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Abstract—Singing Voice Synthesis (SVS) aims to generate
expressive vocal performances from structured musical inputs
such as lyrics and pitch sequences. While recent progress in
discrete codec-based speech synthesis has enabled zero-shot
generation via in-context learning, directly extending these tech-
niques to SVS remains non-trivial due to the requirement for
precise melody control. In particular, prompt-based generation
often introduces prosody leakage, where pitch information is
inadvertently entangled within the timbre prompt, compromis-
ing controllability. We present CoMelSinger, a zero-shot SVS
framework that enables structured and disentangled melody
control within a discrete codec modeling paradigm. Built on
the non-autoregressive MaskGCT architecture, CoMelSinger re-
places conventional text inputs with lyric and pitch tokens,
preserving in-context generalization while enhancing melody
conditioning. To suppress prosody leakage, we propose a coarse-
to-fine contrastive learning strategy that explicitly regularizes
pitch redundancy between the acoustic prompt and melody input.
Furthermore, we incorporate a lightweight encoder-only Singing
Voice Transcription (SVT) module to align acoustic tokens with
pitch and duration, offering fine-grained frame-level supervision.
Experimental results demonstrate that CoMelSinger achieves
notable improvements in pitch accuracy, timbre consistency, and
zero-shot transferability over competitive baselines. Audio sam-
ples are available at https://danny-nus.github.io/CoMelSinger/.

Index Terms—Singing voice synthesis, zero-shot singing voice
synthesis, voice cloning, neural codecs, deep learning, masked
generative models.

I. INTRODUCTION

INGING voice synthesis (SVS) aims to transform struc-
Stured musical inputs—most often lyrics and pitch se-
quences—into expressive, high-quality vocal performances.
Over the past decade, it has moved from a niche research topic
to an essential tool in creative audio technologies, propelled by
the rise of Al-driven music generation, virtual performers, and
personalized media experiences. Its applications now extend
well beyond traditional karaoke systems, finding a place in
virtual idol production, game soundtracks, and content creation
for social platforms. Parallel to these expanding use cases, ad-
vances in deep generative models have brought marked gains
in timbre fidelity, pitch accuracy, and the overall naturalness
of synthesized voices [1], [2], [3], [4], [5], [6], [7], [8].

Recent SVS frameworks, including end-to-end [6], [9] and
diffusion-based architectures [3], [4], [8], [10], [11], have
demonstrated strong performance in supervised scenarios with
seen singers. Nevertheless, zero-shot SVS [12] [13], [10],
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Fig. 1: Illustration of pitch leakage in prompt-based SVS.
Despite conditioning on lyrics (semantic tokens) and pitch
tokens, the model may still infer prosodic cues from prompt
acoustic tokens, leading to pitch or prosody leakage.
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[14]—synthesizing singing voices for unseen speakers without
additional fine-tuning—still has substantial room for improve-
ment.

Discrete token-based architectures show great in-context
learning capabilities and provide a promising pathway for such
zero-shot generation. In a related task, text-to-speech (TTS)
has witnessed rapid progress with discrete acoustic tokens
derived from vector quantization and neural audio codecs [15],
[16], [17], [18], [19]. By mapping complex waveforms into a
quantized latent space, these tokens capture timbre, prosody,
and phonetic content, thereby reformulating speech synthesis
as symbolic sequence modeling akin to language modeling.
The success of token-based TTS systems is largely enabled
by large-scale multi-speaker corpora, which provide sufficient
diversity to learn robust and generalizable representations. In
contrast, the scarcity and limited diversity of singing data make
token-based modeling for SVS significantly more challenging.

Built upon this data-rich foundation, recent TTS systems
[15], [18], [20], [21], [16], [17], have adopted large language
model (LLM)-style architectures to model the conditional
distribution of acoustic tokens given phoneme sequences and
optional prompts. Within this framework, in-context learning
(ICL) becomes feasible: a short segment of reference speech,
represented as discrete tokens, serves as an acoustic prompt
to guide synthesis in terms of speaker identity and style. This
approach, exemplified by models such as VALL-E [15], en-
ables zero-shot speech synthesis by treating speech generation
as a form of conditional codec language modeling, without
requiring speaker labels or model adaptation. Inspired by these
advances, researchers have begun exploring discrete token-
based methods for SVS.
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However, directly extending TTS by replacing textual in-
put with structured musical inputs—such as lyrics and pitch
tokens—while reusing the same modeling pipeline reveals a
unique challenge in the singing domain: prosody leakage from
the acoustic prompt, as illustrated in Figure 1. In prompt-
based synthesis, the acoustic prompt is intended to provide
timbral cues, yet pitch-related attributes—including contour
and timing—are often inadvertently encoded into its latent rep-
resentation. This unintended encoding leads to timbre-melody
entanglement, where the prompt simultaneously influences
vocal timbre and melodic realization. As a result, the sys-
tem’s control over the explicitly specified pitch sequence is
weakened, undermining the precise separation between timbre
conditioning and melody generation that SVS requires.

The disparity in dataset size between singing [22], [23],
[24], and speech [25], [26], [27], further exacerbates the
difficulty of addressing prosody leakage. Importantly, the
effectiveness of in-context learning in TTS relies on large-
scale, diverse speech corpora, which enable robust learning
of disentangled token representations. In contrast, singing
datasets are generally smaller and less varied, making it harder
to avoid prosodic interference and to generalize prompt-based
conditioning. Consequently, directly transferring token-based
prompting strategies from TTS to SVS often leads to weaker
melody control in zero-shot scenarios. In this case, achieving
reliable melody control is particularly crucial for maintaining
alignment with the musical score.

Moreover, SVS requires much finer control over pitch
and melody than TTS or voice conversion, as the gener-
ated singing must accurately follow the musical score while
preserving timbre. Although attribute control has been ex-
plored through adversarial training [19], contrastive learn-
ing [28] [29], and information-bottleneck methods [30] [31]
[32] [33], these approaches primarily focus on coarse prosodic
patterns or emotional cues and provide limited support for
fine-grained melody control. Make-A-Voice [12], as a repre-
sentative discrete-token SVS system, adopts prompt-guided
conditioning but lacks explicit mechanisms to prevent the
acoustic prompt from influencing melody realization. Recent
unified speech-and-singing models such as Vevo 1.5!/2.0 [34]
take a representation-level perspective by introducing melody-
or prosody-aware tokenizers that explicitly model musical FO
structures, aiming to reduce melody leakage through improved
disentanglement. However, these approaches typically rely on
external melody audio (e.g., piano or humming recordings)
as conditioning signals, which can introduce alignment ambi-
guities between melody and lyrics and limit the precision of
fine-grained melody control.

