative analysis of pitch shift algorithms across models,
evaluated using singer similarity metrics with music score sequences of
lengths 10 and 50.

C. Evaluation Methods

To evaluate SPSinger, we compared it with multi-singer
DiffSinger [3] and MR-SVS [15], all trained on the M4Singer
dataset and using the HiFiGAN vocoder, consistent with our
approach. We assessed synthesis quality using Mel Cepstral
Distortion (MCD) [32] and Root Mean-Squared Error of
Fundamental Frequency (F0-RMSE) [33], and multi-singer
controllability with Singer Cosine Similarity (COS) [16], [25],
[34], computed via the WavLM model [35]3 fine-tuned for
speaker verification. For subjective evaluation, we utilized
mean opinion scores (MOS) covering naturalness (MOS-N),
sound quality (MOS-Q), and timbre similarity (SMOS). The
assessment involved 20 highly experienced participants, each
with extensive backgrounds in choir and pop singing, who
rated audio samples from various systems on a scale of 1 to
5, with 5 indicating the highest quality.

IV. EXPERIMENTAL RESULTS

Tables I and II present a comparative performance analysis
of SPSinger against the SOTA multi-singer SVS systems Diff-
Singer and MR-SVS, under both seen and unseen (zero-shot)

3https://huggingface.co/microsoft/wavlm-base-plus-sv

conditions. SPSinger consistently outperforms the baselines in
both scenarios across objective and subjective metrics. The
advantage of SPSinger is even more pronounced in the zero-
shot setting, as shown in Table II.

In our ablation study, we observed a drop in COS and
SMOS performance when SPSinger was not pretrained on
the Magicdata dataset, especially in zero-shot scenarios. This
underscores the importance of diverse speaker data for improv-
ing zero-shot performance. Despite training SPSinger exclu-
sively on the M4Singer dataset—just as with DiffSinger and
MR-SVS—SPSinger consistently outperforms both baselines,
demonstrating its robustness and effectiveness. Although omit-
ting Magicdata pre-training slightly enhances general synthesis
metrics, suggesting that a gap still exists between speech and
singing data. Moreover, removing the local encoder and LPAM
module led to reduced performance across both objective
and subjective metrics, highlighting the critical role of these
components.

We assess various pitch shift algorithms by comparing
SPSinger with: (1) NPS-S, which applies naive pitch shift
(NPS) to short audio prompts as discussed in Section II-C; (2)
NPS-L, which applies NPS to long audio prompts; and (3) a no
pitch shift condition. As shown in Figure 2, incorporating pitch
shift generally leads to performance degradation. Although
NPS-S yields similar results to SPSinger with short inputs,
the performance gap increases with longer sequences due to
the limited pitch range of short prompts. While SPSinger is
slightly less effective than NPS-L, it provides greater practi-
cality by eliminating the need for long reference prompts.

V. CONCLUSION

This paper presents SPSinger, a novel multi-singer voice
synthesis system that operates effectively with short reference
prompts. Our approach advances timbre feature extraction
through an attention-based local encoder that captures nuanced
variations in long prompts and a latent prompt adaptation
model (LPAM) that derives variation features from global
features and music scores, thus obviating the need for long
prompts during inference. Unlike traditional pitch shift meth-
ods, SPSinger predicts pitch shift directly from the music score
and short prompt using the LPAM module. Experimental re-
sults validate SPSinger’s superior performance in multi-singer
control and our ablation studies underscore the critical role of
each component in enhancing the system’s effectiveness.
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