To address the challenges of prosody leakage and lim-
ited melody controllability in zero-shot SVS, we propose
CoMelSinger, a discrete codec-based framework with struc-
tured melody control. CoMelSinger builds on the non-
autoregressive MaskGCT architecture [18], adapting it to
accept musical inputs consisting of lyrics and pitch tokens.
To achieve better melody—timbre control, we introduce a
coarse-to-fine contrastive learning strategy that limits exces-

Ihttps://github.com/open-mmlab/Amphion/tree/main/models/svc/vevosing

Mel-spectrogram

]- m Yocoder W

Acoustic Model

Encoder

Latent Generator

Scmumic-m-Acounic]—

=5

Fig. 2: Comparison of SVS system architectures. (a) Two-
stage pipeline using a pre-defined continuous intermediate
representation. (b) End-to-end system mapping directly from
musical input to audio. (c) HiddenSinger-style [3] system
employing a pretrained audio codec, with frozen components
during codec prediction and audio synthesis (dashed outlines).
(d) Three-stage SVS systems such as Make-a-Voice [12]
and our proposed CoMelSinger, utilizing discrete intermediate
representations.

sive pitch-related information in the acoustic prompt, allowing
the explicit pitch condition to guide melodic realization more
effectively. We further incorporate a lightweight, encoder-only
Singing Voice Transcription (SVT) module to provide fine-
grained, frame-level supervision by aligning acoustic tokens
with pitch and duration sequences. Together, these designs en-
able accurate melody modeling, maintain timbre consistency,
and preserve the in-context learning capability of discrete
token-based systems. Extensive experiments on both seen and
unseen singers demonstrate that CoMelSinger delivers sub-
stantial improvements in pitch accuracy, timbre consistency,
and overall synthesis quality compared with state-of-the-art
SVS baselines in zero-shot scenarios. The main contributions
of this work are:

e We propose CoMelSinger, a discrete token-based SVS
framework for zero-shot synthesis with structured melody
control.

o We introduce a coarse-to-fine contrastive learning mech-
anism to improve melody—timbre control by limiting ex-
cessive pitch-related information in the acoustic prompt.

o We develop a lightweight SVT module that aligns acous-
tic tokens with pitch and duration, providing frame-level
supervision to improve melody fidelity.

o Comprehensive experiments on public SVS datasets
demonstrate that CoMelSinger achieves superior pitch ac-
curacy, timbre consistency, and generalization to unseen
singers.

II. RELATED WORKS
A. Singing Voice Synthesis

Singing voice synthesis (SVS) aims to produce expressive
vocal performances from structured musical inputs such as
note pitch, duration, and lyrics. Compared with text-to-speech
(TTS), SVS presents unique challenges, including a wider
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pitch range and sustained phonation, which demand fine-
grained melody modeling. Figure 2 illustrates the evolution
of representative SVS architectures, from continuous-feature
pipelines to end-to-end models and, more recently, discrete
codec-based frameworks. Early SVS systems relied on unit-
selection synthesis (e.g., VOCALOID [35], [36]) or statistical
approaches based on hidden Markov models (HMMs) [37].
With the advent of deep learning, SVS models increasingly
adopted a two-stage architecture—comprising an acoustic
model followed by a vocoder—including XiaoiceSing [38],
DeepSinger [39], and Sinsy [2]. Subsequent advances incor-
porated generative adversarial networks (GANs) [40], [41]
to enhance timbre realism, while more recent work using
denoising diffusion probabilistic models (DDPMs) [4], [8] has
achieved further gains in fidelity and temporal coherence. In
parallel, end-to-end systems such as VISinger 1/2 [6], [9] have
been developed to generate waveforms directly from musical
scores without relying on explicit intermediate features.
Inspired by the success of discrete token modeling in
TTS [15], [16], [18], recent SVS studies have explored token-
based representations to improve generalization. TokSing [42]
employs a non-autoregressive Transformer conditioned on
lyrics and pitch embeddings to predict discrete acoustic tokens.
HiddenSinger [3] integrates a diffusion-based decoder guided
by discrete pitch and semantic tokens, achieving high-quality
synthesis. Make-A-Voice [12] unifies speech and singing
synthesis through a shared discrete representation, but uses
a relatively small proportion of singing data and does not
incorporate prompt-based in-context learning. Consequently,
it lacks explicit melody conditioning and provides limited
flexibility in zero-shot singing scenarios. Recently, models
such as Vevo 1.5/2.0 [34] have proposed addressing melody
leakage through melody- or prosody-aware tokenizers that
explicitly model musical FO structures. While these methods
mitigate melody leakage by redesigning the tokenizer, our
work focuses on improving melody control within a prompt-
based SVS framework by introducing explicit melody inputs
and regulated prompt-based conditioning, enabling more ac-
curate and controllable zero-shot singing voice synthesis.

B. Discrete Token Based Speech Synthesis

Discrete speech modeling has gained momentum following
advances in self-supervised learning (SSL) for speech repre-
sentation. Models such as HuBERT [43] and Wav2Vec 2.0 [44]
learn meaningful latent representations from raw audio, which
can be quantized into discrete units for downstream tasks.
These discrete units provide compact and controllable rep-
resentations, enabling applications such as low-bitrate speech
coding and voice conversion.

Inspired by the success of large language models (LLMs),
recent approaches formulate speech synthesis as autoregres-
sive generation over discrete codec tokens. VALL-E [15]
pioneered this direction by conditioning on both text and a
short acoustic prompt to synthesize high-fidelity speech. Its
extensions—VALL-E X [45], VALL-E 2 [46], and VALL-
E R [47]—extend the paradigm to cross-lingual synthesis,
streaming generation, and improved alignment. SoCodec [20]

further improves efficiency through semantic-ordered multi-
stream tokenization and segment-level modeling. Through
prompt-based conditioning, these models demonstrate strong
zero-shot capability and robust speaker generalization.

To reduce inference latency, non-autoregressive (NAR) de-
coding frameworks have been developed. SoundStorm [21]
employs a bidirectional Transformer with confidence-based
masked token modeling, generating audio tokens in parallel
while maintaining autoregressive-level quality. Multi-token
prediction and speculative decoding [48] further accelerate
synthesis by predicting multiple codec tokens per decoding
step. MaskGCT [18] adopts a masked generative training
strategy inspired by masked language modeling, enabling fast
and parallel decoding while supporting in-context learning
through prompt-aware input masking.

Building on this foundation, we adapt the MaskGCT frame-
work to singing voice synthesis. Our approach incorporates
structured melody conditioning and improved melody—timbre
control in prompt-based synthesis to address the challenges of
pitch fidelity and prosody leakage in zero-shot settings. This
design improves controllability over melodic realization while
preserving the inference efficiency and generalization strengths
of discrete token-based modeling.

C. Prosody and Melody Control in Speech and Singing Voice
Synthesis

Fine-grained prosody control—particularly over fundamen-
tal frequency (FO) and phoneme duration—is essential for
expressive speech and singing synthesis. Several TTS stud-
ies have incorporated explicit prosodic supervision to guide
model learning. Prosody-TTS [49] augments an end-to-end
architecture with auxiliary predictors for phoneme-level FO
and duration, enabling precise rhythm and pitch control with-
out degrading naturalness. [S0] adopt utterance-level prosodic
features in a hierarchical non-autoregressive model, providing
interpretable style modulation across prosodic dimensions
while maintaining synthesis quality.

Recent advances extend prosody control to diffusion-based
synthesis. DiffStyleTTS [51] combines a diffusion decoder
with classifier-free guidance to model prosodic style at
both coarse and phoneme-level scales, supporting flexible
pitch—duration manipulation. DrawSpeech [52] enables editing
by conditioning on user-drawn pitch—energy sketches, which
are refined into high-resolution prosody contours.

In SVS, accurate melody control often requires note-level
FO alignment. [53] combine dual-path pitch encoders with
local style tokens to capture expressiveness beyond score
constraints. Discrete-token SVS frameworks such as TokSing
[42] incorporate explicit melody tokens to enrich synthetic
singing, while Prompt-Singer [54] decouples vocal range from
melody contour in prompt conditioning to preserve pitch
accuracy across timbres.

Despite these advances, few systems address conflicts be-
tween external melody guidance and prompt-derived timbre
cues in discrete-token SVS. We address this gap by intro-
ducing coarse-to-fine contrastive learning with frame-level
pitch supervision to reduce melody leakage from prompts
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Fig. 3: Overview of CoMelSinger. It adopts a two-stage
pipeline: a T2S model encodes lyrics into semantic tokens,
and an S2A model generates acoustic tokens conditioned on
lyrics, pitch, and prompt. SVT provides pitch supervision. All
modules except S2A are frozen during training.

and strengthen external melody control, enabling high-fidelity
pitch realization without sacrificing timbre consistency or
generalization.

III. METHOD

A. Overview

To enable zero-shot singing voice synthesis with accurate
melody control and disentangled prompt conditioning, we
propose CoMelSinger, a two-stage framework illustrated in
Figure 3. Inspired by MaskGCT [18] and Make-A-Voice [12],
CoMelSinger comprises a Text-to-Semantic (T2S) stage and
a Semantic-to-Acoustic (S2A) stage. The T2S module frog
transforms a lyric token sequence m' = [m!, ... mk] € Vlf,r,
obtained from a Grapheme-to-Phoneme (G2P) converter, and
a semantic prompt s” = Eg(w") extracted from the reference
waveform w”, into a semantic token sequence s € VL where
Vsem denotes the semantic vocabulary and L the sequence
length. The S2A module fsoa then predicts acoustic tokens
ae VaLcﬁN , conditioned on the semantic tokens s, an acoustic
prompt a" = Ea(w") € VI XN and a regulated pitch
sequence m” € Vrﬁt. Here, N denotes the number of residual
vector quantization (RVQ) codebooks in the acoustic codec,
and the regulated pitch sequence mP is derived from the pitch
mP and duration m¢ sequence through the length expan-
sion module LE(-). Both the semantic and acoustic tokens
are produced using discrete codec tokenizers following the
MaskGCT setup, and the final waveform w? is reconstructed

from acoustic tokens via the decoder D 4. The complete

4
pipeline is summarized as:
s"=Eg(w"), a" =FE;s(w"),
5 = fT2S(ml7ST)a
ey

a= feoa(LE(m? m? L),s,a"),
w’ =D A (a)

To synchronize pitch information with frame-level features,
we map phonetic durations onto the frame index space. Given
a pitch sequence mP with corresponding durations m¢, the
total duration is D = Y, m¢. For each pitch token m?, its

frame span is derived by rounding the cumulative normalized
duration:

kstaxt,i = chlL] ) kend,i = L%L] y G = Zm?7 (2)
j=1

where L denotes the length of the semantic feature sequence.
The frame-aligned pitch sequence m?” is then obtained by
repeating each m? for n; = keng ; — ksuar,i frames, ensuring an
exact length correspondence with the semantic features.

Following MaskGCT [18], CoMelSinger adopts a non-
autoregressive masked generative modeling paradigm for both
stages. In this framework, the model learns to reconstruct
masked tokens within a sequence conditioned on surrounding
context and external inputs, rather than generating tokens
sequentially. This allows for parallel decoding and better han-
dling of global context compared to traditional autoregressive
models. Specifically, we model the conditional probabilities:
p(s | s;m',s™; fores), pla | ag;s,mP,a”; fysoa). Here,
s; and a; are the partially masked semantic and acoustic token
sequences, and the generation is conditioned on lyric inputs
m!, pitch-aligned sequence m”, and prompt tokens (s”,a").

Building upon the original MaskGCT architecture, which
employs a LLaMA-style Transformer backbone [55], we ex-
tend the S2A model by introducing an additional embedding
layer for the regulated pitch sequence m”. This pitch embed-
ding e, is element-wise added to the semantic token embed-
ding e, to form the composite conditioning input e, = e, e,
thereby enabling the model to incorporate both linguistic and
melodic information during acoustic token generation.

To further enhance melody controllability and suppress
interference from prompt-induced timbre cues, we propose a
coarse-to-fine contrastive learning framework. At the sequence
level, a contrastive loss encourages the predicted acoustic
token sequence a to preserve the overall pitch contour defined
by mP”. At the frame level, a token-wise contrastive objec-
tive aligns fine-grained acoustic features with localized pitch
variations, thereby reinforcing frame-level pitch fidelity. In
addition, we introduce an auxiliary singing voice transcription
(SVT) model, trained to estimate pitch sequences directly
from acoustic tokens. The SVT model provides pseudo pitch
labels that serve as external supervision during S2A training.
This auxiliary signal further improves alignment between the
synthesized melody and the target pitch contour.

B. Coarse-to-Fine Contrastive Learning

Contrastive learning has been increasingly adopted in
speech and audio modeling to enforce factor-specific con-
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sistency while suppressing undesired variations such as
speaker identity or prompt interference. For instance, CLAP-
Speech [56] applies multi-scale contrastive learning between
textual prosody embeddings and corresponding acoustic re-
alizations, improving prosodic expressivity across varying
textual contexts. [57] propose a contrastive loss to enhance
the modeling of prosodic focus—including FO, duration, and
intensity—by encouraging TTS systems to distinguish empha-
sized from neutral phonetic segments. [58] use contrastive self-
supervision to extract prosody-specific embeddings disentan-
gled from speaker identity, which are useful for style transfer
and anonymized generation. [59] further explore contrastive
pretraining to align textual context with expressive speech
realizations, facilitating zero-shot expressive TTS with better
generalization.

Motivated by these findings, our method extends contrastive
learning to the discrete-token SVS setting by incorporating
hierarchical supervision. At the sequence level, we enforce
prompt-invariant acoustic consistency conditioned on iden-
tical semantic and pitch tokens, encouraging the model to
preserve global melody shape. At the local level, a frame-
wise contrastive loss is applied to align acoustic token features
with fine-grained pitch variations. This coarse-to-fine scheme
allows our model to disentangle pitch conditioning from
acoustic prompts and enhances melody fidelity under zero-
shot generation.

1) Sequence-Level Contrastive Learning: To promote
melody-consistent synthesis under varying acoustic prompts,
we introduce a sequence-level symmetric contrastive loss.
Given a batch of K training samples that share the same

semantic token sequence s but differ in pitch sequences m},
p A JANK

we construct two sets of inputs: S = {s,m},a; ", a; }*
g _ HP a7 B aB K A B
and S = {s,mj,a;",ay, k=1 where a;’; and a;, de-
T, T

note masked acoustic tokens, a;’”" and ak’B denote acoustic
prompts sampled from distinct utterances of the same singer,
ensuring consistent timbre across the pair. The prompt length
is randomly selected from the range [min (| L/4]|,5), [ L/2]),
where L is the length of the semantic sequence. Each input is
processed by the S2A model to produce acoustic token em-

beddings g%, g’ € RE*XEXP  which are mean-pooled across
the time dimension to yield global acoustic representations
ga gb c RK ><D.

To align acoustic outputs with the shared pitch condition
while remaining invariant to prompt variation, we apply a
symmetric contrastive loss (SCE) [60] defined as:

K S5a . gb
1 exp (8 - 87/7)
LscL = 55 ; (1og

S exp (8¢ 8Y/7)

3
(et /) ) o
S exp (gh - ge/7) )]

where 7 is a temperature hyperparameter. Each positive pair
(g2,8%) corresponds to index-aligned embeddings generated
under identical semantic tokens s and regulated pitch se-
quence mP, but conditioned on different acoustic prompts
af’A and a:’B. These prompts are randomly selected from
non-overlapping segments of the same singer’s recordings,
ensuring consistent timbre while introducing natural variation.
In contrast, off-diagonal pairs (gg,gg) for i # j serve as
negatives due to mismatched pitch sequences, even though
semantic tokens and speaker identity remain the same. These
negatives are nontrivial, as they reflect realistic melodic dif-
ferences under otherwise comparable contextual and timbral
conditions. This design encourages the model to focus on
capturing global pitch structure while remaining invariant to
prompt-induced variability.

While this sequence-level objective enforces high-level
melodic consistency, it does not explicitly supervise token-
level alignment. We therefore complement it with a frame-
level contrastive loss to further enhance fine-grained melody
control.

2) Frame-Level Contrastive Learning: While the sequence
contrastive loss promotes utterance-level melody consistency,
it does not directly enforce fine-grained pitch alignment at
the frame level—an essential factor in singing synthesis due
to rapid and expressive melodic changes. To address this
limitation, we introduce a frame-level contrastive objective that
supervises token-wise alignment between generated acoustic
representations and the input pitch contour. Our design is

+ log
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motivated by recent work such as CTAP [61], which leverage
contrastive learning to align discrete phoneme sequences with
speech features for TTS, voice conversion, and ASR tasks
under limited supervision. Although our formulation differs
in both granularity and modality—operating on pitch tokens
rather than phonemes, and targeting melody alignment in
singing synthesis—these studies underscore the effectiveness
of contrastive supervision for bridging symbolic and acoustic
representations. By extending this idea to the SVS domain,
our frame-level contrastive loss enhances local pitch fidelity
while remaining robust to prompt-induced variation, thereby
enabling more precise and expressive melody control in zero-
shot scenarios.

Given a batch of K training samples with distinct semantic
token sequences sy, and corresponding pitch sequences mj, we
construct two sets of inputs: S = {s, 1t Z’A apt af J K
and SL = {sp,m}” ap” al 3K || where af,
denote the masked acoustic tokens, mkA and rhk,’B denote
the regulated pitch sequences derived from the original pitch
tokens m? and their perturbed variants P(m}), respectively.
The acoustic prompts a;’ A and ay B are sampled from different
utterances of the same singer to ensure consistent timbre
across pairs. The perturbation function P(-) offsets 50% of
pitch tokens by integers randomly sampled from [—6, 6], while
preserving the original duration sequence m¢.

Each input is passed through the S2A model to produce
frame-level acoustic embeddings 2, f* € RE*LXD For each
training sample k, we compute a cosine similarity matrix S* €
RE*L between £ and f°. To supervise the similarity learning,
we define a soft label matrix Y* € [—1, 1%~ capturing pitch
and semantic alignment:

At k= 1
and a,w

~p,A _ ~p,B

1, 1fmkl—mkj/\sl—sj
A_ ~ DB
yh_ )% if mp —mkj/\sl#sj @
1] 0 mﬂ #mlﬁ ’
’ ki k,j

if either frame is silence or padding

where o € (0,1) is a tunable coefficient that softly down-
weights semantically mismatched but pitch-aligned pairs. The
frame-level contrastive loss is formulated as a masked regres-
sion objective:

K L
EFCL:%ZZZ]I Yk>0 (Szkj—

k=1i=1 j=1

YH?, 6

where 1[-] is an indicator function that masks out invalid
entries (e.g., silence or padding).

This formulation encourages the model to produce highly
similar acoustic embeddings when both pitch and semantic
content align, moderately similar embeddings when only pitch
aligns, and dissimilar embeddings otherwise. The similarity is
computed within each utterance because the vocal range is
typically locally bounded, making repeated pitch tokens more
likely. In contrast, pitch overlap across utterances is rare and
thus excluded. Additionally, even within the same utterance,
repeated pitches may be associated with different semantic
tokens, resulting in subtle acoustic variation. Our soft label-
ing mechanism accounts for this by assigning intermediate

similarity, thereby avoiding over-penalization while promot-
ing melody-consistent synthesis. Hence, the final contrastive
learning objective is as follows:

LcL = Ascr - Lscr + Arer - LrcL, 6)

where Agcp and Agcp are weighting coefficients that balance
the contributions of sequence-level and frame-level supervi-
sion, respectively.

C. Singing Voice Transcription for Pitch Guidance

Recent studies have explored the use of Singing Voice
Transcription (SVT) to support singing voice synthesis (SVS).
For example, ROSVOT [62] proposes a robust SVT model to
produce high-quality pitch annotations for large-scale singing
datasets, thereby improving SVS performance by enhancing
training data quality. However, such approaches treat SVT
as an independent preprocessing tool, disconnected from the
synthesis process.

In contrast, we integrate the SVT module directly into
the training pipeline to provide explicit frame-level pitch
supervision, thereby enhancing melody modeling and align-
ment. Specifically, the SVT model predicts frame-wise dis-
crete pitch tokens from acoustic codec representations, which
are then compared against the ground-truth pitch sequence.
This supervision enforces alignment between the generated
acoustic tokens and the intended melody, encouraging consis-
tent pitch realization, particularly under zero-shot conditions.
Furthermore, as the SVT module operates entirely on discrete
representations, it is naturally compatible with our codec-based
SVS framework and does not require raw audio or continuous
FO contours.

The SVT model adopts a lightweight encoder-only Trans-
former architecture. Given a sequence of acoustic tokens a,
it predicts the corresponding pitch token sequence m? of
length L. The encoder consists of four Transformer layers
with a hidden size of 512 and eight attention heads. Each
input frame comprises 12 discrete acoustic codes, which are
individually embedded, concatenated, and projected to a 512-
dimensional representation, followed by layer normalization.
The resulting embedding sequence is then passed through a
linear classification head to predict a pitch token for each
frame. The model is trained using a standard cross-entropy
loss between the predicted and reference pitch sequences.

To provide frame-level supervision for pitch modeling, we
leverage the pretrained SVT model as a pitch predictor to
generate pseudo labels in the form of pitch token sequences
m?”, which are temporally aligned with the acoustic frames.
As the primary training objective, we apply a cross-entropy
loss Lcg between the predicted pitch tokens mP and the
SVT-derived ground-truth mP, encouraging accurate token-
level classification. However, the cross-entropy objective alone
does not account for the temporal continuity inherent in
repeated pitch tokens. This often results in jittery predictions,
fragmented note segments, and rhythmically unstable outputs.

1) Segment Transition Loss: Prior studies have highlighted
the importance of modeling temporal structure for natural
singing synthesis. XiaoiceSing [38] introduces syllable-level
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duration modeling to preserve rhythmic consistency, while
Singing-Tacotron [63] enhances segmental alignment through
transition tokens and duration-informed attention mechanisms.

Motivated by these findings, we propose a segment transi-
tion loss L, to impose structural regularity on the predicted
pitch token sequence. Let p € RL*C denote the predicted
frame-level pitch token distribution obtained by applying a
softmax to the decoder logits, where L is the number of frames
and C is the size of the pitch token vocabulary. The loss is
defined as follows:

L
Loy = 1—b,) - [pe — P’
=2 (1= Ipe =il -

+ b max (0,0 — [pe — pr-all)’,

where b, = 1[m} # m! ] is a binary indicator marking
ground-truth pitch boundaries, and ¢ is a fixed margin that
enforces dissimilarity across transitions. This formulation pe-
nalizes minimal variation within sustained pitch regions while
promoting sharper contrast at pitch change boundaries, thereby
enhancing segment continuity and expressive phrasing in the
synthesized output.

2) Soft Duration Loss: Inspired by recent advances in
speech synthesis that emphasize the importance of temporal
alignment and duration modeling [38], [64], we introduce
a soft duration loss Ly, to enhance the rhythmic fidelity
of frame-level pitch predictions. Prior works such as Fast-
Speech [64] and XiaoiceSing [38] employ explicit duration
predictors or auxiliary alignment modules to supervise tempo-
ral structures. While effective, these methods often introduce
architectural overhead or struggle to generalize in expressive
singing scenarios. In contrast, our approach provides a fully
differentiable supervision signal by directly supervising the
temporal distribution of pitch token probabilities using the
softmax outputs of the model, without requiring any external
duration modeling.

Given a symbolic duration sequence m¢ = [m¢,...,m],
we normalize it into a frame-level allocation a? =

[ad,...,al], where each element is computed as al =

s
Vg . LJ, where D = m;-i and L denotes the total number
i=1

of frames. Let p € REXC denote the predicted frame-level
pitch token distribution obtained via softmax, where C is
the size of the pitch vocabulary. For each target pitch token
m?P, we define its soft duration as the cumulative probability
mass p;[m?] over its allocated segment of length ag. The soft
duration loss is given by

S T;+al—1

ﬁdur = Z

=1 t=T;

pi[m?] —al | , (8)

i—1

where T; = > a;l denotes the starting frame index for the ith
j=1

pitch token. !

This formulation encourages the model to allocate ap-
propriate probability mass to each pitch token across time,
thereby promoting temporally coherent and rhythmically faith-
ful melody generation. The final training objective for the SVT

Algorithm 1 Finetuning S2A with Contrastive Learning and
SVT Supervision

Require: S2A model parameters 6; frozen SVT model fsyr;
training set D; loss weights AcL, AsvT, Amask; Dumber of
epochs N; learning rate n

Ensure: Trained parameters 6

1: fort=1to N do

2:  Sample batch B = {x1,...,xx} from D

3 Split B into 8§ = {xi,...,xg,} and Sfx =
{XKngh PN ,XK}

4 Construct S% = 8%, S, « P(S%)

5. Define B + S%US,

6: a’ « PromptGen(B), a” « PromptGen(B')

7. B« Bua', B « Bua”

8:  Forward pass: R ~

9 e < fsa(B), € < fsoa(B')

10: Split e into g” = e;.x, and fe = €K, +1:K

11: Split € into gb = e/, x, and o = €, 11K

12: g% < AvgPool(g?), g® «+ AvgPool(g?)

13:  Contrastive losses:

14: Compute Lgcr, from g% and g according to (3)
15: Compute Lrcr, from f¢ and f° according to (5)
16: Compute Lcp according to (6)

17: Mask prediction and SVT loss:

18: a<+ fhead(fa)

19: Lumask ¢ MaskLoss(a,a)

20: m? + fsyr(StopGrad(a))

21: Compute Lgyr from m? and mP according to (9)
22:  Total loss and update:

23: L AcL - Lov 4 Asvt - LsvT + Amask * Lmask

24: 0+ 0—n-VoLl

25: end for

module combines the cross-entropy loss, segment transition
loss, and soft duration loss:

ESVT = L:CE + /\seg : £seg + )\dur : Acdur- &)

D. Training and Inference Procedures

We begin by training the Singing Voice Transcription (SVT)
model to provide frame-level pitch supervision for subsequent
Semantic-to-Acoustic (S2A) adaptation. The SVT model is op-
timized using a cross-entropy loss Lcg between the regulated
pitch token sequence mP” and the acoustic token sequence a,
thereby learning to predict temporally aligned pitch trajectories
from acoustic inputs. Once trained, the SVT module is frozen
to serve as a fixed auxiliary supervisor during S2A training.

We then fine-tune the S2A model built upon the MaskGCT
framework [18], which leverages masked acoustic modeling
for non-autoregressive generation. The training objective for
the S2A model comprises three components: (1) the mask
token prediction loss Lpyask, Which reconstructs randomly
masked acoustic tokens from noisy inputs using a masked
denoising objective; (2) a coarse-to-fine contrastive loss Lcp,
composed of sequence-level (Lscr) and frame-level (Lgcp)
terms, to enforce consistency between the melody condi-
tion and generated acoustic tokens while mitigating prosody



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

leakage from the prompt; and (3) an auxiliary SVT loss
Lsyt, which encourages the predicted acoustic tokens to be
rhythmically and melodically consistent with the SVT-inferred
pitch contour. The fine-tuning algorithm for the S2A model is
summarized in Algorithm 1. Each training sample x; € B
comprises a semantic sequence sy, a regulated pitch sequence
rhz, and a time-aligned acoustic token sequence ay ;.

To improve adaptation efficiency and reduce overfitting, we
apply Low-Rank Adaptation (LoRA) [65] to fine-tune the S2A
model’s diffusion estimator module, which is implemented us-
ing a DiffL.lama-style architecture. LoRA introduces trainable
low-rank matrices into the linear layers of pretrained models,
enabling efficient fine-tuning by updating only a small subset
of parameters while keeping the original weights frozen. This
allows our model to retain prior knowledge from the TTS
domain while adapting to the stylistic nuances of singing voice
synthesis with limited data.

During inference, we follow the parallel iterative decod-
ing introduced in MaskGCT [18] to generate acoustic token
sequences. Unlike the original setup, which requires either
an explicit duration input or a learned duration predictor to
determine the output length, we directly use the ground-truth
duration sequence m? extracted from the input music score.
This allows precise control over the number of generated
tokens—equal to the total duration D = > m¢—thus pre-

?
serving the intended temporal structure of the synthesized
performance.

1V. EXPERIMENTAL SETUPS
A. Dataset

We conduct experiments on two publicly available mandarin
singing corpora: M4Singer [23]> and Opencpop [22]°. The
M4Singer dataset comprises studio-quality recordings from
20 professional singers spanning SATB vocal ranges, along
with comprehensive annotations including lyrics, pitch, note
duration, and slur information. The Opencpop dataset contains
100 Chinese pop songs sung by a professional female vocalist,
with precise phoneme, note, and syllable-level annotations
aligned to the music score. For evaluation, we construct both
seen- and unseen-singer test sets. For seen-singer evaluation,
we randomly select 50 utterances each from the M4Singer and
Opencpop datasets. For zero-shot (unseen-singer) evaluation,
we use 10 male and 10 female singers from the OpenSinger
[66]* dataset. Since OpenSinger lacks complete music score
annotations, we pair it with M4Singer’s score sequences to
enable evaluation. All audio is uniformly down-sampled to 24
kHz with 16-bit quantization.

To fine-tune the S2A model, we preprocess the dataset to
obtain temporally aligned semantic tokens s, acoustic tokens
a, and regulated pitch tokens mP. All audio segments are
first converted to mono and resampled to 24 kHz. We then
utilize the pretrained semantic and acoustic codec models from
the MaskGCT framework® to extract s and a. For samples

Zhttps://github.com/M4Singer/M4Singer

3https://xinshengwang.github.io/opencpop/

“#https://github.com/Multi- Singer/Multi- Singer.github.io?tab=
readme-ov-file

Shttps://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct

with mismatched token lengths, we apply zero-padding to
align their temporal dimensions for frame-level supervision.
The regulated pitch sequence m?” is derived by expanding
the original pitch sequence mP” according to the duration
sequence m?, as described in Section III-A. The SVT model
is trained using the preprocessed acoustic tokens a and the
corresponding regulated pitch tokens mP.

B. Implementation Details

The SVT model is trained on a single NVIDIA RTX
A5000 GPU using the AdamW optimizer with a learning rate
of le-5, weight decay of 0.01, and a cosine learning rate
schedule with 5K warm-up steps over 50K updates. Training
is performed for 100 epochs with a batch size of 32 using
mixed-precision (FP16) computation. Subsequently, the S2A
model is fine-tuned on four NVIDIA RTX A5000 GPUs with
data parallelism. We adopt the AdamW optimizer with a
learning rate of le—5, 32K warm-up steps, and the inverse
square root learning rate schedule. Fine-tuning is conducted
for 300K steps with a total batch size of 32, where the first
8 samples are used for sequence contrastive learning and the
remaining 24 for frame-level contrastive learning. We apply
dropout (0.1), label smoothing (0.1), and gradient clipping to
stabilize training. During this stage, all model components are
frozen except the S2A decoder. The loss weights are set as
follows: )\SCL = 0.5, )\FCL = 1.0, )\CL = 0.1, )\seg = 0.5,
)\dur = 0.3, and /\SVT =0.2.

C. Evaluation Metrics

1) Objective Evaluation: To quantify the performance of
our system in terms of pitch accuracy, timbre consistency,
and perceptual quality, we conduct objective evaluations under
both seen-singer and zero-shot settings. The following metrics
are employed:

a) Mel-Cepstral Distortion (MCD): MCD is used to
evaluate spectral fidelity by computing the frame-wise Eu-
clidean distance between mel-cepstral coefficients of the syn-
thesized and reference audio. It serves as a proxy for spectral
similarity, where lower values indicate more accurate spectral
reconstruction and reduced distortion.

b) Fundamental Frequency RMSE (FO-RMSE): FO-
RMSE measures pitch prediction accuracy by calculating the
root mean squared error between the fundamental frequency
(FO) trajectories of the generated and reference waveforms. A
lower FO-RMSE reflects better alignment with the intended
melody and more precise pitch control.

c) Speaker Embedding Cosine Similarity (SECS): To
assess timbre similarity, we compute cosine similarity be-
tween speaker embeddings extracted from the synthesized and
reference audio using a WavLM-based speaker verification
model [67]°. SECS values range from O to 1, with higher
scores indicating closer alignment in vocal identity.

Shttps://huggingface.co/microsoft/wavlm-base-sv
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TABLE I: The prosody similarity between synthesized and prompt speech in terms of differences in pitch, energy, and other

prosodic indicators. Lower values indicate higher similarity.

LibeiTTS Pitch Energy Others

Mean | Std| Skew | Kurt] | Mean| Std| Skew | Kurt| | Jitter |  Shimmer | HNR |
Paired 19.03 22.79 243 19.68 1.80 1.54 0.33 0.95 0.63 0.56 3.28
Unpaired 53.41 32.47 2.81 21.82 4.60 2.28 0.46 1.23 0.89 0.78 3.79
AISHELL-3 Pitch Energy Others

Mean | Std| Skew | Kurt] | Mean| Std| Skew | Kurt| | Jitter |  Shimmer | HNR |
Paired 42.70 26.29 1.13 3.85 2.94 2.38 0.44 1.71 0.78 0.43 4.42
Unpaired 65.73 29.87 1.63 7.05 5.05 2.58 0.57 1.83 0.94 0.58 4.95

TABLE II: Evaluation results on the seen test set for singing voice synthesis. Subjective metrics are reported with 95%

confidence intervals. GT stands for Ground Truth.

Subjective Evaluations

Objective Evaluations

Model
MOS-Q 1 MOS-N SMOS 1+ | MCD | FO-RMSE | SingMOS 4+  SECS 1
GT 4.17 £ 0.16 438 £ 0.18 441 £ 0.14 - - 4.37 0.925
GT (Acoustic Codec) 4.01 022 419 £ 0.19 448 £+ 0.12 0.93 0.012 4.31 0.906
DiftSinger [4] 368 +£ 020 379 +£0.15 3.86 + 0.16 4.59 0.084 4.13 0.769
VISinger2 [9] 359 £ 022 386 £0.16 391 +0.16 5.36 0.061 4.15 0.792
StyleSinger [7] 367 £0.15 392+0.21 4.11+0.16 4.95 0.112 4.19 0.833
SPSinger [13] 381 £ 0.18 4.10 + 0.12 4.06 &+ 0.17 4.28 0.054 4.28 0.860
Vevo 1.5 [34] 385 £0.12 396 £0.16 4.17 £0.16 4.18 0.051 4.39 0.907
CoMelSinger (ours) 390 £ 016 4.02 +£0.12 4.22 + 0.15 \ 4.17 0.042 4.32 0.912
d) SingMOS: SingMOS (Singing Mean Opinion it reveals a form of prosody leakage, where expressive cues

Score) [68]7 is a learned metric trained to predict human
perceptual ratings of singing voice quality. It is based on
a curated dataset of professional listening tests, in which
human raters assign mean opinion scores to both natural and
synthesized singing in Chinese and Japanese, addressing the
scarcity of large-scale perceptual annotations in the singing
domain. SingMOS produces scores in the range of O to 5,
with higher values indicating greater perceived naturalness
and overall quality. As a reference-free metric, it enables
scalable automatic evaluation in zero-shot and low-resource
conditions.

2) Subjective Evaluation: To assess perceptual quality, we
conducted a Mean Opinion Score (MOS) evaluation with
20 participants who have formal training in singing and
experience in vocal performance®. Each participant rated the
synthesized samples based on overall naturalness (MOS-N),
audio quality (MOS-Q), and timbre similarity (SMOS). A 5-
point Likert scale was used, where a score of 5 indicates
excellent perceptual quality and 1 denotes poor quality.

V. EXPERIMENTAL RESULTS

A. Evaluating  Prompt-Induced Prosody  Similarity in
MaskGCT

Several recent TTS systems [19], [69], [70] have reported
high prosodic similarity between the speech prompt and the
synthesized output. While this may appear beneficial in TTS,

7https://github.com/South-Twilight/SingMOS

8This study has been approved by the Department Ethics Review Committee
(DERC) at the National University of Singapore under DERC Ref Code:
000479.

from the prompt inadvertently influence the generated speech.
This issue becomes particularly problematic in singing voice
synthesis (SVS), where pitch and rhythm should be governed
solely by the input music score. As discussed in Section I, we
refer to this phenomenon as prosody leakage.

To investigate whether MaskGCT [18] exhibits such behav-
ior, we conduct a prosody similarity analysis following prior
evaluation protocols. NaturalSpeech 2 and 3 [19] quantify
prosodic similarity by comparing pitch and duration features
between the prompt and output, while StyleTTS-ZS [70]
computes Pearson correlation coefficients of acoustic features
to evaluate prosodic alignment.

Inspired by these approaches, we evaluate the prosodic
similarity of MaskGCT in both English and Mandarin using
the LibriTTS [25]° and AISHELL [71]'° datasets, respectively.
For each speaker, we randomly sample 50 utterances to
construct the test sets. During inference, we synthesize 50 ut-
terances per dataset by conditioning on the same target text but
using different speech prompts. We then compute the acoustic-
level similarity between each synthesized utterance and: (1) its
paired prompt (i.e., the one used during generation), and (2)
an unpaired prompt from the same speaker. This comparison
allows us to quantify the extent of prompt-induced prosody
similarity, which serves as an indicator of potential prosody
leakage in the model.

Table I presents a quantitative analysis of prompt-induced
prosody similarity by comparing the acoustic differences
between synthesized and prompt speech under paired and

https://www.openslr.org/60/
10https://openslr.org/93/
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TABLE III: Subjective (with 95% confidence intervals) and objective evaluation results on the unseen test set for zero-shot
SVS. Note that MCD is excluded since ground-truth alignments are unavailable in this setting.

Subjective Evaluations

Objective Evaluations

Model
MOS-Q 1 MOS-N 1 SMOS 1 \ FO-RMSE |  SingMOS T SECS 1

GT 420 £0.12 435+0.14 4.55=+0.15 - 441 0.932
GT (Acoustic Codec) 4.07 £0.18 422 £0.15 432 £0.11 0.015 4.66 0.921
DiffSinger 375+ 0.16 3.72+0.18 325+ 0.12 0.098 4.11 0.658
VISinger2 3724+ 0.19 374 +£ 020 3.31 £ 0.16 0.074 4.08 0.704
StyleSinger 348 +£0.11 3.82+0.18 3.85+0.15 0.125 4.22 0.853
SPSinger 392 + 0.15 4.03 £0.15 3.76 & 0.10 0.065 4.29 0.844
Vevo 1.5 [34] 372+ 0.14 381 +£0.12 4.02 £ 0.15 0.094 4.16 0.870
CoMelSinger (ours) 387 +£0.18 411 + 0.15 4.14 £+ 0.14 \ 0.048 4.25 0.897

TABLE IV: Objective evaluation results on the seen test set
for singing voice synthesis, comparing CoMelSinger with rep-
resentative systems that employ supervised pitch information
for melody control. GT denotes Ground Truth.

Model MCD | FO-RMSE | SingMOS 1t
CoMelSinger (ours) 4.17 0.042 4.32
XiaoiceSing 4.54 0.052 4.26
SingAug 4.16 0.035 3.96
RMSSinger 433 0.077 4.15

unpaired conditions. Across both LibriTTS and AISHELL-3,
paired prompts consistently yield lower differences in pitch,
energy, and other prosodic indicators, confirming stronger
alignment in prosodic patterns. In contrast, the unpaired
condition results in noticeably higher deviations, particularly
in pitch mean, energy mean, and jitter, suggesting that the
synthesized outputs are heavily influenced by the prosodic
characteristics of the prompt.

B. Seen Singer Singing Voice Synthesis

For the seen singer evaluation, we compare CoMelSinger
with five strong baseline systems: DiffSinger [4],
VISinger2 [9], SPSinger [13], StyleSinger [7], and Vevo
1.5 [34]. To ensure a fair comparison, all models adopt
HiFi-GAN [72] as the vocoder during both training and
inference. As presented in Table II, CoMelSinger achieves
the highest scores across both subjective and objective
metrics, demonstrating its capability to synthesize natural and
expressive singing voices from seen singers.

We first note that the performance gap between the Ground
Truth (GT) and GT with Acoustic Codec is minimal across
all metrics, confirming that the discrete acoustic token rep-
resentation introduces negligible degradation and establish-
ing a strong upper bound for token-based SVS systems.
CoMelSinger approaches this bound closely, suggesting that its
improvements arise from architectural designs—particularly
the disentangled modeling of melody and timbre—rather than
signal-level enhancements. Among all models, CoMelSinger
achieves the highest SMOS and SECS scores, indicating
strong timbre consistency and accurate preservation of speaker
identity, which validates the effectiveness of the in-context
prompting mechanism. It also attains the lowest FO-RMSE and

one of the highest SingMOS scores, reflecting precise melody
reproduction and high perceptual naturalness. Furthermore, its
competitive MCD score demonstrates the model’s ability to
reconstruct spectral features with smooth and consistent vocal
quality, confirming the effectiveness of the proposed structured
melody control strategy.

In addition, we compare CoMelSinger with several rep-
resentative SVS systems that employ supervised pitch-aware
conditioning under the seen-singer setting, including Xiaoic-
eSing [38], SingAug [73], and RMSSinger [74]. Xiaoic-
eSing enables precise melody control through explicit FO
modeling with residual log-FO prediction, SingAug enhances
pitch modeling in SVS by applying pitch-based and mix-up
data augmentation during training, and RMSSinger achieves
melody control by modeling pitch directly from realistic
music scores using a diffusion-based pitch modeling approach.
As shown in Table IV, CoMelSinger achieves competitive
objective performance against these supervised systems, with
comparable MCD and FO-RMSE and the highest SingMOS
score. Although SingAug attains slightly lower MCD and
FO-RMSE, these baseline systems rely on singer-dependent
training and are not designed for zero-shot SVS, whereas
CoMelSinger maintains strong performance while supporting
zero-shot generalization.

C. Zero-Shot Singing Voice Synthesis

We further evaluate CoMelSinger in a zero-shot setting,
where the model synthesizes singing voices from speakers
not seen during training. As shown in Table III, CoMelSinger
maintains strong performance across all subjective and objec-
tive metrics, exhibiting only minimal degradation compared to
the seen condition.

In contrast, baseline systems show notable declines in key
timbre- and melody-related metrics such as SMOS, SECS,
and FO-RMSE, underscoring their limited ability to general-
ize to unseen vocal identities. CoMelSinger’s robustness in
zero-shot scenarios is attributed to the synergy between in-
context prompting—which leverages short acoustic references
to anchor timbre—and large-scale speech pretraining, which
imparts transferable prosodic priors.

Despite the inherent challenge of handling unseen timbres,
CoMelSinger continues to achieve high speaker similarity
while preserving accurate pitch trajectories. This balance
between identity retention and melodic fidelity demonstrates
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Fig. 5: Visualization of mel-spectrograms and pitch contours for the ground truth, the proposed model, and ablated variants.
The predicted pitch trajectory (red) is overlaid with the ground-truth pitch (blue), with word-level boundaries indicated by

vertical dashed lines and pinyin annotations.

TABLE V: Objective evaluation results for the ablation study.
CL represents the coarse-to-fine contrastive learning strategy,
where SCL and FCL respectively represents sequence and
frame-level contrastive learning, SVT represents using SVT
for pitch guidance. The ”-w/o CL+SVT” configuration corre-
sponds to the MaskGCT-based SVS baseline.

Model MCD | FO-RMSE | SingMOS 1  SECS 1
CoMelSinger 4.17 0.042 4.32 0.912
-w/o CL 491 0.080 4.12 0.895
-w/o SCL 4.53 0.062 4.25 0.900
-w/o FCL 4.82 0.075 4.18 0.892
-w/o SVT 5.53 0.194 3.95 0.883
-w/o CL + SVT 5.89 0.210 3.83 0.874

the model’s strong generalization capacity. While many ex-
isting approaches face trade-offs between controllability and
naturalness, CoMelSinger effectively reconciles both through
its structured architecture and explicit conditioning scheme.
These findings position CoMelSinger as a strong baseline for
zero-shot singing voice synthesis with discrete representations.

D. Ablation Study

a) Component Analysis: To assess the contribution of
each component in CoMelSinger, we perform ablation studies
by systematically disabling key modules. Table V reports
results on four objective metrics: MCD, FO-RMSE, SingMOS,
and SECS. In particular, the configuration “w/o CL + SVT”
corresponds to the MaskGCT-based SVS baseline, where the
S2A module is fine-tuned without explicit melody control or
prosody disentanglement. Removing the entire coarse-to-fine
contrastive learning (CL) framework leads to substantial degra-
dation across all metrics, indicating reduced pitch accuracy
and speaker consistency. This highlights the importance of
contrastive objectives in disentangling pitch from timbre and
improving input—output alignment.

To isolate the effects of each contrastive branch, we fur-
ther ablate sequence contrastive learning (SCL) and frame-
level contrastive learning (FCL) individually. Excluding SCL
moderately affects MCD and SECS, suggesting its role in
maintaining global speaker identity. In contrast, removing FCL
causes a larger drop in FO-RMSE and SingMOS, confirming
its effectiveness in modeling fine-grained pitch details and
promoting melodic continuity. These results validate the hi-
erarchical design of our contrastive learning framework.

We also evaluate the impact of the singing voice transcrip-
tion (SVT) module, which provides auxiliary pitch supervi-
sion. Excluding SVT results in higher FO-RMSE and lower
SingMOS, confirming the benefit of explicit alignment signals
for structured melody control. The most severe degradation
occurs when both CL and SVT are removed, indicating their
complementary roles in pitch—-timbre disentanglement and
temporal stability.

Figure 5 visualizes mel-spectrograms and pitch contours
for the ground truth, our model, and two ablated variants.
Predicted pitch trajectories (red) are overlaid with ground-truth
pitch (blue), with word-level boundaries marked by dashed
lines and pinyin annotations. Compared to the ablated models,
CoMelSinger achieves better pitch alignment and smoother
contours, illustrating the effectiveness of both CL and SVT in
preserving melodic structure.

b) SVT Evaluation and Analysis: To assess the relia-
bility of the SVT module, we conduct an explicit frame-
level evaluation using token accuracy, precision, recall, and F1
score across multiple training configurations, as summarized
in Table VI. We evaluate SVT models trained on M4Singer,
Opencpop, their combination, and MIR-ST500 [75]. MIR-
ST500 is a large-scale singing transcription dataset comprising
over 160k annotated notes from 500 pop songs. Training on the
combined M4Singer and Opencpop datasets achieves the best
overall performance, indicating robust pitch token prediction
across diverse singing styles.
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TABLE VI: Frame-level evaluation results of the SVT model
under different training configurations. Accuracy, precision,
recall, and F1 score are reported.

Data Configuration Accuracy  Precision  Recall F1

M4Singer + Opencpop 0.790 0.719 0.707  0.711
M4Singer 0.749 0.691 0.674  0.680
Opencpop 0.707 0.506 0485  0.489
MIR-ST500 ) 0.725 0.449 0.390  0.405
MIR-STS00 pretrain + 0.648 0575 0542 0.548

Combined finetune

TABLE VII: Performance of various fine-tuning strategies with
differing trainable parameter ratios.

Method MCD | FO-RMSE | SingMOS t  SECS 1 Trainable (%)
FT-LoRA 4.26 0.053 4.34 0.920 6.51%
FT-LLRD 433 0.069 431 0.894 100.00%
FT-Pitch 4.47 0.062 5.95 0.902 4.46%
FT-Prefix 4.52 0.059 6.13 0.911 5.25%
FT-PGS 4.21 0.084 4.26 0.887 16.63%~16.63%
FT-Full 4.41 0.099 4.13 0.859 100.00%

Models trained on individual datasets exhibit degraded per-
formance, particularly on Opencpop and MIR-ST500, which
can be attributed to domain mismatch and limited coverage
of singing pitch patterns. We further investigate cross-dataset
generalization by pretraining SVT on MIR-ST500 followed
by fine-tuning on the combined dataset. Although this strategy
improves precision and recall compared to training on MIR-
ST500 alone, its overall performance remains inferior to
training directly on singing-specific data, underscoring the
importance of domain-relevant supervision for accurate pitch
modeling.

c) Comparison of Fine-Tuning Strategies: We evaluate
six representative fine-tuning strategies on the DiffL.lama back-
bone, each trained for 1000 epochs under identical schedules.
The comparison highlights trade-offs between parameter effi-
ciency, adaptation capacity, and overfitting risk under limited
SVS data.

o FT-LoRA: Applies LoRA to self-attention projections

with » = 16, a = 32, and dropout 0.1. Only the pitch

encoder, output head, and cond module are trainable.

e FT-LLRD: Freezes DiffLlama and fine-tunes
pitch/output/cond modules with layer-wise learning

rates decayed from bottom to top: ny = 1o - yX 1.

o FT-Pitch: Fine-tunes only the pitch encoder, output head,
and cond module; the backbone remains frozen.

o FT-Prefix: Adds 20 virtual tokens to each Diffl.lama
layer using prefix tuning (shared across 16 layers, injected
into attention and MLP). Pitch/output/cond modules are
also fine-tuned.

o FT-PGS: Unfreezes two upper DiffL.lama layers every
200 epochs, progressively increasing trainable capacity.

o FT-Full: Fully fine-tunes all model parameters, including
the entire DiffLlama backbone.

Table VII presents a comparison of six fine-tuning strategies
in terms of both objective and subjective performance, along
with their respective trainable parameter ratios. FT-LoRA
delivers the best overall performance, achieving the lowest FO-
RMSE, highest SingMOS, and highest SECS, while updating

only 4.81% of the parameters—highlighting the effectiveness
of low-rank adaptation for efficient model tuning. FT-PGS
achieves the lowest MCD, suggesting enhanced spectral fi-
delity through gradual unfreezing, though its pitch accuracy
is affected by delayed optimization of lower layers. FT-Prefix
and FT-Pitch yield consistent results with minimal overhead,
demonstrating the utility of lightweight adaptation modules.
In contrast, FT-LLRD and FT-Full fine-tune all parameters
yet underperform across most metrics, indicating that full-
capacity adaptation may lead to overfitting or instability in
data-scarce settings. These results underscore that parameter-
efficient strategies, particularly LoRA, can match or surpass
full-model fine-tuning while substantially reducing computa-
tional cost.

VI. CONCLUSION

In this work, we present CoMelSinger, a zero-shot singing
voice synthesis framework that extends discrete token-based
TTS models to support structured and controllable melody
generation. Built upon the non-autoregressive MaskGCT ar-
chitecture, CoMelSinger incorporates lyrics and pitch tokens
as inputs, enabling fine-grained alignment between the musical
score and the generated voice. To address the challenge
of prosody leakage from prompt-based conditioning—an is-
sue unique to singing synthesis—we propose a coarse-to-
fine contrastive learning strategy that explicitly disentangles
pitch information from the timbre prompt. Furthermore, we
introduce a lightweight singing voice transcription (SVT)
module to provide frame-level pitch and duration supervision,
enhancing the model’s ability to follow the intended melody
with precision. Extensive experiments on both seen and unseen
singers demonstrate that CoMelSinger achieves strong zero-
shot generalization, consistently outperforming competitive
SVS baselines in pitch accuracy, timbre consistency, and sub-
jective quality. Our results confirm that structured melody con-
trol and contrastive disentanglement are essential for scalable
and expressive singing synthesis. We believe CoMelSinger
opens new possibilities for discrete token-based SVS, enabling
scalable and zero-shot singing generation.
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